本文将参加年度优秀论文评选,如果您觉得这篇文章很好,请投下您宝贵的一票,谢谢! 支持(0)   不支持(0)

铁同位素在现代海洋环境的示踪研究
    点此下载全文
引用本文:刘瑾,宋金明,袁华茂,李学刚,李宁,段丽琴,曲宝晓,王启栋,邢建伟.2018.铁同位素在现代海洋环境的示踪研究[J].地质论评,64(5):1225-1236
摘要点击次数: 91
全文下载次数: 163
作者单位E-mail
刘瑾 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237 feixiangliujin@hotmail.com 
宋金明 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
3) 中国科学院大学
北京 100049
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
jmsong@qdio.ac.cn 
袁华茂 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
3) 中国科学院大学
北京 100049
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
李学刚 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
3) 中国科学院大学
北京 100049
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
李宁 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
3) 中国科学院大学
北京 100049
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
段丽琴 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
3) 中国科学院大学
北京 100049
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
曲宝晓 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
王启栋 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
邢建伟 1) 中国科学院海洋研究所海洋生态与环境科学重点实验室山东青岛, 2660712) 海洋国家实验室海洋生态与环境科学功能实验室山东青岛, 266237
4) 中国科学院海洋大科学研究中心
山东青岛 266071 
 
基金项目:本文为国家自然科学基金委员会—山东省联合基金项目(编号:U1606404);国家重点基础研究发展计划项目课题(编号:2015CB452901)和国家重点研发计划项目(编号:2016YFE0101500) 的成果。
中文摘要:随着海洋环境介质铁同位素测试技术的发展,特别是海水和沉积物中不同铁赋存形式的同位素组成研究备受重视,铁同位素已经展现出对各类生物地球化学过程的崭新的示踪作用。本文在不同铁价态和赋存形式之间转化的专属分馏机制框架总结基础上,汇总了现代海洋环境中大气沉降、陆源径流、沉积物、地下水和海底热液等不同来源的铁同位素特征范围,探讨了海洋内部铁循环的生物地球化学过程,包括生物吸收、颗粒态/溶解态铁的转化以及清除作用的铁同位素分馏机制,辨析海水剖面在不同层位上铁同位素组成的主导控制因素。另外,应用溯源混合模型甄别大西洋、太平洋和南大洋等多个海域铁来源,以此验证了全球气候变化与海陆多个物理化学过程的密切关系;利用不同结晶度和反应活度的矿物铁同位素数据可示踪早期成岩过程中铁还原的深度和程度,亦有助于辨析古海洋沉积物的铁同位素数据并提高古氧化还原环境的重建精度。
中文关键词:铁同位素  溯源混合模型  早期成岩;现代海洋
 
The Tracing Study of Iron Isotopes in Modern Marine Environment
NameInstitution
LIU Jin1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237
SONG Jinming1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;3) University of Chinese Academy of Sciences,Beijing,100049;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
YUAN Huamao1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;3) University of Chinese Academy of Sciences,Beijing,100049;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
LI Xuegang1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;3) University of Chinese Academy of Sciences,Beijing,100049;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
LI Ning1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;3) University of Chinese Academy of Sciences,Beijing,100049;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
DUAN Liqin1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;3) University of Chinese Academy of Sciences,Beijing,100049;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
QU Baoxiao1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
WANG Qidong1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
XING Jianwei1) Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao,Shandong,266071; 2) Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237;4) Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao,Shandong,266071
Abstract:With the development of iron isotope measuring techniques in marine environmental media,especially the isotopic composition of different forms of iron in seawater and sediments,iron isotopes have demonstrated a new tracer role for various biogeochemical processes. Based on the framework of the proprietary fractionation mechanism between different iron valences and forms of occurrence,this paper summarizes the range of iron isotopes in different sources,comprising atmospheric deposition,land source runoff,sediments,groundwater,and submarine hydrothermal fluids in the modern marine environment. The biogeochemical processes of the internal iron cycle in the ocean are discussed,including iron isotope fractionation mechanism for biological uptake,transformation of particulate/dissolved iron,and scavenging. The dominant controlling factors for the iron isotope composition of seawater profiles at different horizons are discriminated. In addition,the application of the traceable end member mixing model to identify iron sources in the Atlantic Ocean,the Pacific Ocean,and the Southern Ocean has verified the close relationship between global climate change and the sea/land multiple physical and chemical processes; special iron isotope data of distinct iron mineral with different crystallinity and reaction activity could be used to trace the depth and extent of iron reduction in early diagenesis,which can also help to distinguish iron isotope data from ancient marine sediments and improve the reconstruction accuracy of paleo redox environments.
keywords:iron isotopes  end member mixing model  early diagenesis  modern ocean
查看全文  查看/发表评论  下载PDF阅读器
s