HE Hujun, YANG Xingke, ZHANG Wengao and LIU Wei, 2013. Study on CO₂ Geological Storage Suitability Evaluation in Qinshui Coalfield Based on Uncertainty Measure Theory. *Acta Geologica Sinica* (English Edition), 87(supp.): 944.

Study on CO₂ Geological Storage Suitability Evaluation in Qinshui Coalfield Based on Uncertainty Measure Theory

HE Hujun^{1,2}, YANG Xingke¹, ZHANG Wengao¹ and LIU Wei¹

1 School of Earth Science and Resources, Chang'an University, Xi'an 710054, China 2 Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, Xi'an 710054, China

In human life, fossil fuels such as coal, oil, natural gas etc are used to cause CO₂ content in the atmosphere is significantly increased, leading to global warming, the survival of human and sustainable development of society economy pose a serious threat, how to reduce CO_2 emissions to the atmosphere has become a major human problems. In order to actively promote the reduction of CO₂, United States, Canada and European countries etc carry out the related research and engineering practice for CO₂ geological storage technology in the past 10 years, showing good prospects. In order to cope with global climate change, China has actively participated in action controlling the emission of CO₂ in international community, is actively exploring the CO2 emission reduction measures. At present, the most ideal CO2 storage sites are deep salt layer, the oil and gas field depleted or mining into the later stages, and barren coal not mining and marine(Zhang Senqi et al., 2011; Xu Jun et al., 2005; Zhang Wei et al., 2006). Due to different storage places, the respective CO₂ storage mechanism is not also the same.

Qinshui Basin is located in the southern Shanxi uplift, basin is like oval, long axis is along north-north-east direction extension, north-south is 300km long, east-west is 150km width, the area is 4.2×10^4 km². In Qinshui Basin, coal and coalbed gas are rich in resources, generally including 7 coalbeds, the average thickness of coalbed is 8-17m, coal has simple structure, stable caprock, and wide distribution area, is a good area of CO₂ geological storage, storage potential is great(Zhang Jianbo et al.).

According to uncertainties choosing ideal CO_2 storage sites, this paper made earth system science theory as a guide, studied index condition of CO_2 geological storage suitability in Qinshui coalfield, fully considers the element of each respect, used information entropy and unascertained measure theory, built comprehensive evaluation model of CO₂ geological storage suitability in Qinshui coalfield. Starting from practical geologic condition, 23 factors that influence CO₂ geological storage suitability were taken into account, and uncertainty measure function was obtained based on the in-situ data. The uncertainty problems in evaluation of CO₂ geological storage suitability were solved by qualitative analysis and quantitative analysis respectively. Information entropy theory was used to calculate the index weight of factors, credible degree recognition criteria was used to judge rank of CO₂ geological storage suitability in Qinshui coalfield. The results show that uncertainty measure method is reasonable and can provide certain reference significance for CO₂ geological storage suitability evaluation in the future.

Key words: Qinshui coalfield, uncertainty measure, comprehensive evaluation, CO₂ geological storage

References

- Zhang Senqi, Guo Jianqiang, Li Xufeng, Fan Jijiao, Diao Yujie, 2011. *Geological foundation of carbon dioxide geological storage and site geological evaluation in China*.Beijing: Geology Press.
- Xu Jun, Zhang Junying, Pan Xia, Zheng Chuguang, 2005. Current status of carbon dioxide storage technologies. *Coal Conversion*, 28(3): 80-86.
- Zhang Wei, Li Yilian, 2006. Research status and prospects of carbon dioxide sequestration technique. *Environmental Pollution & Control*, 28(12): 950-953.
- Zhang Jianbo, Wang Hongyan, Zhao Qingbo, 2000. Coalbed gas geology in China. Beijing: Geology Press.

^{*} Corresponding author. E-mail: hsj2010@chd.edu.cn