伏牛山构造带变质流体成分特征及构造意义

任升莲1),宋传中1), 李加好1), 林寿发1,2), 江平3), 黄鹏1), 张妍1), 胡达1), 刘国厅1)
1) 合肥工业大学资源与环境工程学院, 中国合肥,230009;
2) 滑铁卢大学, 加拿大安大略省滑铁卢市, N2L3G1;
3) 合肥工业大学档案馆, 中国合肥, 230009

内容提要: 伏牛山构造带由多条韧性剪切带组成, 剪切带中广泛发育同构造变质流体形成的脉体。脉体矿物成分以石英为主, 石英脉中石英晶体内发育大量的流体包裹体和气液相包裹体。包裹体成分以含中高盐度水溶液、低 CO2、低 δ18O~δD 以及少量有机质为特征, 包裹体的均一温度为 170.6~337.8℃, 白云母压力计计算出的压力为 0.27~0.87 GPa。整个伏牛山构造带变质流体成分和同位素均继承了原岩海底火山喷发的地化特征。伏牛山构造带变质程度以绿片岩相为主, 压力较大, 具有俯冲带的特性。包裹体的特点均反映了宽坪岩块和二郎坪岩块依次向华北板块下俯冲、汇聚时产生了强变形, 弱变质的构造作用。

关键词: 秦岭; 伏牛山构造带; 石英脉; 包裹体成分; 同构造分异

伏牛山构造带位于秦岭造山带北缘, 地质构造复杂, 前期研究表明: 该区存在多条韧性剪切带, 把该地区分成多个近平行的构造变形带(宋传中等, 1999, 2009)。野外观察发现变形带中广泛发育同构造石英脉, 它们是岩石同构造变形分异的变质流体在岩石裂隙中流动、沉淀而形成的, 它的出现不仅说明该处是构造剪切作用的强烈地带, 也是变质流体活动的通道(任升莲等, 2013), 对此处脉体成分的深入研究, 利于解析变质流体来源、形成及构造活动和构造过程 (Etheridge et al., 1984; Fyfe et al., 1985; Ferry, 1986; O’hara, 1988; Glaazner et al., 1991; Smith et al, 1999)。

1 区域地质概况

伏牛山构造带位于河南省南召地区, 呈 NW—SE 向展布, 其南北界分别为瓦穴子—乔端断裂带和洛南—栾川断裂带, 两条断裂之间为一变形带 (图 1)。洛南—栾川断裂带是北秦岭和秦岭北缘的界线, 宽几千米至十几千米不等, 其北侧为太华群、栾川岩群、陶湾岩群, 南侧为宽坪岩群。该断裂带在石人山南部的产状为 320°~355°∠67°~80°, 在石人山西南部的产状为 8°~21°∠71°~74°, 具有左旋斜向汇聚的特征, 经历四期构造活动, 变形非常强烈 (裴放, 1994; 任升莲等, 2011, 2010)。瓦穴子—乔端断裂是中型推覆韧性剪切带, 产状较稳定, 为 350°~10°∠45°~55°, 其北侧宽坪岩群逆冲在南侧二郎坪岩群之上, 主要有三期构造活动。这两条断裂带虽然经历了多期构造活动, 多期变形的叠加, 但都有一期强烈的塑性变形, 并形成了大量的糜棱岩 (任升莲等, 2013)。强烈的糜棱岩化产生了大量变质流体, 并以脉体形式存在于糜棱岩及构造片岩中, 这也是本文重点讨论的变质流体。

通过野外精细观察发现伏牛山构造带脉体的分布有一定规律, 近剪切带的强变形域脉体多且大, 变形弱的地方脉体少且小。对这些变质流体的矿物成分、形成温度、压力等特征进行研究利于掌握同期构造活动的性质、程度、物质来源等信息。

在伏牛山构造带常见的变质流体脉体以石英脉为主, 含少量长石石英脉、方解石脉。脉体形态多为透镜状, 少数为条带状, 弯曲褶皱状。脉体从几毫米到几米长的微型脉到 20 多米长的大型脉均有发育。这些脉与围岩的界线清晰, 脉体基本平行围岩的面理, 一些脉体具有 σ 拖尾, 反映出这些脉体是同构造变形的产物。

2 石英脉中的包裹体特征

2.1 包裹体岩相学特征

同构造脉体中, 含少量的白云母在脉体边部以
外，其它几乎全部由石英组成，石英粒径主要在 0.1 ~ 3.0 mm 之间，最大可达 4.0 mm。石英脉的围岩为绿泥绿帘片岩、绿帘云母片岩、含云母石英片岩、黑云绿泥糜棱岩、长英质糜棱岩等（肖思云等，1988；张寿广等，1991；任升莲等，2010）。围岩矿物以石英、斜长石、方解石、绿帘石、绿泥石、白云母等为主，另含少量的黑云母、角闪石、阳起石。除少量石英中石英颗粒表现出受到应力作用而变形的特征外，脉体中石英均保持了结晶时的状态。

石英脉中的矿物包裹体是变质流体在结晶时包裹在石英晶格缺陷中的。所以，这类包裹体形成的温压条件可代表石英形成时的物理化学条件（Johnson et al., 1995；沈昆等，1998，2005，2006；孙等，2009）。测试样品均采自研究区构造片岩、片麻岩及构造带上糜棱岩中的同构造石英脉，具有良好的代表性。

显微镜下观察发现石英脉中石英晶体内发育大量的流动包裹体，流体包裹体主要有二类：一类呈离散状态分布于石英晶体内，包裹体大小变化较大，多集中在 5 ~ 30 μm 之间（图 2a，b）；另一类以定向包裹体群分布于石英晶体内，包裹体为椭圆形，大小较为接近，在 8 ~ 10 μm 左右（图 2c，d）。这两种包裹体都是石英从变质流体中结晶时捕获的原生包裹体，只不过后者在结晶时有应力作用其上，从而导致包裹体随着石英变形而变形，并在应变方向上产生定向排列。

石英晶体内除了流动包裹体外，还发育气液两相的原生包裹体。气液两相的原生包裹体形状以椭圆状、圆形为主，不规则的其次，包裹体大小多在 14 ~ 40 μm 之间。XN73，78，89，107，129，139 样品中包裹体分布较散乱，包裹体较圆（图 2a，b）。XN84，117 中的包裹体分布有一定的定向性，且多呈椭圆形（图 2c，d）。

2.2 石英脉形成的温压条件

显微测温试验在中国科技大学中科院壳幔与环境重点实验室——流体包裹体测温实验室进行，采用了英国产的 Linkam THMSG 600 型冷热台，其温度范围为 -180 ~ +600℃。测得原生气液包裹体
的冰点温度为 $-10.8 \sim -1.1^\circ C$, 峰值为 $-10^\circ C$ (图3), 依据 Hall 等提出的 $H_2O—NaCl$ 体系盐度—冰点公式:

$$W = 0.00 + 1.78 T_m - 0.0442 T_m^2 + 0.000557 T_m^3$$

式中: W 为 NaCl 的质量百分数, T_m 为冰点下降温度 ($^\circ C$)。

变质流体脉中石英包裹体主要为盐水溶液包裹体。盐度变化范围较大, 为 $1.322\% \sim 14.775\% NaCl_{eq}$, 峰值为 $11.386\% NaCl_{eq}$, 显示出一定的规律。除了 XN73, 89 样品中的盐度较小, 所测 $NaCl_{eq}$ 没有大于 2% 以外, 其它样品的盐度大多数都在 10% 以上浮动。XN73 虽然是绿片岩, 但离片麻岩很近; XN89 样采自带状片麻岩中; XN-107 采自片麻岩中, 盐度成分大、小两种。其它样品都采自宽坪岩群绿片岩和碳酸盐互层的糜棱岩中, 它们的盐度基本都超过 10%。根据样品的采集位置, 可以看出靠近洛南—栾川断裂带或其北侧的石英脉中包裹体盐度较低, 宽坪岩群中的石英脉体包裹体盐度很高。笔者通过对前人资料的分析认为: 包裹体盐度与石英脉的原岩性质密切相关 (Newton, 1990; Darling et al., 1991; 沈昆等, 2003b)。洛南—栾川断裂带以北为花岗片麻岩, 其中盐分含量较少。而宽坪岩群的原岩以海相火山喷发的基性火山岩为主, 张宗清等 (1995) 研究表明其形成于洋盆环境, 包含较多海水中的盐分, 同构造期形成的石英脉必然从围岩中获取了高盐分包裹在石英晶体中形成高盐度的包裹体。所以, 同构造变体脉形成时, 继承了围岩的高盐度特征。

所测包裹体的均一温度 (T_h) 范围为 $170.6 \sim 444.9^\circ C$, 主峰值有两个, 一个为 $180 \sim 190^\circ C$, 另一个为 $260 \sim 270^\circ C$ (图3 a, b)。另有四个小峰值分别在 $330 \sim 350^\circ C, 380 \sim 390^\circ C, 420 \sim 430^\circ C, 440 \sim 450^\circ C$。根据 Bischoff 等提出的 $NaCl—H_2O$ 体系的 $T—H$ 相图, 由已知的盐度 (W) 和均一温度, 得出 $NaCl—H_2O$ 体系的密度为 $0.511 \sim 0.982g/cm^3$。液相包裹体的测温数据显示同构造化学分馏体的形
图3 伏牛山构造带石英脉中石英晶体内包裹体测温柱状图
Fig. 3 The histogram of temperature of inclusions in quartz veins of the Funiushan tectonic belt

(a) the freezing temperature of gas-liquid inclusions in quartz; (b) the homogenization temperature of gas-liquid inclusions in quartz

成温压条件达到了中、高绿片岩相。

本文通过对洛南—栾川断裂带中长英质糜棱岩中的白云母进行了微区成分测试，白云母的电子探针成分特征为：SiO₂为43.913%～51.597%，平均值为46.283%；Al₂O₃为5.4%～35.219%；K₂O为0.1%～10.177%。与白云母的理论值(SiO₂ = 45.2%，Al₂O₃ = 38.5%，K₂O = 11.8%)相比SiO₂明显偏高；Al₂O₃低于理论值；K₂O也较低。白云母探针分析数据按11个氧计算晶体化学式，Si原子数变化范围在3.066～3.172之间，显示洛南—栾川断裂带上的白云母为普通白云母(周喜文等，2003)。

瓦穴子—乔端断裂带上的白云母略大于3.0，属于多硅白云母，说明该断裂带的形成压力大于洛南—栾川断裂带。利用Massonne(1997)多硅白云母压力计计算出伏牛山构造带的压力为0.27～0.87 GPa(任升莲等，2011)。

由此可见，伏牛山构造带的温度条件相对较低，

表1 伏牛山构造带石英脉中石英晶体内流体包裹体盐度与温度测定表

<table>
<thead>
<tr>
<th>样号</th>
<th>冰点温度(℃)</th>
<th>均一温度(℃)</th>
<th>盐度 (%)</th>
<th>密度</th>
<th>样号</th>
<th>冰点温度(℃)</th>
<th>均一温度(℃)</th>
<th>盐度 (%)</th>
<th>密度</th>
</tr>
</thead>
<tbody>
<tr>
<td>XN73-1</td>
<td>-1.1</td>
<td>208.2</td>
<td>1.816</td>
<td>0.871</td>
<td>XN89-1</td>
<td>-2.8</td>
<td>180.3</td>
<td>4.546</td>
<td>0.922</td>
</tr>
<tr>
<td>XN73-2</td>
<td>-1.2</td>
<td>268.8</td>
<td>1.979</td>
<td>0.78</td>
<td>XN89-2</td>
<td>-6.6</td>
<td>175.1</td>
<td>9.793</td>
<td>0.967</td>
</tr>
<tr>
<td>XN73-3</td>
<td>-5.3</td>
<td>297.1</td>
<td>8.237</td>
<td>0.813</td>
<td>XN89-3</td>
<td>-4.6</td>
<td>182.7</td>
<td>7.25</td>
<td>0.939</td>
</tr>
<tr>
<td>XN73-4</td>
<td>-3.4</td>
<td>265</td>
<td>5.472</td>
<td>0.829</td>
<td>XN89-4</td>
<td>-5.1</td>
<td>213.7</td>
<td>7.959</td>
<td>0.916</td>
</tr>
<tr>
<td>XN78-1</td>
<td>-6.5</td>
<td>207.1</td>
<td>9.844</td>
<td>0.936</td>
<td>XN89-5</td>
<td>-8.3</td>
<td>196.3</td>
<td>12.055</td>
<td>0.962</td>
</tr>
<tr>
<td>XN78-2</td>
<td>-9.8</td>
<td>192.8</td>
<td>13.732</td>
<td>0.978</td>
<td>XN89-6</td>
<td>-6</td>
<td>197.9</td>
<td>9.188</td>
<td>0.938</td>
</tr>
<tr>
<td>XN78-3</td>
<td>-8.9</td>
<td>195.9</td>
<td>12.743</td>
<td>0.968</td>
<td>XN89-7</td>
<td>-4.6</td>
<td>215.7</td>
<td>7.25</td>
<td>0.908</td>
</tr>
<tr>
<td>XN78-4</td>
<td>-7.2</td>
<td>184.8</td>
<td>10.731</td>
<td>0.963</td>
<td>XN89-8</td>
<td>-3.2</td>
<td>203.5</td>
<td>5.166</td>
<td>0.904</td>
</tr>
<tr>
<td>XN78-5</td>
<td>-6.6</td>
<td>197</td>
<td>9.973</td>
<td>0.945</td>
<td>XN107-1</td>
<td>-6.8</td>
<td>266.1</td>
<td>10.228</td>
<td>0.878</td>
</tr>
<tr>
<td>XN78-6</td>
<td>-8.5</td>
<td>172.8</td>
<td>12.287</td>
<td>0.986</td>
<td>XN107-2</td>
<td>-9.2</td>
<td>248.7</td>
<td>13.078</td>
<td>0.922</td>
</tr>
<tr>
<td>XN78-7</td>
<td>-7.9</td>
<td>189.5</td>
<td>11.583</td>
<td>0.965</td>
<td>XN107-3</td>
<td>-7.6</td>
<td>240.6</td>
<td>11.222</td>
<td>0.915</td>
</tr>
<tr>
<td>XN84-1</td>
<td>-7.8</td>
<td>180.2</td>
<td>11.464</td>
<td>0.973</td>
<td>XN107-4</td>
<td>-4.8</td>
<td>214.4</td>
<td>7.536</td>
<td>0.912</td>
</tr>
<tr>
<td>XN84-2</td>
<td>-8.2</td>
<td>190.1</td>
<td>11.938</td>
<td>0.967</td>
<td>XN107-5</td>
<td>-3.3</td>
<td>208.6</td>
<td>5.319</td>
<td>0.9</td>
</tr>
<tr>
<td>XN84-3</td>
<td>-7.2</td>
<td>181.7</td>
<td>10.731</td>
<td>0.966</td>
<td>XN117-1</td>
<td>-9.8</td>
<td>265.7</td>
<td>13.732</td>
<td>0.91</td>
</tr>
<tr>
<td>XN84-4</td>
<td>-6.9</td>
<td>180.4</td>
<td>10.355</td>
<td>0.964</td>
<td>XN117-2</td>
<td>-10.6</td>
<td>268.5</td>
<td>14.571</td>
<td>0.914</td>
</tr>
<tr>
<td>XN84-5</td>
<td>-6.3</td>
<td>192.7</td>
<td>9.583</td>
<td>0.946</td>
<td>XN117-3</td>
<td>-8.8</td>
<td>286.2</td>
<td>12.63</td>
<td>0.877</td>
</tr>
<tr>
<td>XN84-6</td>
<td>-9.8</td>
<td>189.3</td>
<td>13.732</td>
<td>0.982</td>
<td>XN117-4</td>
<td>-7.6</td>
<td>228.5</td>
<td>11.222</td>
<td>0.927</td>
</tr>
<tr>
<td>XN84-7</td>
<td>-4.2</td>
<td>209.4</td>
<td>6.669</td>
<td>0.91</td>
<td>XN117-5</td>
<td>-10.2</td>
<td>347.6</td>
<td>14.156</td>
<td>0.812</td>
</tr>
</tbody>
</table>
而压力则相对较大，具有俯冲带的特性，且洛南—栾川断裂带的俯冲具有较大的斜向剪切分量，而瓦穴子—乔端断裂带虽然形成压力很大，但剪切分量很小，说明二朗坪岩块向北俯冲作用很强，且近乎垂直。

3 包裹体成分和 H₂O 同位素分析

诸多研究表明，流体在变质作用中起着多重重要作用。流体不仅直接参加变质反应改变自身和围岩的成分，同时还控制着变质反应的温度、压力、变质反应速率。通过对石英脉石英颗粒中包裹体液态、气态成分和 δ₁⁸O—δD 同位素组成分析，可以分析包裹体形成时的变质流体成分和物质来源（Newton, 1990; Van den Kerkhof et al., 2001; 卢焕章等, 2004; 张泽明等, 2006; 翟伟等, 2006; 孙贺等, 2009; Zheng et al., 2009a, b）。

包裹体气液相成分分析及同位素测试是由中国科学院地质与地球物理研究所稳定同位素地球化学实验室完成的。

表 2 伏牛山构造带石英脉中石英晶体内原生流体包裹体气相成分表 (%)

<table>
<thead>
<tr>
<th>样品编号</th>
<th>n(H₂O)</th>
<th>n(N₂)</th>
<th>n(Ar)</th>
<th>n(CO₂)</th>
<th>n(CH₄)</th>
<th>n(CO₃)</th>
<th>n(C₂H₆)</th>
<th>n(H₂S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XN73</td>
<td>90.26</td>
<td>0.648</td>
<td>0.092</td>
<td>8.592</td>
<td>0.260</td>
<td>0.128</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>XN107</td>
<td>97.20</td>
<td>0.106</td>
<td>0.030</td>
<td>2.571</td>
<td>0.061</td>
<td>0.012</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>XN117</td>
<td>96.65</td>
<td>0.091</td>
<td>0.006</td>
<td>3.286</td>
<td>0.034</td>
<td>0.033</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>XN129</td>
<td>97.33</td>
<td>0.129</td>
<td>0.027</td>
<td>2.361</td>
<td>0.122</td>
<td>0.031</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>XN130</td>
<td>95.36</td>
<td>0.078</td>
<td>0.001</td>
<td>4.476</td>
<td>0.051</td>
<td>0.035</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

3.1 气体成分分析

采用加热裂解法提取气体，将清洗干净的样品 0.5000g 放入石英试管内，逐渐升温到 100℃ 排气，待分析管内真空度为 6 μPa 以下时开始测定，以 1℃/s 的速度升温到 500℃，记录压力计的读数，用液氮冷冻 5min，再用干冰冷冻 5min，记录压力计的读数（用来计算水的含量）后测定。仪器及条件为：RG202 四极质谱仪 (日本真空技术株式会社生产)，SME 电压为 -1.0kV，电离方式为 EI，电离能为 50eV，仪器重复测定精密度为 <5%。

3.2 液相成分分析

方法是将清洗干净的样品 1.0000g 放入石英试管中，500℃ 爆裂 15min，冷却后加 3 mL 水，超声震荡 10min，离子色谱测定。仪器及条件：离子色谱仪，日本岛津公司 (SHIMADZU)，HIC-6A 型。淋洗液为 2.5mM 邻苯二甲酸-2.4mM 三(羟)甲基氨基甲烷。淋洗液流速：淋洗阴离子为 1.2mL/min，淋洗阳离子为 1.0mL/min，重复测定精密度为 <5%。

包裹体液相成分特点是均以水为主，没有观察到纯 CO₂ 包裹体，由表 3 可见，各样品成分变化很大。除了 XN73 样品离石人山岩体较近，其中包裹体液相成分含盐量不多以外，其它样品的含盐量均较大，且 Ca²⁺、SO₄²⁻、K⁺ 含量也较高。总体反映出包裹体液相成分来源于围岩，很大程度上继承了围岩的海底火山喷发形成岩石的特征。

参与变质反应的流体按其与原岩的关系，可以分为原生流体和外来流体。原生流体是由变质原岩在变质作用过程中因温度、压力的升高产生脱流体作用而形成的。包括沉积岩中贮存的孔隙水和含水矿物在变质条件下相变释放出的结构水、结晶水，也包括板块俯冲过程中带入的海水和碳酸岩脱碳产生的二氧化碳流体等。外来流体则是通过断裂、节理等薄弱地带运移来的，加入到另一个变质反应系统中的流体。它也可以是长距离运移的岩浆水、地下卤水甚至于地幔流体，在适当条件下，加入变质反应的任何阶段并影响反应的进程。因此，判断变质流体
的来源对活动时期十分重要，同位素测定就是最常用的方法。前人对变质岩的δ¹⁸O—δD同位素进行了一些研究（Putlitz et al., 1998；郑永飞等，2004；徐莉等，2005, 2006；Zhang et al., 2005）。其中Zhang et al. (2005)认为，H₂O或H₂O—CO₂流体出现在整个变质作用过程中。进变质阶段主要是低盐度的H₂O—CO₂流体，峰期变质阶段则是高盐度的H₂O流体，在角闪岩相退变质阶段为中、低盐度的H₂O—CO₂流体，而更晚期退变质阶段为低盐度的水流体。

为了解决伏牛山构造带变质流体的来源问题，选定具有代表性的石英脉石英做包裹体成分和H、O同位素分析。使用质谱型号为MAT-252,数据均为相对国际标准V-SMOW之值，可重现性优于0.2‰。石英包裹体的O、H同位素成分值见表4，其具有以下特点：

（1）所有石英包裹体的δ¹⁸O—δD同位素组成均相对较低，其δD_{V-SMOW}为 -83.834‰~ -65.650‰,而流体δ¹⁸O_{V-SMOW}变化较大,为6.41‰~ 14.97‰。

图4 变质流体δ¹⁸O—δD同位素图解（底图据郑永飞，2000）

Fig.4 The Diagram of δ¹⁸O—δD of metamorphic fluid

化有重要的意义。

带上的脉体的数量比瓦穴子—乔端断裂带多,也间接说明洛南—栾川断裂带的剪切作用大于瓦穴子—乔端断裂带,与其它方法分析的结果一致(任升莲等,2013)。

本区变质岩是在海底火山沉积岩的基础上变质而成,岩石在形成过程中封存了海底火山喷发时的水(高山等,1990)。虽然,沉积物在成岩过程中会排出一部分,但在岩石中仍有相当数量的岩浆水保留,并在以后的岩石演化中发展成为变质流体。

表4 伏牛山构造带石英脉中石英晶体内原生流体包裹体O,H同位素成分表

<table>
<thead>
<tr>
<th>样品编号</th>
<th>δ18O V-SMOW (‰)</th>
<th>δD V-SMOW (‰)</th>
<th>σ(‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XN73</td>
<td>7.27</td>
<td>-77.119</td>
<td>0.282</td>
</tr>
<tr>
<td>XN107</td>
<td>6.41</td>
<td>-83.834</td>
<td>0.088</td>
</tr>
<tr>
<td>XN117</td>
<td>10.28</td>
<td>-76.820</td>
<td>0.278</td>
</tr>
<tr>
<td>XN121</td>
<td>10.39</td>
<td>-65.650</td>
<td>0.200</td>
</tr>
<tr>
<td>XN130</td>
<td>14.97</td>
<td>-71.471</td>
<td>0.112</td>
</tr>
</tbody>
</table>

5 结论

洛南—栾川和瓦穴子—乔端断裂带这两期糜棱岩化作用形成的同构造变形脉,真实地记录了北秦岭产生的两期韧性剪切活动,这些同变形石英脉具有以下特征:

(1) 变质流体的宏观形态诠释了这两期构造活动均为左行剪切。近断裂带脉体数量多且大,远则少而小,其中洛南—栾川断裂带的脉体多于瓦穴子—乔端断裂带,反映出洛南—栾川断裂带的剪切作用大于瓦穴子—乔端断裂带。

(2) 石英脉形成的温度为330~450℃,显示石英脉形成的温度达到了中、高级绿片岩相。利用白云母压力计计算出伏牛山构造带的压力为0.27~0.87 GPa,且瓦穴子—乔端断裂带压力大于洛南—栾川断裂带。说明这两条断裂带形成于较低温度和相对较大压力条件下,具有俯冲带的特性。且洛南—栾川断裂带的俯冲具有较大的向斜剪切分量,说明宽坪岩块向北俯冲、汇聚时,斜向分量大;而二郎坪岩块向北俯冲时以挤压为主,而瓦穴子—乔端断裂带虽然形成压力很大,但剪切分量很小,说明二郎坪岩块向北俯冲时近乎垂直。

(3) 石英脉中石英晶体的包裹体气相成分以H2O为主,其次为CO2和N2,部分样品中含有一定数量的CH4、C2H6、H2S。CO2含量的特点是越靠近东部越高,反映出东部的变质变形程度高于西部。有机质成分的存在也说明沉积岩形成时的有机质在变质过程中分解得不够彻底,表明伏牛山构造带的变质温度条件没有达到高级变质程度。

(4) 石英脉中石英晶体的包裹体液相成分以水为主,其它成分变化很大。近石人山岩体的包裹体液相成分含盐量较少,整个伏牛山构造带的样品含盐量均较大,且Ca2+、SO42-、K+含量也较高。总体反映出包裹体液相成分来源于围岩,很大程度上继承了围岩的海底火山喷发岩石的地化特征。

(5) 所有石英包裹体的δ18O V-SMOW、δD V-SMOW组成均相对较低,其δD V-SMOW为-83.834‰~ -65.650‰,而流体δ18O V-SMOW变化较大,为6.41‰~ 14.97‰。在δ18O—δD同位素图上均投在岩浆水及附近,说明研究区的变质流体主要来源于原岩的海底火山沉积岩中,继承了围岩的海底火山喷发岩石的地化特征。通过对伏牛山构造带同构造石英脉石英颗粒中包裹体形态、成分及形成条件研究认为:构造体制转变与流体多层循环成矿作用。说明这两条断裂带变质程度以绿片岩相为主,压力较大,具有俯冲带的特性。包裹体的特点均反映了宽坪岩块和二郎坪岩块依次向华北板块下的斜向俯冲、汇聚时产生了强变形,弱变质的作用。

参考文献

分配的控制作用——以焦家金矿床为例. 地质力学学报, 9(2): 183~190.
梁晓, 王根厚, 杨广全. 2009. 滇西景谷地区澜沧江沿岸早生代构造岩中石英脉的成因与变形. 地质通报, 28(9): 1342~1349.
梁业恒, 孙晓明, 杨巍然, 梁金龙, 杨德权, 王念. 2007. 变质岩中石英脉流体包裹体的研究. 岩石学报, 23(12): 3280~3286.
4558.

Characteristics of Composition of Metamorphic Fluid in Funiu Tectonic Belt and Its Tectonic Significances

REN Shenglian1), SONG Chuanzhong1), LI Jiahao1), LIN Shoufa2), JIANG Ping3), HUANG Peng1), ZHANG Yan4), HU Da1), LIU Guoting1)

1) School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China;
2) Department of Earth Sciences, University of Waterloo, Ont., N2L 3G1, Canada;
3) The Archive of Hefei University of Technology, Hefei, 230009, China

Abstract: The Funiu tectonic belt contains many shear zones in which syntectonic quartz veins are well developed. Mineral component of veins are mainly quartz and there are many fluid inclusions and gas liquid inclusion inclusions in them. The composition of inclusions is characteristic by medium to high salinity, low CO2, low δ18O – δD and a small amount of organic matter and with homogenization temperature of 170.6 – 337.8 °C and pressure of 0.27 – 0.87 GPa calculated by muscovite geobarometer. The result shows the metamorphic fluid component and isotopes are inherited from original rocks formed in submarine volcanic eruptions environment. The metamorphism of the Funiushan tectonic belt belongs to greenschist facies and the high pressure suggests the tectonic setting is a subduction zone. The characters of fluid inclusions reflected the Kuanping rock block and the Erlangping rock block subducted beneath the North China Plate in turn and generated strong deformation and weak metamorphism.

Key words: the Funiu tectonic belt; quartz veins; composition of fluid inclusions; syntectonic differentiation