北大别片麻岩的锆石 U-Pb 年龄离子探针测定及其实质意义

吴元保1) 陈道公1) E. DELOULE2) 夏群科1) 李彬强1) 程昌1)

1) 中国科学技术大学地球与空间科学系，合肥，230026
2) CRPG-CNRS，Nancy，France

内容提要　本文对北大别西部的湖头英山万家老屋，罗田七道河尹家店和安徽金寨丁埠乡李集3个片麻岩样品中锆石进行了 BSE 显微结构分析，并在此基础上对锆石进行了离子探针 U-Pb 年龄测定，结果表明北大别存在两种类型的片麻岩，它们的原岩分别形成于早寒武和中寒武期，其中英山万家老屋片麻岩的形成年龄为 794 Ma，后期地质事件对其锆石 U-Pb 年龄造成的影响较小；七道河尹家店片麻岩的形成年龄为 730 Ma，并可能受到了燕山期岩浆事件的影响。得到了 140 Ma 左右的变质年龄；丁埠乡李集片麻岩的形成年龄为 140 Ma，结合已有的年代学结果，北大别片麻岩广泛存在于寒武期的岩浆事件，表明其可能为扬子板块的北缘。

关键词　北大别　片麻岩　锆石 U-Pb 年龄　离子探针　背散射图像

秦岭大别造山带是扬子陆块与华北陆块间的复杂碰撞造山带。东部大别部分由片麻岩中钾长石（Xu et al., 1992）和钾石英（Okay, 1993）等超高压指示矿物的发现使其倍受研究者关注。大别山变质岩区北从南依次划分为3个岩相构造单元：大别中变质杂岩、南大别变质杂岩（超高压变质单元）和宿松变质杂岩（徐树根等，1992；Zhai et al., 1995；邓建威，2000）。大别中变质杂岩是一套以云英闪长质片麻岩为主的正片麻岩，有少量镁铁硫化物等侵入体，并有大量燕山期花岗岩脉侵入其中。

由于确定大别中变质杂岩的成因和构造属性在整个大别造山带研究中有非常重要的意义（吴清刚等，1998），而这套片麻岩占整个大别中变质岩的 70%以上，所以其形成和演化是人们研究的重。但目前对其形成和变质时代还存在十分不一致的认识。Xue 等（1997）根据片麻岩中锆石 U-Pb TIMS 法得到了不一致的下交点年龄为 134 Ma，并将其解释为花岗片麻岩的起生时代。Hacke 等（1998）用锆石 U-Pb 的 SHRIMP 与 TIMS 法得到了相似的结论。和郑祥等（2000）得到了片麻岩 1047 Ma 的全岩 Sm-Nd 等时年龄，并把它解释为片麻岩的形成年龄。陈道公等（2000）对鹿坡石和周口冲片麻岩中的锆石进行了离子探针 U-Pb 年龄的初步测定，结果表明这些锆石为古老的岩浆锆石，并受到了二叠纪变质锆石或早白垩纪岩浆锆石混合的增生作用的影响。这些年龄的不一致限制了对其形成、演化历史及构造属性的认识。

由于大别中变质杂岩形成以后经历了多期岩浆活动和热的变质作用，而且可能受到了燕山期花岗岩及晚侏罗纪岩浆脉侵入的影响（郑祥等，2000），其全岩 Sm-Nd 系统有可能被扰动而不能给出正确的形成年龄。对于有复杂地质演化历史的变质岩的锆石 U-Pb 的 TIMS 法得到的下交点年龄所代表的地质意义需要有其他证据加以支持（Hanch et al., 1993；Mezger et al., 1997）。背散射（BSE）和（或）阴极光（CL）图像控制的锆石微区原位 U-Pb 离子探针测年是解决这一问题最为有效的方法（Hanch et al., 1993；Vavra et al., 1996，1999）。本文对大别中变质杂岩中锆石的等时年龄进行了 BSE 观察，并以此基础上用 Cameca 1270 离子探针进行了锆石的微区定年，来确定这一片麻岩的形成年龄和后期地质事件对其产生的影响，并对其构造属性提供年代学制约。
1 样品及分析方法

3个片麻岩样品分别采自北大别西部的英山万家老屋(98WJ-1)、七道河余家店(98YJ)和邓家店乡李集(98LJ-03)，样品的分布位置见图1。样品破碎后经浮选、洗选及电磁选分离出锆石，并在双目镜下挑纯。将待测的锆石颗粒与标样一起置于环氧树脂样品座中，抛光后进行显微镜观察，根据背散射电图图像，尽可能选择较少裂隙和包裹体的颗粒及区域进行原子探针分析。原子探针分析的原理与SHRIMP相似(Composton et al., 1992)。测定时仪器分辨率5000, 离子束直径为25 μm × 30 μm。测定所用标样为G91500。使用Stacey等(1975)的二阶梯模式来进行普通铅的扣除。各种同位素比值及年龄误差均在1σ。由于206Pb 测定的误差较大，所以对于显生宙样品采用206Pb/238U 年龄(Composton et al., 1992; Gebauer et al., 1997; Rubatto et al., 1998)。样品的制备和原子探针对探分析在法国国家科研中心的岩石及地球化学中心(CNRS-CRPG)原子探针对探国家实验室进行，BSE 形像在法国 Nancy 大学完成。

2 结果及讨论

98WJ-1号样品为黑云斜长片麻岩，岩石主要由黑云母＋角闪石＋斜长石＋石英＋榍石＋磁铁矿等组成，其锆石为半自形到自形，长柱状，长：宽为1.5～3.5，BSE 图像中岩浆结晶环带(图2)，锆石颗粒有少量溶蚀作用造成晶棱圆化现象，这些都表现出岩浆锆石特征，98WJ-1-42有明显的核，表1列出了4个颗粒6个测定点的U、Th、Pb 含量及同位素比值。在一致曲线图中(图3)，4个点落在一致曲线附近，给出了715～794 Ma 的206Pb/238U 的表面年龄。这4个点的Th/U 值为0.71～1.01，与Rowley 等(1997)给出的大别山片麻岩中岩浆锆石的Th/U 值相当，而不同于变质地体中变质增生或重结晶的锆石(Rowley et al., 1997; Gebauer et al., 1997; Rubatto et al., 1998)。结合这些锆石的外形特征、内部结构及Th/U 值，我们认为715～794 Ma 这一年龄值代表了该片麻岩的形成年龄。考虑到锆石有少量的溶蚀现象，而794 Ma 这一年龄点的年龄值是4个锆石最大且最和谐的，我们认为这一年龄是这一片麻岩原岩侵位的最小年龄，其余3点可能因受到后期地质事件的影响，有少量放射成因Pb 的丢失。

另外同一颗粒(98WJ-1-42)核部两个测定点落在一致曲线的下方，其206Pb/238U 年龄为1685 Ma、1677 Ma，表现为古老的残留锆石受到了731 Ma 的岩浆事件或后期其他变质事件的影响，有部分Pb 的丢失。这一核部的锆石可能来自岩浆形成演化过

图1 北大别片麻岩分布及采样位置图

Fig. 1 Distribution of the NDC gneisses and the locations of the samples

1—片麻岩，2—花岗岩，3—镜铁一超镜铁岩，4—断裂，5—村庄，6—采样点
1—Gneiss，2—Granite，3—Mafic-ultramafic rocks，4—Fault，5—Village，6—Sampling site
表 1 锆石离子探针 U/Pb 年龄分析数据

<table>
<thead>
<tr>
<th>样品号</th>
<th>U (×10^(-3))</th>
<th>Th (×10^(-3))</th>
<th>Th/U</th>
<th>206Pb/238U</th>
<th>208Pb/238U</th>
<th>207Pb/235U</th>
<th>206Pb/238U</th>
<th>207Pb/235U</th>
<th>206Pb/238U</th>
<th>207Pb/235U</th>
<th>年龄 (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98WJ1-36-1</td>
<td>200</td>
<td>202</td>
<td>1.01</td>
<td>6135</td>
<td>0.1215</td>
<td>0.0003</td>
<td>1.104</td>
<td>0.007</td>
<td>739</td>
<td>2</td>
<td>755</td>
</tr>
<tr>
<td>98WJ1-36-2</td>
<td>114</td>
<td>81</td>
<td>0.71</td>
<td>4000</td>
<td>0.1310</td>
<td>0.0012</td>
<td>1.191</td>
<td>0.017</td>
<td>794</td>
<td>7</td>
<td>796</td>
</tr>
<tr>
<td>98WJ1-37-1</td>
<td>151</td>
<td>151</td>
<td>1.00</td>
<td>3425</td>
<td>0.1211</td>
<td>0.0004</td>
<td>1.083</td>
<td>0.008</td>
<td>737</td>
<td>2</td>
<td>745</td>
</tr>
<tr>
<td>98WJ1-42-1</td>
<td>293</td>
<td>170</td>
<td>0.58</td>
<td>24876</td>
<td>0.2970</td>
<td>0.0021</td>
<td>5.741</td>
<td>0.061</td>
<td>1677</td>
<td>11</td>
<td>1938</td>
</tr>
<tr>
<td>98WJ1-40-1</td>
<td>235</td>
<td>237</td>
<td>1.01</td>
<td>9091</td>
<td>0.1174</td>
<td>0.0013</td>
<td>1.060</td>
<td>0.014</td>
<td>715</td>
<td>8</td>
<td>734</td>
</tr>
<tr>
<td>98WJ1-42-2</td>
<td>339</td>
<td>64</td>
<td>0.19</td>
<td>16978</td>
<td>0.2887</td>
<td>0.0040</td>
<td>5.427</td>
<td>0.120</td>
<td>1685</td>
<td>20</td>
<td>1889</td>
</tr>
<tr>
<td>98YJD-33-1</td>
<td>190</td>
<td>178</td>
<td>0.94</td>
<td>5988</td>
<td>0.0741</td>
<td>0.0020</td>
<td>0.633</td>
<td>0.020</td>
<td>461</td>
<td>12</td>
<td>498</td>
</tr>
<tr>
<td>98YJD-29-1</td>
<td>57</td>
<td>25</td>
<td>0.43</td>
<td>1159</td>
<td>0.0372</td>
<td>0.0005</td>
<td>0.289</td>
<td>0.011</td>
<td>235</td>
<td>3</td>
<td>258</td>
</tr>
<tr>
<td>98YJD-30-1</td>
<td>42</td>
<td>35</td>
<td>0.82</td>
<td>2500</td>
<td>0.0921</td>
<td>0.0005</td>
<td>0.798</td>
<td>0.013</td>
<td>568</td>
<td>3</td>
<td>595</td>
</tr>
<tr>
<td>98YJD-31-1</td>
<td>146</td>
<td>62</td>
<td>0.42</td>
<td>1969</td>
<td>0.0365</td>
<td>0.0008</td>
<td>0.302</td>
<td>0.011</td>
<td>231</td>
<td>5</td>
<td>268</td>
</tr>
<tr>
<td>98YJD-32</td>
<td>163</td>
<td>13</td>
<td>0.08</td>
<td>3145</td>
<td>0.0234</td>
<td>0.0007</td>
<td>0.192</td>
<td>0.010</td>
<td>149</td>
<td>4</td>
<td>178</td>
</tr>
<tr>
<td>98ILJ-35-1</td>
<td>355</td>
<td>345</td>
<td>0.97</td>
<td>2469</td>
<td>0.0248</td>
<td>0.0004</td>
<td>0.178</td>
<td>0.004</td>
<td>158</td>
<td>3</td>
<td>166</td>
</tr>
<tr>
<td>98ILJ-35-2</td>
<td>190</td>
<td>184</td>
<td>0.97</td>
<td>14859</td>
<td>0.1019</td>
<td>0.0004</td>
<td>0.889</td>
<td>0.006</td>
<td>625</td>
<td>2</td>
<td>646</td>
</tr>
<tr>
<td>98ILJ-35-3</td>
<td>175</td>
<td>152</td>
<td>0.87</td>
<td>1441</td>
<td>0.0209</td>
<td>0.0001</td>
<td>0.138</td>
<td>0.002</td>
<td>134</td>
<td>1</td>
<td>131</td>
</tr>
<tr>
<td>98ILJ-35-4</td>
<td>213</td>
<td>192</td>
<td>0.90</td>
<td>1580</td>
<td>0.0239</td>
<td>0.0002</td>
<td>0.151</td>
<td>0.002</td>
<td>146</td>
<td>1</td>
<td>143</td>
</tr>
<tr>
<td>98ILJ-35-5</td>
<td>45</td>
<td>70</td>
<td>1.54</td>
<td>549</td>
<td>0.0210</td>
<td>0.0001</td>
<td>0.136</td>
<td>0.003</td>
<td>134</td>
<td>1</td>
<td>129</td>
</tr>
<tr>
<td>98ILJ-35-6</td>
<td>64</td>
<td>28</td>
<td>0.43</td>
<td>129</td>
<td>0.0182</td>
<td>0.0002</td>
<td>0.109</td>
<td>0.005</td>
<td>116</td>
<td>2</td>
<td>105</td>
</tr>
</tbody>
</table>

图 2 北大到灰色片麻岩中锆石的 BSE 图像及分析点的年龄值

Fig. 2 Back-scattered electron images of zircons from Northern Dubie gneisses

中同化混溶的围岩捕虏晶锆石，或片麻岩原岩中的残留锆石。

尹家店片麻岩 (98YJD) 为透辉石角闪斜长片麻岩，主要矿物有角闪石 ＋ 斜长石 ＋ 石英 ＋ 碱性长石 ＋ 磷铁矿 ＋ 透辉石。样品中锆石为半自形，短柱状，长宽比约为 1.5 － 2.5。BSE 图像中有较宽的岩浆结晶环带，边部区域没有明显环带特征，这与变质体中岩浆锆石经历了后期的变质重结晶或增生作用表现出来的特征 (Rubatto et al., 1998) 相似。6 个颗粒 6 个测定点的结果见表 1，206Pb/238U 表面年龄为 149～727 Ma，Th/U 值为 0.08～0.94。在一致曲线图中 (图 4) 表现出不同程度的不一致性，最上面点落在一致曲线上，其 Th/U 值为 0.61，表现出岩浆锆石的特征，其年龄值可能代表了该片麻岩的形成年龄。最低一点的 Th/U 值为 0.08，与变质锆石的 Th/U 值一致，其 149 ± 4 Ma 的年龄值代表了变质事件的最大年龄。其他点都落在这两个年龄值点构成的不一致线上，且靠上部点的 Th/U 值为 0.61～0.94，接近岩浆锆石的特征，而下部点的 Th/U 值为 0.08～0.42，与变质锆石接近。结合锆石的 BSE 图像，我们认为年龄的不一致是测定区域为岩浆锆石和变质锆石混合的结果，727 Ma 的年龄值代表了该片麻岩的原岩侵位的最小年龄，149 Ma 的年龄表明该样品中的锆石受到了较明显的燕山期岩浆活动的影响。

图 3 万家老屋片麻岩锆石的$^{206}\text{Pb}/^{238}\text{U} -
^{207}\text{Pb}/^{235}\text{U}$ 一致曲线图

Fig. 3 Concordia diagram for zircons from 98WJ-1

李集片麻岩 (98LJ) 为黑云斜长片麻岩，岩石由黑云母 + 角闪石 + 斜长石 + 石英等组成。其锆石为自形、双锥长柱状，锥面较前两个样品发育，BSE 图像中有明显的包浆结晶环带，有些锆石存在少量溶蚀特征的核 (图 1)。表 1 给出了 5 个颗粒 7 个分析点的结果。其中 6 个无核区域分析点的$^{206}\text{Pb}/^{238}\text{U}$ 表面上年为 116 ~ 158 Ma，Th/U 值为 0.43 ~ 1.54，另一个位于核部的分析点的$^{206}\text{Pb}/^{238}\text{U}$ 表面上年为 625 Ma，Th/U 值为 0.97。在同一曲线图 (图 5) 中，98LJ3-60-1 位于一致曲线的左方，可能是分析误差或该样品的$^{206}\text{Pb}/^{238}\text{U}$ 值较低 (129) 而使普通铅扣除不当造成的 (Williams et al.，1987; Mclaren et al.，1994)，98LJ3-59-1 位于一致曲线的右方，可能有少量古老的残留锆石的影响，去掉这两个点，其余 4 个锆石岩浆环带点的$^{206}\text{Pb}/^{238}\text{U}$ 平均年为 140 ± 2 Ma，以这一年龄点为下交点与核部的测定点作一致线，得到上交点年为 725 Ma 左右。这些年龄值表明该片麻岩原岩侵位于 140 Ma，在其上升过程中同化了 725 Ma 左右的围岩或该片麻岩原岩中这一年龄值的残留锆石。由于这一锆石核部的显微结构和化学组成特征更接近岩浆锆石，表明这一地点可能存在 725 Ma 的岩浆事件。

3 个测定样品的锆石的内部结构、Th、U 组成及年龄特征表明北大别地体广泛存在 700 ~ 800 Ma 之间的晋宁期岩浆事件。在 Xue 等 (1997) 研究的样品中，XT-3 号样品的锆石年值也在这一范围之内，Hacker 等 (1998) 对北大别片麻岩锆石进行的 SIMS

图 4 尹家店片麻岩锆石的$^{206}\text{Pb}/^{238}\text{U} -
^{207}\text{Pb}/^{235}\text{U}$ 一致曲线图

Fig. 4 Concordia diagram for zircons from 98YJD

图 5 李集片麻岩锆石的$^{206}\text{Pb}/^{238}\text{U} -
^{207}\text{Pb}/^{235}\text{U}$ 一致曲线图

Fig. 5 Concordia diagram for zircons from 98LJ3

我们研究的两个晋宁期形成的片麻岩样品中，98YJD 中的锆石有明显的 140 Ma 左右的年龄信息，即是 98WJ-1 样品中的锆石也受到了后期地质事件的影响有部分放射成因 Pb 的丢失。说明自中

242

3 结论

BSE 控制下的锆石 U-Pb 年龄的离子探针对测定表明，北大别存在两种原岩形成于不同时期的片麻岩（文章中未提及的具体阶段），这说明片麻岩变质历史的形成过程，岩石学报，16(2)，199～202。邓敬波，崔圣明，吴宗彦，赵海玲，杜建国，罗延华。2000。大别造山带片麻岩成因的地球化学及地质意义，地质学报，71(3)，206～215。万天丰。2001。中朝与扬子板块的鉴别特征，地质论评，47(1)：57～63。王清源，从柏林，1998。大别山超高压变质带的大地构造框架，岩石学报，14(4)，461～492。徐树民，江来利，刘志旭。1992。大别山（安徽部分）的构造格局和演化过程，地质论评，59(4)：279～285。郑祥等，金镇作，王明亚，石永红。2000。大别山灰色片麻岩岩性特征的探讨，Sm-Nd 同位素年代及同位素群成分特点，岩石学报，16(2)，194～198。

参考文献

Zircon U-Pb Ion Probe Ages of Gneisses from the Northern Dabie Terrain and Their Geological Implications

WU Yuanbao1),2), CHEN Daogong1), E. DELOULE2), XIA Qunke3), LI Binxian3), CHENG Hao3)

1) Department of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
2) CRPG-CNRS, Nancy 54501, France

Abstract

Three gneiss samples were taken from Wanjialaowu at Yingshan and Yinjiadian at Qidosogou, Hubei Province, and Liji of Dingbuxiang, Anhui Province, in the western part of the northern Dabie Mountains. Backscattered electron (BSE) analysis of the microstructure of zircons from the three samples was performed, and on that basis zircon U-Pb ages were determined using the U-Pb ion probe. The results indicate that the protoliths of two types of gneiss in the study area were formed in the Jinningian and Yanshanian respectively. The protolith of the Wanjialaowu gneiss at Yingshan was formed at 794 Ma and its zircon U-Pb age was little affected by the late-stage geological event. The age of the Yinjiadian gneiss at Qidosogou is 730 Ma, and as it was probably affected by the Yanshanian magmatic event, a metamorphic age of about 140 Ma was obtained. The age of the Liji gneiss at Dingbuxiang is 140 Ma. From these ages combined with the available chronological results, it may be inferred that the Jinningian magmatic event occurred extensively in the northern Dabie terrain, which indicates that the area was likely to be the northern margin of the Yangtze plate.

Key words: northern Dabie terrain; gneiss; zircon U-Pb age; ion probe; BSE image