
1 Introduction 
 

Earth’s mantle is the largest carbon reservoir, containing 
approximately five orders of magnitude more carbon than 
the atmosphere-ocean system (Sleep and Zahnle, 2001; 
Coltice et al., 2004). It is generally believed that the 
lithospheric mantle and the mantle transition zone are 
important carbon reservoirs. However, the location of carbon 
storage in Earth's interior and the mechanisms for carbon 
enrichment are unclear. The budget of CO2 in Earth's 
atmosphere plays a pivotal role in maintaining a habitable 
climate throughout geological history (Dasgupta and 
Hirschmann, 2010). It is widely known that carbon degassed 
from the deep mantle to the surface during volcanism. The 
extent and efficiency of CO2 degassing is dependent on the 
depth and the degree of magma generation. If melting 
initiates at shallow depths in the mantle, carbon outgassing 
will be poor and vice versa (Dasgupta and Hirschmann, 
2010). Thus, quantifying the content of CO2 in the volcanic 
system is important for understanding deep carbon recycling 
(Moore and Bodnar, 2019). 

As the magma rises from deep mantle to Earth's surface, 
dissolved volatiles (pure CO2 and H2O) in the magma are 
lost, due to the decrease in pressure. It is therefore not 
reliable to investigate the degassing history of a volcanic 
system by directly using volatile abundances in bulk rocks 
or tephras (Dixon et al., 1995; Wallace et al., 2015; Moore 
et al., 2015; Wieser et al., 2020; Tang et al., 2022). As an 
alternative, melt inclusions (MI) are now extensively 
studied in a wide range of volcanic and intrusive igneous 
rocks, for the investigation of volatiles in magmas and 
mantle sources. Melt inclusions are small droplets of 
silicate melt trapped in a growing crystal defect before 
eruption, representing the pre-eruptive/undegassed 
magmas at depth. Therefore, they are always used to 
estimate the CO2 budget of pre-eruptive magmas 
(Roedder, 1979; Anderson et al., 2000; Hauri et al., 2002; 
Lowenstern, 2003; Wallace, 2005; Bodnar and Student, 
2006; Esposito et al., 2011; Gazel et al., 2012; Wallace et 
al., 2015; Moore et al., 2015; Aster et al., 2016; Moore 
and Bodnar, 2019). We should caution that volatiles in 
melt inclusions have been influenced by post-entrapment 
crystallization effects, diffusive ‘Fe and H+ loss’ through 
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host crystals and shrink bubble formation during cooling 
(Frezzotti, 2001; Danyushevsky et al., 2002; Kent, 2008; 
Bucholz et al., 2013; Moore et al., 2015; Wallace et al., 
2015). However, if the post-entrapment crystallization 
effects are corrected for, the melt inclusions provide 
reliable information regarding volatile composition. 

In recent years, studies have mainly focused on 
reconstruction of the budget of CO2 in the MIs trapped in 
olivine phenocrysts, using a variety of methods, such as 
(1) measurement of bubble CO2 density by Raman 
spectroscopy (e.g., Esposito et al., 2011; Hartley et al., 
2014; Moore et al., 2015; Aster et al., 2016), (2) equation 
of state calculations (Shaw et al., 2008, 2010; Wanless et 
al., 2014, 2015; Moore et al., 2015; Hauri et al., 2017; 
Tucker et al., 2019), (3) heating the melt inclusions to 
homogenize and dissolve shrinkage bubbles back into the 
melt (e.g., Hauri, 2002; Mironov et al., 2015; Wallace et 
al., 2015; Tuohy et al., 2016). 

Olivine-hosted melt inclusions in mantle xenoliths or 
xenocrysts have received less research attention. As 
silicate melts transport the deep carbon to the surface, melt 
inclusions trapped in mantle peridotite can record the 
compositions of melt at mantle depth and provide a unique 
window for understanding the degassing process 
(Frezzotti et al., 2012). The upwelling magmas ascend 
through the lithospheric mantle by interacting with the 
upper mantle, resulting in the alteration of physico–
chemical properties. At the same time, significant 
quantities of CO2 are lost from the melt and entrapped by 
the upper mantle. This study attempts to answer the 
following question: how does the lithospheric mantle 
‘capture carbon’? 

In this work, we studied the olivine-hosted melt 
inclusions in the mantle xenoliths of late Cenozoic basalts 
from the Penglai area, Hainan Province, with detailed 
petrographic observation, electron microprobe analysis 
(EMPA) for composition and laser Raman microprobe 
analysis for CO2 characterization. We also present a 
detailed petrological and geochemical investigation of the 
late Cenozoic basalts from northern Hainan Island. This 
study provides important evidence showing that the 
lithospheric mantle is a ‘carbon trap’. These results also 
provide insights into the metasomatic interaction between 
the melt and the lithospheric mantle, as well as the deep 
magmatic processes. 
 
2 Geological Background and Samples 
 
2.1 Geological background 

Hainan Island, situated at the convergent boundary of 
the Eurasian, Indo-Australian and Pacific plates, is 
separated from the Cathaysia Block of the South China 
Block (SCB) by the Qiongzhou Strait (Fig. 1a). late 
Cenozoic basalts are distributed in north Hainan Island, 
with a coverage of approximately 4000 km2, representing 
the largest Cenozoic basalt area in southeastern China 
(Fig. 1b; Metcalfe et al., 1993; Huang et al., 1993; Xu et 
al., 2020; Wei et al., 2021; Zhao et al., 2021). About 100 
volcanoes have been discovered in the north of Hainan 
Island. They are characterized by fissure eruptions and 
central eruptions, forming a lot of lava cones. The 

volcanism began in the late Oligocene (23.3 Ma) and 
ceased in the Holocene (<0.012 Ma), the eruption being 
particularly strong in the Pleistocene and Holocene 
(Flower et al., 1992; Ho et al., 2000; Fan et al., 2004). 
Previous studies divided Hainan Island Cenozoic basalts 
into five eruptive episodes, according to K-Ar and Ar-Ar 
dating: Penglai Formation in the Miocene–Pliocene, 
Duowenling Formation in the early Pleistocene, Dongying 
Formation in the middle Pleistocene, Daotang Formation 
in the late Pleistocene and Leihuling Formation in the 
Holocene (Fig. 2; Sun, 2003). Hainan Island late Cenozoic 
basalts are mainly composed of tholeiites, with a small 
proportion of alkali basalts. These basalts are 
characterized by porphyritic and vesicular structures. The 
main phenocrysts are plagioclase, olivine and pyroxene. 
The matrix consists of plagioclase, pyroxene and volcanic 
glass. In addition to basalts, there are also a small number 
of pyroclastic rocks, mainly tuff, volcanic breccia and 
volcanic agglomerate, which are distributed around the 
Leihuling area of northern Hainan Island. In addition, 
mantle xenoliths can be found in the alkali basalts in the 
Penglai area (Fig. 2), suggesting that magma ascent was 
rapid (Xu et al., 2002). Alkali basalts also contain 
xenocrysts formed after the disintegration of xenoliths. 
The size of the mantle xenoliths is approximately 1–3 cm 
in diameter and mantle xenoliths are mainly spinel 
lherzolite, consisting of olivine, clinopyroxene and 
orthopyroxene. 

Based on the initial opening time of the South China 
Sea (>32–16 Ma), many researchers proposed that the 
spreading time of the South China Sea is prior to the 
eruption time of the Hainan Island Cenozoic basalts. The 
extension resulted in a great number of depressions, uplifts 
and right-lateral strike-slip faults from the South China 
Sea to the Chinese mainland (Chung et al., 1997; Lei et 
al., 2009; Sun et al., 2009), the major faults being divisible 
into two types: E–W faults and NE–SW faults, which 
controlled the volcanic activities and distribution of the 
stratification, respectively. The E–W oriented faults 
dominated by the Paleo-Tethyan tectonic regime are 
composed mainly of (from north to south) the Wangwu–
Wenjiao, Jianfeng–Diaoluo and Jiusuo–Lingshui faults, 
which are closely connected to the distribution of 
depressions, uplifts and volcanic rocks in the area. The NE
–SW oriented faults dominated by the Pacific tectonic 
regime consist primarily of the Baisha and Chenxi–
Bangxing faults. 

In recent years, a young plume named the ‘Hainan 
plume’ was observed through geophysical studies. The 
Hainan plume is characterized by a low-velocity structure, 
lying close to the subduction zones and far away from 
superplumes (Lebedev and Nolet, 2003; Montelli et al., 
2006; Lei et al., 2009; Xia et al., 2016; Li, 2021; Lu et al., 
2022; Wang et al., 2022). Zhao (2007) and Zhao et al. 
(2021) further proposed that low-Vp anomalies prevail 
across the whole mantle beneath the Southeastern Asian 
basalt province (SABP), where the Hainan plume is the 
strongest one and one of twelve hypothesized plumes that 
originated from the lower mantle around the world. These 
features make the Hainan plume provocative and special, 
because it provides insight into a rare example of a young 
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Fig. 1. (a) Small sketch map showing the tectonic situation of the South China Sea. This area is located at the triple junction of the 

Eurasian, Indo-Australian and Pacific (Philippine) plates, surrounded by multiple subduction zones; (b) sketch map of the South 

China Sea region, showing the late Cenozoic volcanic centers, with ages. The map is modified from Yan et al. (2018). The Leiqiong 

area refers to the Leizhou Peninsula and the northern part of Hainan Island. The ages and areas of individual basalts are from Hoang 

et al. (1996), Ho et al. (2000) and Yan et al. (2018). 

Fig. 2. Distribution and sample locations of late Cenozoic basalts on Hainan Island (modified from Sun, 2003).  
Basalts are subdivided into five eruptive episodes, according to their age data (Sun, 2003). 
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mantle plume near deep subduction zones, rather than a 
lower mantle superplume (Wang et al., 2013). 

 
2.2 Petrology of basalt samples and mantle xenoliths 

A total of 58 samples were collected from northern 
Hainan Island (Fig. 4a–d), including 50 samples from the 
Penglai area (PL), 3 samples from Duowenling (DP; Figs. 
2, 4c) and 5 samples from Chengmai (BR; Figs. 2, 4d). 30 
out of the 50 from the Penglai area were selected for 
detailed melt inclusion studies, as 30 of the basalt samples 
contained mantle xenoliths (Figs. 2–3, 4a, b). These 
samples were mainly from the same eruption as the 
‘Penglai Formation’ and formed in the Miocene–Pliocene 
(5–3 Ma). Late Cenozoic basalts from the Penglai area are 
grey-black in color, composed of approximately 35% 
phenocrysts. The phenocrysts consist of plagioclase 
(15%), olivine (5%), clinopyroxene (Cpx, 5%), 
orthopyroxene (Opx, 3%–5%) and are euhedral to 
subhedral, ranging from 0.5 to 2 mm in size. The matrix 
mainly consists of microlites of olivine, plagioclase and 
pyroxene (Fig. 4e). In addition, magnetite and glass are 
present in the groundmass (Fig. 4f, g). Olivine xenocrysts 
have clear compositional zoning (see the analytical 
results). On the back-scattered electron image, the central 
part is dark (rich in Mg), the rim is light (rich in Fe) and 
the width between the centre and the edge varies between 
olivine grains. According to field observations, a few of 
the fresh mantle peridotite xenoliths (spinel lherzolite) 
were found in the basalts (Fig. 4b). The xenoliths are 
yellow-green in color and 1–3 cm in size (Fig. 4b). The 
xenoliths consist of 65% olivine, 15% orthopyroxene, 
18% clinopyroxene and 2% Cr-spinel. The olivine 
displays kink banding (Fig. 4h) and has a coarse granular 
texture with 120° dihedral angles between grain 

boundaries (Fig. 4h). The Cr-spinel is brownish to reddish
-brown in plane-polarized light and occurs interstitially 
between olivine and pyroxene. 

 
2.3 Petrography of melt inclusions 

Numerous olivine-hosted melt inclusions are distributed 
throughout the mantle xenoliths. According to the phases 
present at room temperature, olivine-hosted melt 
inclusions can be divided into three types, type I: CO2 
bubble-rich melt inclusions (Fig. 5a–d); Type II: 
multiphase melt inclusions (Fig. 5e–g); Type III: glass 
melt inclusions (Fig. 5h–i). Type I melt inclusions consist 
of a glass phase plus one bubble and are rounded, 
ellipsoidal to spherical and neck-down in shape. Type II 
melt inclusions are composed of multiple phases (glass + 
CO2 bubble + daughter minerals) and are rectangle, 
elongate, neck-down and irregular in shape. Type III melt 
inclusions consist of pure glass and are both elongate and 
irregular in shape. Type II melt inclusions contain well-

Fig.  3.  Geological  map of  the  Penglai  volcanic-plutonic, 

Hainan Island, SE China (modified from BGGP, 1964). 

 

Fig. 4. Field photographs and photomicrographs of late Cenozoic 

basalts in the Penglai area, northern Hainan Island.  
(a) ‘Penglai Formation’ basalt outcrop; (b) hand-specimen with xenolith; (c) 

‘Duowenling Formation’  basalt  outcrop;  (d) ‘Dongying Formation’  basalt 

outcrop; (e) photomicrograph of late Cenozoic basalts in the Penglai area; (f) 

photomicrograph of late Cenozoic basalts in the Duowenling area; (g) photomi-

crograph of late Cenozoic basalts in the Chengmai area; (h) photomicrograph of 

xenoliths  in  the  Penglai  area.  Ol–olivine;  Cpx–clinopyroxene;  Opx–

orthopyroxene; Sp–spinel; Pl–plagioclase. 
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defined grains of daughter minerals (1 μm in size) and a 
deformed shrinkage bubble (up to 1–2 μm in size). 
Daughter crystals in the melt inclusions often have a 
regular shape. Under cross-polarized light, some daughter 
phases display high birefringence that is characteristic for 
carbonates, as identified by Raman spectroscopy. 

Melt inclusions are classified petrographically in the 
same way as fluid inclusions. Based on the relationship 
between the host mineral and melt inclusions, primary 
melt inclusions trapped during crystal growth display 
randomly distributed features. It is noteworthy that the 
primary melt inclusions do not refer to melt inclusions 
trapping a primary melt. Secondary melt inclusions grow 
along healed cracks or cleavage planes, sometimes cutting 
the boundary minerals (Roedder, 1984). In this study, melt 
inclusions formed trails along healed fracture planes, and 
sometimes cut across grain boundaries, suggesting that 
olivine-hosted melt inclusions in mantle xenoliths are 
secondary melt inclusions.  

 
2.4 Petrography of fluid inclusions  

The olivine-hosted fluid inclusions are also widely 
distributed in the xenoliths. These fluid inclusions have 
elongate and irregular shapes, such as tubular, oval-shaped 
and so on, with a size ranging from 1 to 20 μm in 
diameter. There are two types of fluid inclusions: one is 

single phase; the other comprises two phases with a dark 
appearance at room temperature (Fig. 5j) and is always 
associated with melt inclusions in the same healed 
fracture. Sometimes they have a neck-down structure, 
which indicates that they are genetically associated with 
the decay of the early fluid inclusions (Fig. 5k–l). 
 
3 Analytical Methods 
 
3.1 Whole-rock major and trace element analyses 

Major elements for all samples were determined by X-
ray fluorescence (XRF, PW4400) spectroscopy at the 
National Research Center for Geoanalysis, Chinese 
Academy of Geological Sciences, Beijing, China. 
Analyses were performed using fusion beads formed by 
melting sample powders (200 mesh) with a lithium 
tetraborate flux. Loss on ignition (LOI) of samples was 
measured at 1050°C, after drying at 100°C. Relative 
standard deviations of these analyses are better than 3% 
for SiO2, Al2O3, Fe2O3, MaO, CaO, Na2O, K2O and better 
than 5% for TiO2, MnO and P2O5. Trace element 
concentrations were measured using an inductively–
coupled plasma–mass spectrometer (ICP–MS; PE300Q) 
following the procedure of Hu et al. (2015). The detection 
limit for trace element analysis is 0.05 ppm. Analytical 
uncertainties are <5% for trace elements with 
concentrations of ≥20 ppm and 5%–10% for elements with 
concentrations of ≤20 ppm. The detailed analytical 
methods were described by Liu et al. (2008).  

 
3.2 Major element analyses of olivine and spinel 

Olivine grains with spinel inclusions from mantle 
xenolith samples were analyzed in polished thin-sections 
by electron microprobe at the Mineral Resources division 
of the Chinese Academy of Geological Sciences, Beijing, 
China, using a JEOL–JXA–8230 electron probe micro–
analyzer. The analysis was conducted at operating 
conditions of a 10 μm beam spot for olivine, a 1 μm beam 
spot for spinel, 40 nA beam current and 15 kV 
accelerating voltage for olivine and spinel. Peak counting 
times were 60 s for Al and Cr, 30 s for Ca, Ni and Ti, 10 s 
for other elements. Natural mineral standards were used 
for calibration. Under these conditions, the detection limit 
for Al2O3 was <0.007 wt% and the precision was ±0.006 
wt% (2σ), based on counting statistics on individual 
analyses. The detailed analytical methods were described 
by Wan et al. (2008). The intensity data were corrected 
using the ZAF method. Melt inclusions and other minerals 
from xenoliths or xenocrysts were also analyzed in thin-
sections using the same EPMA. The detailed analytical 
methods are the same as above. 

 
3.3 Laser Raman spectroscopy 

The composition of melt inclusions (bubbles and 
daughter minerals) was analyzed by Raman spectroscopy, 
using a LabRAM HR Evolution (HORIBA Scientific, 
Paris, France) at the Key Laboratory of Orogenic Belts 
and Crustal Evolution of the School of Earth and Space 
Sciences, Peking University. The laser beam had an 
excitation wave length of 532 nm with a power of 100 
mW on the surface of the sample. The diameter of the 

Fig. 5. Photomicrographs of melt inclusions in this study.  
(a) Melt inclusions (MI) with elliptical shapes entrapped in olivine. The MI 

consists of glass and a bubble; (b) ellipse-shaped MI entrapped in olivine. 

The MI comprises two phases (glass + bubble); (c) rectangular shaped MI 

entrapped in olivine. The MI consists of glass and a bubble; (d) circular-

shaped MI trapped in olivine. The inclusions consist of two phases (glass + 

bubble); (e–f) elliptically shaped MI entrapped in olivine. The MIs consist of 

glass, bubble and daughter minerals; (g) elongate MI with neck-down shape 

entrapped in olivine; (h–i) pure glass MIs distributed in olivine and orthopy-

roxene; (j–l) fluid inclusions with rounded, elongated and neck-down shapes 

entrapped in olivine. Images were taken using transmitted light and back-

scattered electron imaging. 
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laser beam was approximately 1000 nm. Individual spectra 
were obtained with an exposure time of 20 s and a spectral 
resolution of 2 cm−1. The scanning spectra range was 
between 100 and 4000 cm−1. Peak positions were 
determined by fitting according to the Gauss-Lorenz 
method, the Raman shift being calibrated using 
monocrystalline silicon as the standard material. 

 
3.4 Mineral trace-element analyses 

Trace-element concentrations of pyroxenes were 
determined by laser ablation-inductively coupled plasma-
mass spectrometry (LA-ICP-MS) at the Key Laboratory of 
Orogenic Belts and Crustal Evolution, MOE, Peking 
University. Detailed operating conditions for the laser 
ablation system and the ICP-MS instrument and data 
reduction were as described by Liu et al. (2008). Laser 
sampling was performed using a GeoLas 2005. An Agilent 
7500a ICP-MS instrument was used to acquire ion-signal 
intensities. A ‘wire’ signal-smoothing device was included 
in this laser ablation system, by which smooth signals were 
obtained at even very low laser repetition rates, down to 1 
Hz (Hu et al., 2015). Nitrogen was added into the central 
gas flow (Ar + He) of the Ar plasma to decrease the 
detection limits and improve precision. Each analysis 
incorporated a background acquisition of 20 s (gas blank) 
followed by 50 s of data acquisition from the sample. The 
Agilent Chem–station was utilized for the acquisition of 
each individual analysis. The preferred values of element 
concentrations for the U.S. Geological Survey reference 
glasses are from the GeoReM database (http://georem.mpch
–mainz.gwdg.de/). 43Ca was used as the internal standard 
for clinopyroxene. The accuracy of measurements for the 
reference materials was better than 10% in relative standard 

deviation for all elements (rare earth elements (REE), Ti, Sr, 
and Zr) presented here. Off-line selection and integration of 
background and analytical signals, as well as time-drift 
correction and quantitative calibration, were performed by 
ICPMS-DataCal (Liu et al., 2008). 
 
4 Results 
 
4.1 Major element composition of bulk basaltic rocks 
and melt inclusions  

The 19 samples of late Cenozoic basalts from Hainan 
Island were analyzed for major and trace element 
compositions. The results are listed in Supp. Table 1. Loss 
on ignition (LOI) values of the samples range from 0.03 to 
1.65 wt%, resulting from variable amounts of secondarily-
altered minerals. After major oxide analyses were re-
calculated to 100% on a H2O and CO2-free basis (basically 
represented by LOI in this study), the analyzed samples 
have SiO2 of 46.62–50.95 wt%, Al2O3 of 14.46–23.27 
wt%, Fe2O3 of 10.95–12.42 wt%, MgO of 6.24–10.09 
wt%. Based on the classification of Le Bas et al. (1986), 
these basalt samples belong to alkaline and subalkaline 
series. The alkaline samples are mainly basalt, while the 
subalkaline samples are mainly basalt and basaltic 
andesite (Fig. 6). 

The compositions for glasses in melt inclusions are 
listed in Supp. Table 2. The glasses have SiO2 of 61.94–
77.72 wt%, Al2O3 of 12.84–14.50 wt%, FeO of 0.52–4.07 
wt%, MgO of 0.11–10.41 wt%. 

 
4.2 Trace element composition of bulk basaltic rocks 

Trace element analyses for the basaltic samples are listed 
in Supp. Table 3. On the chondrite-normalized REE 

Fig. 6. Na2O + K2O versus SiO2 (Le Bas et al., 1986) for Hainan basalt bulk rock and melt inclusions.  
Literature data from Wang et al. (2013), Liu et al. (2015) and Wang et al. (2021). 
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diagram (Fig. 7a; Boynton, 1984), the samples show 
fractionated REE patterns with high (La/Yb)N ratios of 3.52
–11.77, typical of OIB. On the primitive mantle-normalized 
trace element diagram (Fig. 7b; Sun and McDonough, 
1989), the samples show positive Rb, Ba, Nb, Ta, Pb and Sr 
anomalies, with negative Th and U anomalies. 

 
4.3 Pressure-temperature estimation for mantle 
xenoliths 

The depth of Hainan mantle xenoliths trapped by the 
late Cenozoic basalts is constrained to less than 60 km (c. 
20 kbar) by the absence of garnet in the peridotite. We 
have used the calibration of Nimis and Ulmer (1998) for 
primary clinopyroxene to estimate the approximate depth 
of extraction of the lherzolite xenoliths, yielding a 

pressure range from 6.2 kbar to 16 kbar. Xu et al. (2002) 
suggested that if the lowest pressure values were less than 
9.7 kbar (30 km) for Hainan mantle xenoliths, then they 
would have been acquired at the shallow lithospheric 
mantle, near the Moho depth (Fig. 8a). 

In this study, we use the Al-in-olivine thermometer to 
determine the xenolith crystallization temperature, based 
on the Al-exchange between olivine and spinel, as 
calibrated experimentally by Wan et al. (2008) and 
Coogan et al. (2014). The formulation by Coogan et al. 
(2014) is expressed as: 

Fig. 7. (a) Chondrite-normalized REE patterns for the late Cenozoic basalts; (b) primitive-mantle normalized trace patterns for 

the late Cenozoic basalts.  
Chondrite, primitive mantle data are from Boynton (1984) and Sun and McDonough (1989), respectively. OIB, N-MORB, E-MORB data from Sun and 

McDonough (1989). Literature data from Wang et al. (2013, 2021),  Liu et al. (2015). 

 

Fig. 8. (a) Geothermal gradient of the lithospheric mantle beneath Hainan Island; Qilin and Hainan data from Xu et al. 

(2002); (b) histogram showing Al-in-olivine temperatures for mantle xenoliths on Hainan Island. 
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where Cr# = Cr/(Cr + Al) of spinel calculated in molar 
units, Al2O3

ol and Al2O3
sp are the alumina concentrations 

(weight percent) in olivines and spinels, respectively, 
determined by EPMA. The detailed analytical methods 
were described by Wan et al. (2008). The concentrations 
of P in olivine are well below 200 ppm. Based on Coogan 
et al. (2014), the Al distribution between spinel and 
olivine should not be significantly affected by the Al–P 
charge balance substitution. The experiments of Wan et al. 
(2008) and Coogan et al. (2014) had a restricted range of 
parameters. 

A total of 35 points were analyzed for Cr-spinel 
inclusions in olivine from the Penglai area basalts. All 
data for olivine and spinel inclusion are listed in Supp. 
Table 4. Olivine compositions range from Fo 76 to Fo 91. 
They have Al2O3 contents of 0.008–0.035 wt% and NiO 
contents of 0.19–0.44 wt%. The olivine crystals show a 
relatively positive correlation between Al2O3 and Fo 
contents. Spinels are Cr-rich and exhibit Cr# of 0.14–0.71 
and Al2O3 of 5.83–52.89 wt%. For this reason, spinels 
with Fe3+/Fetotal = 0–0.35 and Cr# = 0–0.69 (Cr/(Cr + Al)) 
were used to obtain reliable results from the Al–in–olivine 
thermometer. The calculated crystallization temperatures 
for the xenoliths of the Penglai area basalts range from 
905°C to 1282°C (Fig. 8b; Supp. Table 4), with the 
average value being 1117°C. The intrinsic error of the 
thermometer is estimated to be within ± 25°C (Coogan et 
al., 2014).  

We also used the Ca-in-Opx thermometer of Brey & 
Köhler (1990) and the pyroxene thermometer from Wells 
(1977) and Wood & Banno (1973) to estimate the 
temperature of mantle xenoliths in northern Hainan Island 
(Table 1). The estimated values from the three different 
geological thermometers are 901–1052°C, 924–997°C and 
1027–1089°C, respectively. Xu et al. (2002) used the Brey 
& Köhler (1990) Ca-in-Opx thermometer to calculate the 
equilibrium temperature of Hainan spinel lherzolite. Their 
results show that the equilibrium temperature of Hainan 
mantle xenoliths is 800–1080°C. Based on the Brey and 
Köhler (1990) Ca-in-Opx thermometer (error is ±60°C), 
Jiang et al. (2017) calculated the equilibrium temperatures 
for three types of lherzolites in Hainan, the results being 
818–1015°C, 960–977°C, 864–988°C. The average 
equilibrium temperature of lherzolites is 932°C. 

4.4 Mineralogical features in the mantle xenoliths 
4.4.1 Olivine 

The olivine Mg# (Mg#
ol = 100 × Mg2+/(Mg2+ + Fe2+)) 

value is between 86 and 91. The data are listed in Supp. 
Table 5A. Based on the Mg#

ol value, the olivines can be 
divided into three types. Samples with high Mg#

ol value 
(>90), are classified as relatively refractory mantle 
peridotite. Samples with Mg#

ol values of 87–90 represent 
fertile mantle peridotite. The third type of mantle peridotite 
has low Mg#

ol values (<87). The three types of peridotites 
all belong to spinel lherzolites. Olivines from mantle 
xenoliths have CaO content of 0–0.14 wt%, NiO content of 
0.27–0.50 wt% and MnO content of 0.06–0.18 wt%. 
Generally, magmatic olivine has CaO > 0.1 wt% and MnO 
> 0.2 wt%. Fig. 9 shows these olivine compositions 

 

Fig. 9. Relationship of Mg# in olivine vs. NiO, CaO, MnO. 

 

Table 1 Estimated results of mantle peridotite temperature 

(°C) in northern Hainan Island 

Sample 
Brey and 

Köhler (1990) 

Wells 

(1977) 

Wood and Banno 

(1973) 

PL13–1 975 954 1045 

PL13–2 955 942 1034 

PL13–3 952 937 1032 

PL13–4 1049 991 1058 

PL13–5 988 956 1038 

PL13–6 979 — — 

PL6–1 901 932 1035 

PL6–2 917 932 1033 

PL6–3 909 924 1027 

PL23a–1 1029 997 1089 

PL13–33b–1 932 943 1039 

PL13–33b–2 1052 989 1085 

TBKCa–Brey and Köhler (1990) Ca-in-Opx thermometer; TW–Wells (1997) 

thermometer; TWB–Wood and Banno (1973) thermometer. 
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basically falling in the range for ‘fertile peridotite’, 
representing a juvenile lithospheric mantle. In addition, the 
olivine xenocrysts of sample PL–13 have Mg#

ol varying 
from 84 to 75 from core to rim. The content of other 
elements in olivine with banding also changes significantly. 
For example, from the core to the rim, the contents of MgO, 
NiO and SiO2 decreases gradually, while the contents of 
CaO and FeO increases gradually (Fig. 10). The olivine 
xenocrysts are similar to olivine phenocrysts of basalt in 
eastern China in their geochemical characteristics. 

 
4.4.2 Orthopyroxene 

The Mg#
opx value (Mg#

opx = 100 × Mg2+/(Mg2+ + Fe2+)) 

of orthopyroxenes in this study ranges from 86 to 92. The 
data are listed in Supp. Table 5B. Relatively high Mg#

opx 
value (>90), medium Mg#

opx value (87 to 90) and low 
Mg#

opx value (<87), correspond to refractory peridotite, 
fertile peridotite and peridotite reacted with basaltic 
magma. These orthopyroxenes contain Al2O3 (1.07–4.56 
wt%), Cr2O3 (0.022–0.686 wt%) and NiO (0.04–0.19 
wt%). As can be seen from Fig. 11, these orthopyroxenes 
basically fall into the range for ‘fertile peridotite’, 
representing the juvenile lithospheric mantle. 

 
4.4.3 Clinopyroxene 

In general, the compositional characteristics of 

Fig. 10. Diagram of Fo, CaO, NiO, MgO, FeO, SiO2 contents changing from core to rim. 
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clinopyroxene in mantle peridotites are of great 
importance for discussing the origin and evolution of the 
lithospheric mantle. The data for clinopyroxene 
composition are listed in Supp. Table 5C. Clinopyroxenes 
in the first type of mantle peridotite have relatively high 
Mg#

cpx values (92–94), Cr# values (Cr# = 100 × Cr/(Cr + 
Al)) of 10–24 and Al2O3 contents of 2.62–4.28 wt%. 
Previous studies have found that refractory clinopyroxenes 
of mantle peridotite in the Archean lithosphere residue in 
the Hebi area of the North China Craton have Cr# values 
greater than 10 and Mg#

cpx values more than 91 (Li, 2015). 
According to the chondrite-normalized REE diagram, 
clinopyroxene in the first type of relatively refractory 

mantle peridotite is depleted in LREE and enriched in 
HREE, (La/Yb)N = 0.18–0.30 (Figs. 12, 13a). On the 
primitive-mantle normalized trace element diagram, the 
content of incompatible elements in clinopyroxene is 
relatively low, with positive anomalies of Th, U and Sr, as 
well as negative anomalies of Ba, Nb, Ta, Zr and Hf (Fig. 
13b). The clinopyroxene in the first type of relatively 
refractory mantle peridotite in Hainan Island, has similar 
geochemical characteristics to that of the clinopyroxene in 
the mantle peridotite in the Hebi area of the North China 
Craton. Clinopyroxene in the second type of fertile mantle 
peridotite has moderate Mg#

cpx value (90–91), Cr# value 
between 7–15, and Al2O3 content of 5.38%–6.21%. 
According to the chondrite-normalized REE diagram of 
clinopyroxene, the second type of fertile mantle peridotite 
clinopyroxene has a U-shaped distribution, with the 
highest LREE content and relatively flat HREE content, 

Fig. 11. Relationship of Mg# in orthopyroxene vs. Al2O3, Cr2O3, 

NiO.  

Fig. 12. Relationship of Mg# in clinopyroxene vs. Cr#, Al2O3, 

TiO2. 
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(La/Yb)N = 1.96–4.12 (Figs. 12, 13a). On the primitive-
mantle normalized trace element diagram, the content of 
incompatible elements in clinopyroxene is relatively high, 
with positive anomalies of Th, U and Sr, alongside 
negative anomalies of Ba, Nb, Ta, Zr and Hf (Fig. 13b). 
The third type of mantle peridotite clinopyroxene has 
Mg#

cpx values from 86 to 89 and Cr # values between 5 and 
13 (excluding two samples with Cr # value of 24) and 
Al2O3 content of 3.90–4.97 wt% (excluding two samples 
with Al2O3 values of 1.95 and 2.11). According to the 
chondrite-normalized REE diagram of clinopyroxene, 
clinopyroxene in the third type of relatively refractory 
mantle peridotite is enriched in LREE, has a right-dipping 
feature of HREE and relative depletion of (La/Yb)N = 0.18
–4.36 (Figs. 12, 13a). On the primitive-mantle normalized 

trace element diagram, the clinopyroxene has medium 
content of the incompatible elements, with positive 
anomalies of Th, U and Sr, alongside negative anomalies 
of Ba, Nb, Ta, Zr and Hf (Fig. 13b). 

 
4.5 Raman spectroscopy of silicate melt inclusions  

Laser Raman analyses of MI suggested that the volatile 
components in the MI are dominated by CO2. The results 
of Laser Raman analyses of MI are shown in Fig. 14. The 
Raman spectrum shows the olivine–host, with Raman 
shifts at 825 and 855 cm−1 (Fig. 14a–d). The Raman 
spectra of the bubbles in MI show two strong bands at 
1285 and 1388 cm−1, which are characteristic for 
molecular CO2, indicating the bubbles in MI are mainly 
CO2 (Frezzoti et al., 2012; Fig. 14a–b, d). In Fig. 14d, 

Fig. 13. (a) Chondrite-normalized REE patterns for the late Cenozoic basalts; (b) primitive mantle-normalized trace patterns for 

the late Cenozoic basalts.  
Chondrite, primitive mantle data are from Boynton (1984) and Sun and McDonough (1989), respectively. Literature data from Jiang et al. (2017). 

 

Fig. 14. Summary of representative Raman spectra of MI at room temperature.  
(a) Laser Raman spectrum of the bubbles in MI; (b) Laser Raman spectrum of bubble, daughter minerals in MI; (c) Laser Raman spectrum of daughter min-

eral in MI; (d) Laser Raman spectrum of CO2 dissolved in glass. Fo–olivine; Rut–rutile; Mgs–magnesite. 
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peaks at 1286.2 cm−1 and 1389.2 cm−1 are very weak, 
suggesting low CO2 concentrations in MI. The daughter 
mineral in Fig. 14b is rutile, with characteristic peaks at 
445.6 cm−1 and 611.5 cm−1. In addition, the Cr-spinel was 
identified by EPMA (Fig. 14b). Magnesite was also 
detected in several melt inclusions, which has Raman 
shifts at 327.4 and 1094 cm−1 (Fig. 14c). 
 
5 Discussion 
 
5.1 Crustal contamination 

Compared to oceanic island basalts, continental intra–
plate basalts are expected to pass the thick continental 
crust before eruption. As such, it is necessary to evaluate 
the influence of crustal contamination. O’Reilly and 
Griffin (2010) suggested that if mantle xenoliths are 
hosted in magma, the magma possibly spent 8–60 h 
travelling from the depth of 80–200 km to the surface. In 
the study area, there are many mantle xenoliths and 
xenocrysts in the Hainan basalts (Fan and Hooper, 1989; 
Xu et al., 2002; Liu et al., 2015; Jiang et al., 2017), 
indicating that magma ascended rapidly, without enough 
time to assimilate the crust (Liu et al., 2015; Sun et al., 
2018; Lei et al., 2021). 

In addition, continental crust material displays the 
features of relatively high SiO2 and low MgO, with 
enrichment in LILEs (e.g., Rb, Ba, U and K) and depletion 
in HFSEs (e.g., Nb, Ta and Ti). The Hainan basalts have 
SiO2 of 46.62–53.79 wt%, MgO of 6.24–10.09 wt% and 
positive Nb and Ta anomalies as shown in Fig. 7b. 
Furthermore, oceanic basalts (MORB and OIB) have 
average Ce/Pb and Nb/U ratios of 25 ± 5 and 47 ± 7, 
respectively (Hofmann et al., 1986), distinctly higher than 
that of continental crust (4.8 and 7.4, respectively, Taylor, 
1964; 6.15 and 3.91, respectively, Rudnick and Gao, 
2003). In contrast, Ce/Pb and Nb/U in the Hainan basalts 
range from 15.67 to 26.64 and from 40.40 to 51.16, 
respectively. These values are much closer to the average 
ratios of oceanic basalts. Th/Ta (1.57–1.82) and Nb/La 
(1.37–1.57) in the Hainan basalts plot between the OIB 
and primitive mantle, suggesting that crustal material was 
not added into the basaltic magma. This is consistent with 
the fact that the late Cenozoic basalts, in the whole South 
China Sea and its surrounding areas, are hardly 
contaminated by crustal materials. Recently, Zou and Fan 
(2010) indicated that Hainan basalts have a 230Th excess, 
which excludes crustal contamination. Thus, the above 
evidence indicates that crustal contamination plays an 
insignificant role in the petrogenesis of these basalts 
(Wang et al., 2012, 2013). 
 
5.2 Partial melting in the lithospheric mantle 

Mantle xenoliths provide a window for investigating the 
lithospheric mantle and deep processes such as melt 
extraction and mantle metasomatism. In the long history 
of geological evolution, the lithospheric mantle has 
experienced multiple periods of melt extraction, resulting 
in mantle-derived magmas. Fusible components such as 
Al, Fe, Ti, etc., are easy to extract. Generally speaking, 
with a higher degree of extraction, the peridotite is more 
‘refractory’, otherwise it is characterized as ‘fertile’. 

Olivine Mg # values and clinopyroxene Mg # values can 
usually be used to reflect the extraction degree of the melt 
and also show the ‘refractory’ and ‘fertile’ degrees of the 
mantle xenoliths. The correlations between Mg# values of 
olivine, orthopyroxene, clinopyroxene and other elements 
show that mantle peridotite has experienced the process of 
melt extraction (Figs. 9–11). In mantle peridotite, 
clinopyroxene is generally the main carrier of trace 
elements and the most important mineral (Li, 2015). 

There are two principal methods for calculating the 
degree of mantle melting: the first is to use the major 
elements of minerals for calculation. The formula 
established by Hellebrand et al. (2001), F = 10 × ln (Cr#) + 
24 (where the Cr# value in spinel is between 0.1 and 0.6), 
is used to obtain the estimate of the Hainan Island mantle 
peridotite that represents the residue after 15%–22% melt 
extraction. The second method is to use the relationship 
between the mineral trace elements to determine the 
melting degree of the mantle peridotite. Johnson et al. 
(1990) and Norman (1998) established the covariant 
relationship between YbN and YN in clinopyroxene under 
batch melting and fractional melting conditions. Based on 
the parameters given by Norman (1998), DY

Cpx/melt = 0.42, 
DYb

Cpx/melt = 0.40, Fig. 15a, b simulate the changes of 
clinopyroxene Y and Yb contents in batch melting and 
fractional melting scenarios, respectively. Fig. 15a shows 

Fig. 15. (a) Batch melting and (b) fractional melting modes with 

the primitive mantle-normalized Yb and Y in clinopyroxene 

from Hainan Island mantle xenoliths, assuming a primitive 

mantle source.  
Literature data from Jiang et al. (2017). 
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that some mantle peridotites from northern Hainan Island 
need to undergo about 50% batch melting to be in accord 
with the content of rare earth elements in clinopyroxene. 
According to Zimbelman and Gregg (2000), if the mantle 
undergoes more than 40% partial melting, it will form 
komatiite, which is inconsistent with the actual 
observations. Fig. 15b shows that using a fractional 
melting model, the samples basically fall on the trend line, 
suggesting that the mantle peridotites in Hainan Island 
come from the spinel-stable zone, with a partial melting 
degree of 4%–20%. the partial melting degree for the first 
type clinopyroxene being about 9%, the partial melting 
degree for the second type clinopyroxene being about 6% 
and the partial melting degree of the third type 
clinopyroxene being 3%–20%. It is similar to the method 
of estimating the partial melting degree of the mantle by 
using spinel Cr#. 

 
5.3 Implications for mantle metasomatism  

Mantle metasomatism refers to the interaction between 
the silicate/carbonate melts or fluid and mantle, resulting 
in the change of mantle chemical compositions and 
properties. The metasomatism can be divided into modal 
metasomatism and cryptic metasomatism, respectively 
(Harte, 1983; Dawson, 1984). Metasomatic minerals 
(phlogopite, amphibole, etc.) are not found in the mantle 
peridotite in northern Hainan Island. In Fig. 13, both 
chondrite-normalized REE diagram and the primitive-
mantle normalized trace element diagram show that the 
second and third types of clinopyroxene are obviously 
enriched in light rare earth elements (LREE) and other 
trace elements, which indicates that the peridotite has 
undergone cryptic metasomatism. Compared with the 
other two types, the first type of clinopyroxene has low 
contents of light rare earth elements (LREE) and large ion 
lithophile elements (LILE). Low degree mantle 
metasomatism and early metasomatism with strong 
incompatible elements (Th, U, Sr, etc.) occurred in the 
first type of clinopyroxene. The second type of 
clinopyroxene has high contents of LREE and LILE, with 
positive Th and U anomalies and negative Rb, Ba, Nb, Ta, 
Sr anomalies, suggesting that the metasomatic agent has 
relatively high contents of LREE and incompatible 
elements such as Th and U. The third type of 
clinopyroxene has medium contents of LREE and LILE, 
with positive Th and U anomalies and negative Rb, Ba, 
Nb, Ta, Sr anomalies, suggesting that the metasomatic 
agent contains moderate LREE and incompatible elements 
such as Th and U. Above all, the first type of 
clinopyroxenes has very low Sr, Nb, La and Zr contents, 
indicating that they have experienced a very low degree of 
mantle metasomatism. However, the second and third 
types of clinopyroxenes have higher Sr, Nb, La and Zr 
contents than the first type of clinopyroxenes, indicating 
that they have experienced strong metasomatism.  

The metasomatic agent is melt rather than fluid, because 
the solubility of Nb, Zr in aqueous fluids is extremely low, 
but their solubility is high in silicate melts or carbonate 
melts with a large wetting dihedral angle (Keppler, 1996). 
Fig. 7b shows that the trace elements in the whole rock of 
late Cenozoic basalts have positive Nb and Ta anomalies, 

but the Nb and Ta anomalies in mantle xenoliths are 
negative (Fig. 13b). Therefore, we speculate that the 
metasomatic agent comes not from the host basaltic 
magma, but from other materials in the lithospheric 
mantle.  

Compared with silicate melt metasomatism, carbonate 
melt metasomatism will cause clinopyroxene to have 
relatively high Ca and low Al content (Fig. 16a, b). In 
carbonate melts, it is easier for Ti to enter clinopyroxene 
(Rudnick et al., 1993). Therefore, we use the the Ti/Eu 
ratio to trace the metasomatism of carbonate melts. 
Carbonate melts are enriched in LREE and metasomatized 
clinopyroxene will have higher (La/Yb)N ratios. By 
simulating mantle conditions, Coltorti et al. (1999) 
suggested that if the carbonate melts replaced 
clinopyroxene, the (La/Yb)N ratio of clinopyroxene is 
usually greater than 3–4 and the Ti/Eu ratio is less than 
1500. Zong and Liu (2018) believed that the above ratios 
are not an absolute standard, the authors suggesting that it 
would be more reasonable to use the trend defined by the 
ratios. Clinopyroxene (La/Yb)N–Ti/Eu and clinopyroxene 
Ca/Al–Mg # are usually used to distinguish silicate melt 
metasomatism and carbonate melt metasomatism (Fig. 
16c, d). A part of the clinopyroxene samples in mantle 
peridotite plot in the silicate melt metasomatism area; 
while others fall into the carbonate melt metasomatism 
area, indicating that the mantle peridotite experienced the 
metasomatism of melts of different compositions.  

In summary, we propose that the lithospheric mantle of 
Hainan Island has experienced both silicate melt and 
carbonate melt metasomatism.  

 
5.4 CO2 entrapment in the lithospheric mantle 

The Hainan Island mantle xenoliths have undergone 
silicate melt metasomatism, as indicated by a large 
number of Si-rich melt inclusions developed in the mantle 
peridotites (Xu et al., 2002; Wu et al., 2005; Wang et al., 
2012). Melt inclusions in spinel lherzolite provide direct 
evidence for discussing the type of metasomatic agent in 
the lithospheric mantle. We chose olivine-hosted melt 
inclusions as a research object. Based on the electron 
microprobe analysis, the glasses in olivine-hosted melt 
inclusions have a high content of SiO2 (60.21–77.72 wt%), 
which precludes a genetic relationship between the melt 
inclusions and the host basaltic magma. Based on the thin-
section observations, melt inclusions mostly cut through 
the mineral boundaries, indicating that melt inclusions are 
secondary, eliminating the possibility that melt inclusions 
result from the partial melting of host minerals (Chazot et 
al., 1996). Melt inclusions are not generated by melting of 
the hydrous minerals, because phlogopite and amphibole 
are not found in the peridotite (Ionov et al., 1994). 
Therefore, olivine-hosted melt inclusions may represent 
part of a migrating silicate melt phase in the lithospheric 
mantle (Schiano and Clocchiatti, 1994). 

Carbonates are observed in the melt inclusions and the 
carbonate phase distributes across the glass–bubble 
interface in the form of tiny crystals, rather than as a 
single, large crystal. Laser Raman analyses of MI suggest 
that the tiny solid components in the MI are magnesite 
(Fig. 5e, g), Ionov et al. (1993) in turn suggesting that 
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partial melting of a carbonated peridotite may form 
magnesite in melt inclusions. If this is true, not only does 
partial melting of carbonated peridotite produce 
carbonates, but also an Al, Na-rich mafic silicate glass in 
peridotite. However, the silicate glass in our melt 
inclusions is felsic in composition. Therefore, the 
magnesite cannot be formed by partial melting of 
carbonated peridotite. Moore et al. (2015) suggested that 
carbonates were commonly identified in the MI because of 
the reaction between the CO2 in the fluid and surrounding 
melts. In this study, we suggest that magnesites in MI 
could be interpreted as a secondary mineral, formed by 
interactions of CO2-rich fluids with olivine (Frezzotti et 
al., 2002; Moore et al., 2015; Wallace et al., 2015; Tucker 
et al., 2019; Weiser et al., 2020). Mg, such as Mg2+, 
precipitates due to reaction with CO3

2− in the fluid at 
specific temperatures. Experimental studies have shown 
that CO2-saturated fluid can easily form magnesite by 
reacting with olivine (Kwak et al., 2011; Schaef et al., 

2013; Loring et al., 2015; Stopic et al., 2018). The 
daughter minerals of type II MI (glass + CO2 bubble + 
daughter minerals) illustrate a characteristic paragenesis. 
To explain the needle-like rutile in olivine-hosted MI in 
mantle xenoliths, Schiano and Clocchiatti (1992) proposed 
a metasomatic mechanism theory, the authors suggesting 
that a change in the fO2 resulted in the precipitation of Ti 
in the form of needle-like rutile. The appearance of Cr-
spinel is caused by immiscibility during the cooling of the 
melt. Melt inclusions (CO2 + glass) and fluid inclusions 
(CO2-dominated inclusions) occur together along healed 
fractures in the olivine of mantle xenoliths, relative to 
olivine formation (as secondary inclusions, Fig. 5k, l). The 
coexistence of melt inclusions and fluid inclusions in the 
olivine of mantle xenoliths indicates that these inclusions 
formed by the immiscible mixture of silicate melt and CO2 
under lithospheric mantle conditions. The presence of CO2 
in type I MI (CO2 bubble-rich melt inclusions) and type II 
(glass + bubble + daughter minerals) has been identified 

Fig. 16. (a) Relationship of SiO2 in Cpx vs. Al2O3 in Cpx; (b) relationship of SiO2 in Cpx vs. CaO in Cpx; (c) relationship of Ti/

Eu in Cpx vs. (La/Yb)N in Cpx; (d) relationship of Mg# in Cpx vs. Ca/Al in Cpx.  
The reaction experiment between silicate melt and peridotite data from Wang et al. (2010), Yaxley and Green (1998); natural mantle peridotite metasoma-

tized by typical carbonate melt data from Yaxley and Green (1998), Neumann et al. (2002). The clinopyroxene in Hainan mantle xenoliths data is from 

Jiang et al. (2017). 
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by Laser Raman analyses of shrink bubbles, indicating 
that CO2 oversaturation in the melt occurred under 
conditions of temperature and pressure corresponding to 
the entrapment event. 

In summary, a considerable amount of CO2-rich melt 
inclusions are captured in the lithospheric mantle during 
the metasomatic process. 
 
6 Conclusions 
 

Olivine-hosted melt inclusions occur commonly in 
Hainan Island spinel lherzolites and the volatile 
components in the melt inclusions are dominated by CO2. 
Magnesite in melt inclusions could be interpreted as a 
secondary mineral formed by interactions of CO2-rich 
fluids with the olivine host due to post-entrapment effects. 
Some of the clinopyroxene samples in mantle peridotite 
from northern Hainan Island fall into the silicate melt 
metasomatism area, while others fall into the carbonate 
melt metasomatism area, indicating that the lithospheric 
mantle has undergone metasomatism through melts of 
different compositions. A considerable amount of CO2-
rich melt inclusions are captured in the lithospheric mantle 
during the process of metasomatism. These results imply 
that lithospheric mantle is a ‘carbon trap’ and that 
considerable CO2 can be absorbed by the lithospheric 
mantle. 
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