北秦岭早古生代宽坪岩体两期花岗质岩浆锆石U-Pb年代学、地球化学及其地质意义

王江波1,2, 秦江锋1, 胡鹏3, 张良2, 赵富军2, 张军中1

1) 西北大学大陆动力学国家重点实验室, 地质系, 西安, 710069;
2) 核工业二○三研究所, 陕西咸阳, 712000; 3) 中核集团地矿事业部, 北京, 100013

内容提要：宽坪岩体位于北秦岭造山带东部，岩体主要由片麻状黑云母二长花岗岩和似斑状黑云母二长花岗岩组成。锆石LA-ICP-MS U-Pb定年结果表明宽坪岩体可划分为两期：早期为片麻状黑云母二长花岗岩，其锆石U-Pb年龄为448±4.5 Ma, 该期花岗岩富硅，富碱，属准铝质和高钾钙碱性系列，形成压力较低；晚期为似斑状黑云母二长花岗岩，其锆石U-Pb年龄为421±2.5 Ma, 该期花岗岩属强过铝质和高钾钙碱性—钙碱性系列。系统的地球化学研究表明，早期的片麻状二长花岗岩起源于中上地壳（斜长石的源区）在H2O饱和条件下发生部分熔融形成的贫Al2O3，富SiO2花岗质岩浆，晚期的似斑状二长花岗岩代表较高温的中—下地壳（杂砂岩或是高含水质片麻岩）发生部分脱水熔融形成的岩浆，这表明北秦岭地区从450~420 Ma经历了从早期的间碰撞阶段到后期的后碰撞阶段。

关键词：LA-ICP-MS 锆石 U-Pb 年龄；地球化学；北秦岭；宽坪岩体；早古生代

岩在源区属性和成因机制上的差异，为探讨北秦岭地区早古生代构造—岩浆演化历史提供岩相学依据。

1 岩体地质及岩相学

1.1 岩体地质

北秦岭地块南侧以商丹缝合带为界，北侧以洛南—栾川断裂带为界，从南到北依次由下古生界丹凤岩群变玄武岩、古元古界秦岭岩群片麻岩和大理岩、下古生界二郎坪岩群绿片岩及中元古界宽坪岩群石英片岩组成，早古生代花岗岩带侵位于秦岭岩群片麻岩中（王涛等，2009; Wang et al., 2015）。宽坪岩体位于陕西省丹凤县北部，岩体北侧受分水岭大断裂控制，南侧为商丹大断裂控制，呈狭长带状侵入于构造夹持区，向西延伸至丹凤县冠山村一带，向东延伸至商南县清油河一带。岩体宽约2~3 km，长约40 km，面积约80 km²，延长远远大于其宽度，延伸方向与区域构造线一致，均呈 NW 向 (图1a)。

宽坪岩体侵入于下古生界丹凤岩群中，岩体与围岩之间呈侵入接触关系，但目前多数地段呈断层
接触，北界北倾，南界南倾，接触面产状与围岩中的
面理产状大致一致。岩体主要岩性为片麻状黑云母
二长花岗岩（图2a），在岩体东南部武关河—清油河

图 2 北秦岭宽坪岩体的岩石及岩石薄片显微照片：(a) 片麻状黑云母二长花岗岩；(b) 似斑状黑云母二长花岗岩；
(c) 暗色包体；(d) 熔斑岩脉；(e) 片麻状构造；(f) 似斑状结构
Fig. 2 The photograph and microphoto of the Kuaping pluton, North Qinling; (a) gneissic biotite monzogranite; (b) porphyroclastic biotite monzogranite; (c) dark inclusion; (d) lamprophyre vein; (e) gneissic structure; (f) porphyritic-like texture
Kfs—钾长石；Pl—斜长石；Q—石英；Bt—黑云母
Kfs—K-feldspar；Pl—Plagioclase；Q—Quartz；Bt—Biotite

—带有一小面积似斑状二长花岗岩(图2b)出露，二者呈渐变过渡接触(图1b)。岩体内部及边缘发育强
烈的面状构造，糜棱岩化强烈。岩体内部常见丹凤
岩群变质岩捕掳体及定向展布的暗色闪长质包体
（图2c）。

1.2 岩相学

片麻状黑云母二长花岗岩，浅肉红色—灰白色，
块状，片状构造，中细粒花岗结构，主要由钾长石、
斜长石、石英、黑云母组成（图2e）。斜长石以半自
形晶为主，粒径1～3 mm，含量35%～40%，钾钠长石
双晶为主，双晶斜长石，An=26±；微斜长石以它形
晶为主，粒径1～2 mm，格子双晶发育，含量25%～
30%；石英呈他形粒状，粒径0.1～1.0 mm，多波状
消光，含量20%～25%；黑云母呈片状、片长0.5～
0.8 mm，含量5%～10%，局部富集地段黑云母含量
可达15%以上；磷灰石、锆石为粒状自形晶，锆石的
放射性晕发育。

似斑状黑云母二长花岗岩；浅灰色，块状构造，
似斑状结构（图2f）, 斑晶为钾长石，大小10×
20 mm²，含量约10%，形成似斑状结构，可见卡氏双

晶，个别钾长石斑晶中可见斜长石和石英的矿物包
裹体。基质主要为钾长石，半自形晶，含量15%～
20%；斜长石，半自形—自形晶，含量35%～40%，
以钠长石双晶为主，部分斜长石有轻微的绢云母化，
钾长石化；石英呈他形粒状，粒度0.8～2 mm，含
量20%～25%；黑云母呈半自形片状，含量5%～
10%。副矿物有磷灰石、榍石、绿帘石等。

2 样品采集和分析方法

本文针对岩体中的两种岩性进行了LA-ICP MS
锆石 U-Pb 定年：
(1) 片麻状黑云母二长花岗岩(KP006)，样品
采自陕西省丹凤县双槽乡沙岭村，地理坐标为 N33°
43′03.49″, E110°24′47.35″。
(2) 似斑状黑云母二长花岗岩(KP009)，样品
采自陕西省丹凤县武关河乡罗家庄，地理坐标为 N33°
39′04.61″, E110°36′53″, 39″。
3 钍 U-Pb 同位素年龄

3.1 片麻状黑云母二长花岗岩 (KP006)

样品中的锆石为无色透明，呈短柱状或不规则状，自形—半自形，粒径一般长 50～200 μm，宽 50～100 μm，长宽比为 1：1～2：1。锆石颗粒晶面完整，平直光滑，少量晶面较粗糙，具蚀痕、麻点和凹凸不平的现象。镜下光面图像（图 3a）显示锆石具有明显的震荡波纹环带，具有岩浆锆石的特征。样品 K006 进行了 30 个年龄测试点分析，其中 #17、#28 为不谱和数据，不予考虑；#3、#4、#5、#13、#24 的 Th 含量为 113±66×10^-6，U 含量为 176±10×10^-6～725×10^-6，Th/U 值为 0.43～1.25，应为典型的岩浆锆石，锆石^{206}Pb/^{238}U 表面年龄仅为 384±6～428±6 Ma，可能是 Pb 丢失所致。#1、#8、#9、#14、#21、#27、#29 的 Th 含量为 87×10^-6～135×10^-6，U 含量为 146～199×10^-6，Th/U 值为 0.51～0.82，代表典型的岩浆锆石，锆石^{206}Pb/^{238}U 表面年龄为 471±8～506±8 Ma。剩余的 16 个测试点的 Th 含量为 57.8±10×10^-6～311×10^-6，U 含量为 134±386×10^-6，Th/U 值为 0.42～0.93，代表典型的岩浆型锆石，锆石^{206}Pb/^{238}U 表面年龄为 434±8～464±7 Ma，得到的^{206}Pb/^{238}U 加权平均年龄为 448.3±4.5 Ma（MSWD = 1.5，2σ），代表岩石的结晶年龄。

3.2 似斑状黑云母二长花岗岩 (KP009)

样品中的锆石为无色透明，呈短柱状或短柱状，自形—半自形，粒径一般长 50～300 μm，宽 50～100 μm，长宽比为 1：1～3：1。锆石颗粒晶面完整，平直光滑，少量晶面较粗糙，具蚀痕、麻点和凹凸不平的现象。镜下光面图像（图 3b）显示锆石具有明显的震荡波纹环带，为岩浆锆石。对样品 K009 进行了 30 个年龄测试点分析，其中 #4、#14、#19、#21、#28 为不谱和数据，不予考虑；#1、#9、#29、#30 的 Th 含量为 476×10^-6～884×10^-6，U 含量 732×10^-6～1182×10^-6，Th/U 值为 0.50～1.02，代表典型的岩浆型锆石，锆石^{206}Pb/^{238}U 表面年龄仅为 397±6～436±6 Ma，可能是 Pb 丢失的结果。剩余 21 点的 Th 含量为 57.3×10^-6～794×10^-6，U 含量为 299×10^-6～1531×10^-6，Th/U 值为 0.07～1.1；锆石^{206}Pb/^{238}U 表面年龄为 412±5～432±6 Ma，得到的^{206}Pb/^{238}U 加权平均年龄为 421.4±2.5 Ma（MSWD = 0.98，2σ），代表岩石的结晶年龄。

4 地球化学特征

4.1 主量元素

宽坪黑云母二长花岗岩地球化学分析结果见表
<table>
<thead>
<tr>
<th>测点号</th>
<th>元素含量((\times 10^{-6}))</th>
<th>Th/U</th>
<th>同位素比值</th>
<th>同位素年龄(\text{Ma})</th>
<th>谐和度（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>Th</td>
<td>U</td>
<td>测值</td>
<td>测值</td>
</tr>
<tr>
<td>K006-01</td>
<td>51</td>
<td>86</td>
<td>144</td>
<td>0.60</td>
<td>0.0564</td>
</tr>
<tr>
<td>K006-02</td>
<td>130</td>
<td>208</td>
<td>382</td>
<td>0.54</td>
<td>0.0546</td>
</tr>
<tr>
<td>K006-03</td>
<td>89</td>
<td>114</td>
<td>287</td>
<td>0.40</td>
<td>0.0580</td>
</tr>
<tr>
<td>K006-04</td>
<td>82</td>
<td>110</td>
<td>261</td>
<td>0.42</td>
<td>0.0577</td>
</tr>
<tr>
<td>K006-06</td>
<td>168</td>
<td>310</td>
<td>486</td>
<td>0.64</td>
<td>0.0561</td>
</tr>
<tr>
<td>K006-07</td>
<td>53</td>
<td>95</td>
<td>158</td>
<td>0.60</td>
<td>0.0582</td>
</tr>
<tr>
<td>K006-08</td>
<td>70</td>
<td>110</td>
<td>186</td>
<td>0.59</td>
<td>0.0564</td>
</tr>
<tr>
<td>K006-09</td>
<td>48</td>
<td>87</td>
<td>136</td>
<td>0.64</td>
<td>0.0593</td>
</tr>
<tr>
<td>K006-10</td>
<td>67</td>
<td>155</td>
<td>197</td>
<td>0.79</td>
<td>0.0563</td>
</tr>
<tr>
<td>K006-11</td>
<td>57</td>
<td>98</td>
<td>175</td>
<td>0.56</td>
<td>0.0557</td>
</tr>
<tr>
<td>K006-12</td>
<td>93</td>
<td>239</td>
<td>273</td>
<td>0.88</td>
<td>0.0594</td>
</tr>
<tr>
<td>K006-13</td>
<td>234</td>
<td>649</td>
<td>720</td>
<td>0.90</td>
<td>0.0609</td>
</tr>
<tr>
<td>K006-15</td>
<td>54</td>
<td>96</td>
<td>163</td>
<td>0.59</td>
<td>0.0582</td>
</tr>
<tr>
<td>K006-16</td>
<td>51</td>
<td>105</td>
<td>156</td>
<td>0.67</td>
<td>0.0536</td>
</tr>
<tr>
<td>K006-18</td>
<td>79</td>
<td>146</td>
<td>225</td>
<td>0.65</td>
<td>0.0614</td>
</tr>
<tr>
<td>K006-19</td>
<td>65</td>
<td>130</td>
<td>192</td>
<td>0.68</td>
<td>0.0548</td>
</tr>
<tr>
<td>K006-20-21</td>
<td>71</td>
<td>115</td>
<td>197</td>
<td>0.58</td>
<td>0.0528</td>
</tr>
<tr>
<td>K006-22</td>
<td>64</td>
<td>124</td>
<td>182</td>
<td>0.68</td>
<td>0.0562</td>
</tr>
<tr>
<td>K006-23</td>
<td>53</td>
<td>101</td>
<td>153</td>
<td>0.66</td>
<td>0.0563</td>
</tr>
<tr>
<td>K006-25</td>
<td>131</td>
<td>311</td>
<td>370</td>
<td>0.84</td>
<td>0.0608</td>
</tr>
<tr>
<td>K006-26</td>
<td>96</td>
<td>188</td>
<td>283</td>
<td>0.67</td>
<td>0.0566</td>
</tr>
<tr>
<td>K006-27</td>
<td>63</td>
<td>110</td>
<td>167</td>
<td>0.66</td>
<td>0.0565</td>
</tr>
<tr>
<td>K006-30</td>
<td>46</td>
<td>82</td>
<td>134</td>
<td>0.61</td>
<td>0.0543</td>
</tr>
</tbody>
</table>

表 1 北秦岭宽坪岩体花岗岩类 LA-ICP MS 锆石 U-Pb 年龄测定结果

Table 1 LA-ICP-MS zircon U-Pb data of the granites from Kuanping pluton, North Qinling
<table>
<thead>
<tr>
<th>测点号</th>
<th>元素含量 (×10^-6)</th>
<th>同位素比值</th>
<th>同位素年龄 (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>Th</td>
<td>U</td>
</tr>
<tr>
<td>K009-06</td>
<td>324</td>
<td>599.31</td>
<td>1037.77</td>
</tr>
<tr>
<td>K009-07</td>
<td>124.75</td>
<td>313.35</td>
<td>373.98</td>
</tr>
<tr>
<td>K009-08</td>
<td>318.53</td>
<td>515.5</td>
<td>1015.29</td>
</tr>
<tr>
<td>K009-09</td>
<td>372.25</td>
<td>435.37</td>
<td>867.81</td>
</tr>
<tr>
<td>K009-10</td>
<td>142.09</td>
<td>367.97</td>
<td>399.66</td>
</tr>
<tr>
<td>K009-11</td>
<td>149.8</td>
<td>467.04</td>
<td>442.25</td>
</tr>
<tr>
<td>K009-12</td>
<td>189.12</td>
<td>552.27</td>
<td>556.61</td>
</tr>
<tr>
<td>K009-13</td>
<td>124.75</td>
<td>313.35</td>
<td>373.98</td>
</tr>
<tr>
<td>K009-14</td>
<td>318.53</td>
<td>515.5</td>
<td>1015.29</td>
</tr>
<tr>
<td>K009-15</td>
<td>142.09</td>
<td>367.97</td>
<td>399.66</td>
</tr>
<tr>
<td>K009-16</td>
<td>149.8</td>
<td>467.04</td>
<td>442.25</td>
</tr>
<tr>
<td>K009-17</td>
<td>189.12</td>
<td>552.27</td>
<td>556.61</td>
</tr>
<tr>
<td>K009-18</td>
<td>124.75</td>
<td>313.35</td>
<td>373.98</td>
</tr>
<tr>
<td>K009-19</td>
<td>318.53</td>
<td>515.5</td>
<td>1015.29</td>
</tr>
<tr>
<td>K009-20</td>
<td>142.09</td>
<td>367.97</td>
<td>399.66</td>
</tr>
<tr>
<td>K009-21</td>
<td>149.8</td>
<td>467.04</td>
<td>442.25</td>
</tr>
<tr>
<td>K009-22</td>
<td>189.12</td>
<td>552.27</td>
<td>556.61</td>
</tr>
<tr>
<td>K009-23</td>
<td>124.75</td>
<td>313.35</td>
<td>373.98</td>
</tr>
<tr>
<td>K009-24</td>
<td>318.53</td>
<td>515.5</td>
<td>1015.29</td>
</tr>
<tr>
<td>K009-25</td>
<td>142.09</td>
<td>367.97</td>
<td>399.66</td>
</tr>
<tr>
<td>K009-26</td>
<td>149.8</td>
<td>467.04</td>
<td>442.25</td>
</tr>
<tr>
<td>K009-27</td>
<td>189.12</td>
<td>552.27</td>
<td>556.61</td>
</tr>
<tr>
<td>K009-28</td>
<td>124.75</td>
<td>313.35</td>
<td>373.98</td>
</tr>
<tr>
<td>K009-29</td>
<td>318.53</td>
<td>515.5</td>
<td>1015.29</td>
</tr>
<tr>
<td>K009-30</td>
<td>142.09</td>
<td>367.97</td>
<td>399.66</td>
</tr>
</tbody>
</table>
2。

宽坪岩体中，片麻状二长花岗岩富硅、富碱、富钾，SiO_2 为 72.80% ~ 74.01%，Na_2 O 为 3.25% ~ 3.37%，K_2 O 为 5.03% ~ 5.21%，K_2 O + Na_2 O 为 8.41% - 8.47%，K_2 O/Na_2 O = 1.49 ~ 1.60；贫钙和镁，CaO 为 1.11% ~ 1.47%，MgO 为 0.34% ~ 0.41%；Al_2 O_3 为 12.17% ~ 12.82%，铝饱和指数 A/CAK = 0.93 ~ 0.97，AR = 3.91 ~ 4.49，属准铝质高钾钙碱性系列 (图 5)。

似斑状花岗岩与片麻状花岗岩相比，SiO_2 较低，为 70.68% ~ 72.62%，CaO 为 1.95% ~ 2.18%，Na_2 O 为 3.02% ~ 3.51%，相对低钾，K_2 O 为 2.98% ~ 3.69%，K_2 O/Na_2 O 为 6.28% ~ 6.71%，K_2 O/Na_2 O = 0.85 ~ 1.22；MgO 为 0.83% ~ 1.02%，Mg^# (43.65 ~ 45.01) 相对较高，Al_2 O_3 为 14.09% ~ 15.29%，铝饱和指数 A/CAK = 1.13 ~ 1.18，AR = 2.18 ~ 2.42，属过铝质钙碱性系列(图 5)。

4.2 微量元素

稀土元素含量及相关参数见表 2。稀土元素球粒陨石标准化配分模式图见图 6。

片麻状二长花岗岩稀土元素总量较低，为 84.35×10^-6 ~ 98.99×10^-6，轻、中稀土分馏较弱，LREE/HREE 为 4.38 ~ 6.16，(La/Yb)_N 为 4.21 ~ 6.38，球粒陨石配分模式图上表现为轻稀土富集的右倾特征，δEu = 0.53 ~ 0.59；富集 K, Rb, Ba, Pb 等大离子亲石元素，相对亏损 P, Nb, Ta, Ti 等高场强元素。不相容元素 Rb/Sr 值为 1.28 ~ 1.35，Th/U 值为 6.57 ~ 8.22，Nb/Ta 值为 11.03 ~ 17.54。

似斑状二长花岗岩稀土元素总量相对较高，为 158×10^-6 ~ 199×10^-6，轻、中稀土分馏较强，LREE/
## Table 2: Major elements (%) and trace elements ($\times 10^{-6}$) of the granites from Kuanping pluton, Northern Qinling Mountains

<table>
<thead>
<tr>
<th>岩性</th>
<th>片麻状黑云母二长花岗岩</th>
<th>似斑状黑云母二长花岗岩</th>
<th>似斑状黑云母二长花岗岩</th>
</tr>
</thead>
<tbody>
<tr>
<td>样品编号</td>
<td>K023-1</td>
<td>K023-2</td>
<td>K023-3</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>72.80</td>
<td>73.21</td>
<td>74.01</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0.35</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>FeO</td>
<td>1.96</td>
<td>1.96</td>
<td>1.80</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>MgO</td>
<td>0.41</td>
<td>0.39</td>
<td>0.34</td>
</tr>
<tr>
<td>CaO</td>
<td>1.47</td>
<td>1.21</td>
<td>1.14</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>3.31</td>
<td>3.37</td>
<td>3.25</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1.56</td>
<td>1.49</td>
<td>1.60</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>总量</td>
<td>99.99</td>
<td>99.97</td>
<td>99.91</td>
</tr>
<tr>
<td>Na$_2$O+K$_2$O</td>
<td>8.47</td>
<td>8.41</td>
<td>8.46</td>
</tr>
<tr>
<td>K$_2$O/Na$_2$O</td>
<td>1.56</td>
<td>1.49</td>
<td>1.60</td>
</tr>
<tr>
<td>Al/R</td>
<td>3.91</td>
<td>4.02</td>
<td>4.49</td>
</tr>
<tr>
<td>Si</td>
<td>3.67</td>
<td>3.47</td>
<td>3.31</td>
</tr>
<tr>
<td>A/CKN</td>
<td>0.94</td>
<td>0.97</td>
<td>0.93</td>
</tr>
<tr>
<td>Mg$^2+$</td>
<td>27.18</td>
<td>25.91</td>
<td>25.27</td>
</tr>
<tr>
<td>总量</td>
<td>99.99</td>
<td>99.97</td>
<td>99.91</td>
</tr>
</tbody>
</table>

### 北秦岭宽坪岩体花岗岩类主量元素(%)、微量元素($\times 10^{-6}$)、稀土元素($\times 10^{-6}$)及相关参数

<table>
<thead>
<tr>
<th>岩性</th>
<th>钡石含量</th>
<th>钙含量</th>
<th>长石含量</th>
<th>主量元素(%)</th>
<th>微量元素($\times 10^{-6}$)</th>
<th>稀土元素($\times 10^{-6}$)</th>
<th>相关参数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb</td>
<td>2.78</td>
<td>2.54</td>
<td>2.67</td>
<td>2.95</td>
<td>1.58</td>
<td>1.55</td>
<td>1.17</td>
</tr>
<tr>
<td>Lu</td>
<td>0.38</td>
<td>0.38</td>
<td>0.39</td>
<td>0.42</td>
<td>0.21</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>Y</td>
<td>23.70</td>
<td>22.60</td>
<td>23.60</td>
<td>27.00</td>
<td>11.60</td>
<td>14.50</td>
<td>10.10</td>
</tr>
<tr>
<td>K/Rb</td>
<td>229.20</td>
<td>261.15</td>
<td>240.23</td>
<td>217.73</td>
<td>183.32</td>
<td>174.15</td>
<td>191.30</td>
</tr>
<tr>
<td>Sr/Eu</td>
<td>232.65</td>
<td>195.57</td>
<td>258.15</td>
<td>226.02</td>
<td>377.46</td>
<td>399.80</td>
<td>486.20</td>
</tr>
<tr>
<td>Rb/Sr</td>
<td>1.28</td>
<td>1.36</td>
<td>1.29</td>
<td>1.28</td>
<td>0.53</td>
<td>0.57</td>
<td>0.50</td>
</tr>
<tr>
<td>Th/U</td>
<td>6.85</td>
<td>8.22</td>
<td>6.73</td>
<td>6.57</td>
<td>19.86</td>
<td>14.33</td>
<td>20.18</td>
</tr>
<tr>
<td>Nb/Ta</td>
<td>15.25</td>
<td>13.18</td>
<td>11.03</td>
<td>17.54</td>
<td>7.70</td>
<td>7.57</td>
<td>8.19</td>
</tr>
<tr>
<td>Zr/Hf</td>
<td>48.55</td>
<td>44.86</td>
<td>42.06</td>
<td>45.49</td>
<td>40.81</td>
<td>40.98</td>
<td>46.98</td>
</tr>
<tr>
<td>Y/Ho</td>
<td>31.79</td>
<td>29.89</td>
<td>32.11</td>
<td>27.36</td>
<td>32.56</td>
<td>33.61</td>
<td>30.08</td>
</tr>
<tr>
<td>K/Rb</td>
<td>229.20</td>
<td>261.15</td>
<td>240.23</td>
<td>217.73</td>
<td>183.32</td>
<td>174.15</td>
<td>191.30</td>
</tr>
<tr>
<td>Sr/Eu</td>
<td>232.65</td>
<td>195.57</td>
<td>258.15</td>
<td>226.02</td>
<td>377.46</td>
<td>399.80</td>
<td>486.20</td>
</tr>
</tbody>
</table>
图 5 北秦岭宽坪岩体 A/CK—A/NK 图解，SiO₂—K₂O 图解，AR—SiO₂图解及 SiO₂—Mg°图解
Fig. 5 A/CK—A/NK and SiO₂—K₂O and AR—SiO₂ and SiO₂—Mg° diagram of Kuaping pluton,
Northern Qinling Mountains

HREE 为 19. 34-23. 73, (La/Yb)₈₇ 为 24. 68~35. 70, 球粒陨石配分模式图上表现为轻稀土更加富集的右倾特征, εEu = 0. 57~0. 80; 似斑状二长花岗岩与片麻状二长花岗岩相比, 更加富集 K, Rb, Ba, Pb, Th, U 等大离子亲石元素, 相对亏损 P, Nb, Ta, Ti 等高场强元素。不相容元素 Rb/Sr 值为 0. 50~0. 57, Th/U 值为 14. 33~20. 18, Nb/Ta 值为 7. 57~9. 28。

5 讨论
5.1 岩体形成时代及期次
根据前人研究, 宽坪黑云母二长花岗岩形成于加里东期—华力西期, 年龄范围较大 (494 ~ 282 Ma), 形成时代存在较大差异 (表 3)。本次获得的宽坪年龄数据, 反映了两期岩浆侵入事件, 其中片麻状黑云母二长花岗岩的锆石 U-Pb 年龄 (448 ± 4. 5 Ma), 与前人获得的黑云母二长花岗岩的锆英石 U-Pb 年龄 (446 ± 19 Ma, 张桂英等, 2006) 一致, 属晚奥陶世岩浆活动; 似斑状黑云母二长花岗岩的锆石 U-Pb 年龄 (421. 4 ± 2. 5 Ma), 与前人获得的黑云母二长花岗岩的锆英石 U-Pb 年龄 (439. 5 ± 9. 5 Ma, 陆松年等, 2003) 接近, 属晚志留世岩浆活动。前人获得黑云母、长石 K-Ar 法及钾、Rb-Sr 法年龄较锆石 U-Pb 法年龄偏低, 可能由于区内加里东期以后发生多期次强烈构造岩浆活动, 导致 Ar 严重丢失。同时野外地质观察可见似斑状花岗岩侵入于片麻状花岗岩中 (图 1b), 指示似斑状花岗岩形成时间较片麻状花岗
岩，与上述测年结果相符。因此宽坪岩体可划分为两期，早期为晚奥陶世片状二长花岗岩，晚期为晚志留世似斑状二长花岗岩。

5.2 早期片状黑云母二长花岗岩成因机制

宽坪岩体中早期片状二长花岗岩 SiO₂(72.80%~74.01%)及(Na₂O+K₂O)含量(8.41%~8.47%)相对较高，岩石的K₂O/Na₂O值大于1，属于高钾钙碱性系列，Fe₂O₃T及MgO含量较低；微量元素和稀土元素地球化学特征显示，岩石富含轻稀土(LREE)及大离子亲石元素(LILEs)，亏损 Nb、Ta、Ti等高场强元素(HFSEs)，这些特征表明早期片状黑云母二长花岗岩属于类铝质花岗岩（White and Chappell，1974)。值得注意的是，岩石的铝饱和指数(A/CNK)小于1，其A/NCN值介于0.93~0.97，属于准铝质岩浆；在SiO₂—Y和SiO₂—P₂O₅判别图解上（图7a、b），早期片状黑云母二长花岗岩表现出I型花岗岩的演化趋势。铝质花岗岩应属于I型花岗岩，起源于下地壳镁铁质岩石的脱水部分熔融（White and Chappell，1974），这是由于在下地壳脱水部分熔融的过程中，斜长石的稳定性很好，很难发生大规模熔融形成过铝质岩浆（Rapp and Watson，1995）。岩石的P₂O₅含量介于0.05%~0.06%，明显低于典型S型花岗岩的P₂O₅含量，这两种可能，一是岩石本身代表准铝质花岗岩质熔体，P₂O₅在准铝质花岗岩熔体的溶解度很低，导致其P₂O₅含量（Chappell and White，1992）偏低；第二种可能是花岗岩质熔体形成的温度很低，锆石、磷灰石等副矿物并未完全熔融进入花岗岩质熔体，导致

### 表3 北秦岭宽坪岩体年代一览表

<table>
<thead>
<tr>
<th>岩性</th>
<th>采样位置</th>
<th>年龄(Ma)</th>
<th>测试方法</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>浅肉红色片状黑云母岩</td>
<td>丹凤县双槽沟中石山</td>
<td>314.7</td>
<td>黑云母K-Ar</td>
<td>严阵等，1985</td>
</tr>
<tr>
<td>浅肉红色片状黑云母岩</td>
<td>丹凤县双槽沟中石山</td>
<td>314.7</td>
<td>黑云母K-Ar</td>
<td>严阵等，1985</td>
</tr>
<tr>
<td>浅肉红色中粒石英片状黑云母花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>315</td>
<td>黑云母K-Ar</td>
<td>严阵等，1985</td>
</tr>
<tr>
<td>片状黑云母花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>363.3/282.6</td>
<td>黑云母K-Ar/长石K-Ar</td>
<td>严阵等，1985</td>
</tr>
<tr>
<td>质红色石英斑状黑云母岩</td>
<td>丹凤县双槽沟中石山</td>
<td>313.2</td>
<td>黑云母K-Ar</td>
<td>严阵等，1985</td>
</tr>
<tr>
<td>似斑状黑云母花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>358a±12</td>
<td>全岩Rb-Sr</td>
<td>裴洪文等，1996</td>
</tr>
<tr>
<td>黑云母二长花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>439.5±9.5</td>
<td>颗粒锆石U-Pb</td>
<td>陆松年等，2003</td>
</tr>
<tr>
<td>黑云母二长花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>446±19</td>
<td>颗粒锆石U-Pb</td>
<td>张宗清，2006</td>
</tr>
<tr>
<td>片状黑云母花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>382±32</td>
<td>颗粒锆石U-Pb</td>
<td>张宗清，2006</td>
</tr>
<tr>
<td>片状黑云母花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>452.8±2.0</td>
<td>LA-ICP MS锆石U-Pb</td>
<td>张宗清，2013</td>
</tr>
<tr>
<td>片状黑云母二长花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>448.3±4.5</td>
<td>LA-ICP MS锆石U-Pb</td>
<td>本文</td>
</tr>
<tr>
<td>片状黑云母二长花岗岩</td>
<td>丹凤县双槽沟中石山</td>
<td>421.4±2.5</td>
<td>LA-ICP MS锆石U-Pb</td>
<td>本文</td>
</tr>
</tbody>
</table>
其 P₂O₅ 含量偏低 (Brown, 2013)。同时应该注意到，早期片状二长花岗岩具有较高的 Rb（160×10⁻⁶ ~ 194×10⁻⁶）和低的 Sr（118×10⁻⁶ ~ 151×10⁻⁶）含量，岩石的 Rb/Sr 值介于 1.28 ~ 1.36，这明显高于下地壳部分熔融形成花岗岩的 Rb/Sr 值。在 Rb/Sr—Rb/Ba 花岗岩源岩石图解上（图 8），早期片状二长花岗岩落于相对富长石的碎屑岩起源花岗质熔体区；结合岩石稀土总量较低，其 ΣREE 介于 84.35×10⁻⁶ ~ 98.99×10⁻⁶，岩石发育明显的负 Eu 异常，其 Eu * /Eu 介于 0.53 ~ 0.59，这表明岩石的源区比较贫斜长石，因为在粘度系数较大的花岗质岩浆中，斜长石很难发生有效的结晶分异作用，可以认为斜长石的分离结晶作用不是导致岩石负 Eu 异常的主要原因。岩石全岩锆石饱和温度计算表明，片状二长花岗岩的锆石饱和温度为 795 ~ 810℃，考虑到岩石中有较多的捕获锆石，因此可以认为这个温度是花岗质岩浆形成的上限温度 (Miller et al., 2003)。综上所述，我们认为早期的片状二长花岗岩应起源于贫斜长石、富长石的变质沉积岩在相对低温的环境下，发生白云母脱水部分熔融，形成的富 Rb、K、偏酸性的花岗质岩浆；这种花岗岩一般形成于碰撞造山作用的早期升温阶段，代表同碰撞构造环境下产的产物 (Brown, 2013)。

5.3 晚期似斑状黑云母二长花岗岩成因机制

对于似斑状二长花岗岩，其 SiO₂ 含量 (70.68% ~ 72.62%) 相对偏低，和早期片状二长花岗岩相比，似斑状二长花岗岩 (Na₂O+K₂O) 含量 (6.28% ~ 6.71%) 相对偏低，K₂O/Na₂O 值介于 0.85 ~ 1.22，其 A/CNK 指数介于 1.13 ~ 1.18，属于过铝质花岗岩；在 SiO₂—Y 和 SiO₂—P₂O₅ 判别图解上 (图 7a, b)，晚期似斑状黑云母二长花岗岩表现出 S 型花岗岩的演化趋势。同时，岩石的 FeO (1.89 ~ 2.15%) 及 MgO (0.83 ~ 1.02%) 含量相对偏高；微量元素和稀土元素地球化学分析表明，岩石具有典型花岗岩浆的集中 LREE 和 LILE，亏损 HFSEs 的特征，岩石的 Nb/Ta 值介于 7.57 ~ 9.28，和典型的上地壳起源的花岗岩类似 (Gao and Rundick, 2003)。在 Rb/Sr—Rb/Ba 花岗岩源岩石图解上，岩石表现出较低的 Rb/Sr 值和 Rb/Ba 值，落于富长石的杂岩部分熔融形成的花岗质熔体区域 (图 8)。结合岩石 Al₂O₃ 和 P₂O₅ 含量相比都偏高，稀土总量也较高，表明有较多的副矿物在高温条件下发生熔融进入花岗质熔体 (Brown, 2013)。综合判断岩石的源区应该是富酸性斜长石的源区，经过黑云母脱水部分熔融形成过铝质花岗质熔体，熔融温度可能也比片状二长花岗岩高一些，这种熔融作用一般代表碰撞造山带后期区域应力场转入伸展阶段；同时，区域上有资料证明在 430 Ma 左右发生了幔源岩浆的底侵（笔者等未发表资料）。这与野外在宽坪岩体西部卢家店一带观察到侵入于片状花岗岩岩中的煌斑岩脉 (图 2d)，其锆石 U-Pb 年龄为 435.0±3.1 Ma（笔者等未发表资料）以及在宽坪岩体南部资谷地区侵入于丹凤岩群中的辉辉层长岩获得 432.2±2.3 Ma（张成立，2013）相一致。综上所述，笔者等认为晚期的 (420 Ma) 似斑状二长花岗岩代表中下地壳岩石 (杂砂岩、花岗质片麻岩) 在相对高温的条件下发生黑云母脱水部分熔融形成的过铝质花岗质熔体，代表区域应力场转入伸展阶段的产物。

![图 7 北秦岭宽坪岩体 SiO₂—Y(a) 和 SiO₂—P₂O₅(b) 判别图](据 Chappell and White, 1992)

**Fig. 7 SiO₂—Y(a) and SiO₂—P₂O₅(b) diagram of Kuanning pluton, Northern Qinling Mountains**
6 结论

（1）宽坪黑云母二长花岗岩包括2期岩浆作用：早期晚奥陶世形成片麻状黑云母二长花岗岩（448.3±4.5 Ma）；晚期晚志留世形成似斑状黑云母二长花岗岩（421.4±2.5 Ma），二者呈渐变过渡接触。

（2）晚期的片麻状二长花岗岩起源于中上地壳（贫斜长石的源区）在H2O饱和条件下发生部分熔融形成的贫Al2O3、富SiO2花岗质岩浆；晚期的似斑状二长花岗岩代表较高温的中下地壳（花岗质片麻岩或是变质花岗岩）发生部分脱水熔融形成的岩浆。

（3）宽坪岩体中两期花岗质岩浆作用表明北秦岭地区从450~420 Ma经历了从早期的同碰撞阶段到后期的后碰撞阶段。

参考文献 / References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)


陈岳龙.1999.东天山北,秦岭花岗岩系地球化学.北京:地质出版社,1~141.


李书平,王涛,王晓霞.2001.北秦岭灰池子花岗质复式岩体的源岩讨论一元化一方位系地球化学制约.地球科学中国地质大学学报,26(3):269~278.


王晓霞,王涛,齐秋菊,李舱.2011.秦岭晚中生代花岗岩时空分布,成
**Zircon U-Pb Ages and Geochemical Characteristics of the Two-stage Granitic Magmatism from the Kuanping Pluton in the Northern Qinling Mountains: Petrogenesis and Tectonic Implication**


1) *Department of Geology, Northwest University, Xi’an, 710069;*  
2) *Research Institute No. 203, CNNC, Xiayang, Shaanxi, 712000;*  
3) *Department of Geology and Ming, CNNC, Beijing, 100013*

**Objectives**: The Early Paleozoic Kuanping granite pluton in Danfeng area have important geological significance for constraining the tectonic evolution of the Qinling Mountains. Kuanping granite pluton is composed by gneissic biotite monzogranite and porphyrocyte biotite granite.

**Methods**: Based on the field work, through the microscope observation, the whole rock chemical analysis, the zircon LA-ICP MS U-Pb dating of the gneissic biotite monzogranite and porphyrocyte biotite monzogranite.

**Results**: The gneissic biotite monzogranite and porphyrocyte biotite monzogranite have ages of 448.3 4.5Ma and 421.4 2.5Ma respectively. The gneissic biotite monzogranite display high SiO₂ and (Na₂O+K₂O) contents, they belong to metaluminous and high-K calc-alkaline series, it is considered to be formed by fluxing melting of plagioclase-poor pelitic rocks in middle—upper crust. The porphyrocyte biotite granite is peraluminous, they are considered to be formed by dehydration melting of metagerywacks or granitic gnesis in middle—lower crust.

**Conclusions**: The geochemical evolution of the Paleozoic granites in the northern Qinling from 450 to 420Ma reveals a tectonic evolution from syn-collisional to post-collisional process.

**Keywords**: LA-ICP-MS zircon dating; geochemistry; north Qinling Mts; Kuanping pluton; early Paleozoic

**Acknowledgments**: This study is financially supported by China geological survey (No. DD2016013623), China nuclear geology (No. 201621, 201572), Shaanxi science and technology department(No. 2014KJXX-60, 2017KJXX-94), the foundation for the author of national excellent doctoral dissertation of China(No. 201324) and the National Natural Science Foundation of China(No. 41421002, 41102037).

**First author**: Wang Jiangbo, male, born in 1982, doctor student, senior engineer, mainly engaged in the study of uranium geology. Email: 93328299@ qq.com

Manuscript received on; 2017-03-30; Accepted on; 2017-10-22; Edited by: ZHANG Yuxu

**Doi**: 10.16509/j.georeview.2018.01.009