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1 Introduction 
 
The Cretaceous Mishrif Formation in the W Oilfield in 

the Mesopotamian sub-basin of Iraq (Fig. 1a–c) is a 
typical  porous  carbonate  reservoir,  which  is  clearly 
controlled by sedimentary facies belts (Gao et al., 2013). 
This  reservoir  has  been  seriously  reformed  after 
diagenesis,  and  its  heterogeneity  and  anisotropy  are 
extremely great. This complexity of its own structure and 
composition  increases  the  difficulty  of  reservoir 
classification and recognition (Wang et al., 2019). 

There  have  been  many  previous  studies  on  the 
classification  of  carbonate  reservoirs,  which  can 
essentially be attributed to two categories (Chen et al., 
2018):  the first  is based  on  the type and quality of 
reservoir space, i.e., good, medium or poor. For example, 
Jodry (1972) classified and evaluated carbonate reservoirs 
based on the relationship between pore structure and rock 
types as non-reservoir, poor reservoir, medium reservoir 
and good ones (Jodry, 1972; Zhao and Liu, 2018); the 
other is based on genesis, i.e., the type of lithofacies 
assemblage  (Szabó and  Nehéz,  2019).  For  example, 
according to the evolutionary history of the carbonate rock 

and its main geological factors, Feng et al. (1995) divided 
it  into five  types:  granular  shoal,  dolomitization-reef, 
cavernous dolomite, paleo weathering dissolution, and 
fracture (Feng et al., 1995; Yi and Chong, 2018). Smith et 
al.  (2003)  and  Awoleke  and  Lane  (2011)  divided 
carbonate reservoirs into limestone and dolomite types 
according to lithology. Wang and Zhang (2019) divided 
the world's carbonate reservoirs into six types:  below 
unconformity, dolomite, oolitic and aggregate shoal, reef, 
micro-porous,  and  micro-fracture.  These  classification 
methods  are  mainly based  on  geological  descriptors, 
which are little combined with statistical algorithms, and 
are suitable for reservoir classification for a single well. 
However, for many wells, these classification methods do 
not  describe  the  reservoir  types  clearly.  Therefore, 
petrophysical  and  petrographical  studies,  along  with 
reservoir quality index (RQI) and reservoir flow indicator 
(FZI), which are characterized by the effective pore radius 
(r35), were employed to solve these problems (El Sharawy 
et al., 2016, 2019; Nabawy et al., 2018;  Abuamarah and 
Nabawy,  2021).  However,  these  methods  are  more 
applicable to sandstone than carbonate, and their precision 
also depends on  Mercury Injection  Capillary Pressure 
(MICP) experimental data. 

In  recent  years,  with  the development  of  artificial 
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intelligence technology, data mining algorithms such as 
cluster  analysis  have  been  adopted  for  reservoir 
classification (Wang and Yang, 2018). Cluster analysis, 
also known as group analysis, based on similarity, is a 
statistical  analysis method to study (sample or  index) 
classification (Xun and Yu, 2008). Luo and Ren (1999) 
studied  the  recognition  of  fracture-vuggy  carbonate 
reservoirs by using cluster analysis and the standard back 
propagation  (BP) neural network method respectively. 
Sima  et  al.  (2012)  used standard BP neural  network 
method to achieve the recognition and prediction of clastic 
reservoir flow units in the first member of the Funing 
Formation  of  Well  Fang  4  in  the  Huangyu  Oilfield, 
Jiangsu Province. The statistical methods commonly used 
at present include the fuzzy clustering, BP neural network, 
Bayes stepwise discriminant and its derivative methods, 
such  as:  Rogistiv discriminant,  multivariate  statistical, 
multiple population stepwise discriminant analysis, self-
organizing neural grid, etc. (Abdulaziz et al., 2019; Khan 
and Rehman, 2021). Compared with the fuzzy clustering 
and BP neural  network  methods,  the  Bayes  stepwise 
discriminant method is a statistical analysis method that 
integrates effective parameter selection and quantitative 
recognition functions (Liao and Zhang, 2004; Sames and 
Saussus, 2010; Rimstad and Avseth, 2012; Zhang and Du, 
2021).  By  comparing  the  posterior  probabilities  of 
different types of reservoir samples, the attribution of the 

samples can be judged with high recognition accuracy and 
good stability. 

At  present,  there  are  many  difficulties  in  the 
classification and recognition of carbonate reservoirs in 
the Mishrif Formation in W Oilfield. First of all, it is 
difficult to establish a classification criterion that can be 
applied to non-cored wells by analysis of a core well and 
popularized.  Secondly,  the  workload  of  reservoir 
classification  is  large  and  the  efficiency  of  manual 
classification is low. Thirdly, the effect of classification is 
lack of intuitive verification methods. Therefore, in this 
study, based on the core, logging, and logging data of 10 
cored wells, and the physical properties of the reservoir 
including sedimentation  and diagenesis,  we investigate 
and propose a method for  automatic classification and 
verification of reservoir types based on the theory of K-
means clustering and Bayesian discrimination with the 
aim of improving the efficiency of reservoir classification 
and the accuracy of recognition. 
 
2 Geological Setting 
 

The Persian Gulf Basin is developed on the Arabian 
plate. It has been filled with sediments since the late 
Precambrian,  and  has  experienced  three  stages  of 
evolution: stable craton, passive continental margin, and 
foreland compression. From east to west, the basin can be 

Fig. 1. Structural location map of the Western oilfield in Iraq.  
(a) Location map and tectonic unites of the Arabian Plate, the West Qurna oilfield belongs to the Middle Arabian Basin; (b) geographic location of the W 

oilfield; (c) the top structural map of the Mishrif Formation, the W oilfield. 
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divided  into  the  Sanandaj–Sirjan  structural  belt,  the 
Zagros high-steep structural belt, the thrust fault belt, the 
piedmont flexure belt, and the Mesopotamian sub-basin 
(Al-Sakini, 2010; Kakeman et al., 2021). The W Oilfield 
is located about 50 km northwest of Basra, Iraq. The 
regional tectonic location belongs to the Mesopotamian 
sub-basin in the northern Persian Gulf Basin, and the 
northeastern  part  is  adjacent  to the  piedmont  flexure 
structural belt (Fig. 1a, b). The Mesopotamian sub-basin is 
relatively weak in tectonic activity, and the W Oilfield has 
a simple structure (Thehni, 1998). It belongs to a long-axis 
anticline with  a nearly north–south  spread and gentle 
faults (Aqrawi et al., 1998) (Fig. 1a, c). The oil field is 
adjacent  to the Rumaila  oil field to the south and is 
bounded by the Euphrates River to the north (Fig. 1b). 

Source rock: Southeastern Iraq was tectonically stable 
during the deposition of the Mishrif Formation, so the 
structure of the deposits was gentle and asymmetric, the 
western flank being steeper than eastern flank, with no 
fault (Aqrawi et al., 1998; Sun et al., 2013; Mahdi and 
Aqrawi, 2014). The Mishrif Formation is controlled by the 
sedimentary cycles, recording a long term, second-order 
shallowing-upward cycle with a regional unconformity 
sedimentary interface at the top contact with the Khasib 
Formation, and the bottom has an integrated conformable 
contact with the underlying Rumaila Formation (Fig. 2b). 
The  Mishrif  Formation  comprises  two  third-order 
sequences with potential ties to two flooding surfaces 
(Sharland et al., 2001), with carbonate rocks developed in 
a  Middle  Cretaceous  passive  continental  margin 
depositional environment. During deposition, the climate 
in the area was warm and humid, with many crustaceans 
developed.  Consequently,  the  carbonate  rocks  of  the 
Mishrif  Formation  generally  contained  bio-gravel  or 
clastics. The formation is currently buried at a depth of 
about 2400 m, and the formation thickness is about 360 m 
(Fig.  2a,  b).  According  to  the  combination  of 
characteristics of lithology and lithofacies, from bottom to 
top, it can be divided into six layers: CRI, CRII, mB1, 
upper mB2 and lower mB2 (Fig. 2b). 
 
3 Methodology and Available Data 
 
3.1 Collected data 

A cumulative 230 core samples have been collected to 
prepare thin-sections. Pore throat structure analysis was 
based  on  high-pressure  mercury  injection  capillary 
pressure (HPMI). Helium porosity and air permeability 
were measured on the 230 core samples at lab. Logging 
data came from cored wells W-171, W-118. Non cored 
wells W-271, W-19, W-17, W-218, W-239, W-131, W-58, 
and W-190 were chosen as test wells. All studied thin 
sections were stained with a mixture of alizarin red S and 
potassium  ferricyanide  to  differentiate  calcite  and 
dolomite.  In  addition,  these  thin  sections  were 
impregnated with blue-dyed resin to characterize pore type 
and rock structure. Classification method by Dunham 
(1962) was selected to distinguish carbonate rock type, 
which is based on mud– or grain-supported types. This 
classification  stresses  the  grain-to-matrix  relationship, 
based  on  relative  content  of  composition,  highly 

generalized depositional characteristics and rock fabrics, 
in addition to reflecting the hydrodynamic conditions and 
genesis. 

 
3.2 Methodology 

The recognition of reservoir types includes reservoir 
classification  and verification  of  classification  results. 
Based  on  core,  thin  section  and  physical  property 
parameters of cored wells, reservoir classification based 
on the geology was performed. Then the qualitative and 
quantitative relationship between the well logging curve 
and each type of reservoir  was studied, and then the 
reservoir logging classification standard was established 
by the  K-means  clustering  method.  The discriminant 
formula of each reservoir type was established using the 
Bayesian  discriminant  rule.  The logging  classification 
criteria and verification formula of each reservoir type 
were applied to non-cored wells, and then the reservoir 
type recognition of non-cored wells was achieved. The 
method flow consists of four key steps (Fig. 3). 

Abbreviations  used  in  text  and  figures:  BP-back 
propagation; DT-acoustic time difference; FZI-reservoir 
flow indicator; GR-natural gamma ray; ILD-deep lateral 
resistivity; ILM-medium lateral resistivity; NPHI-neutron 
porosity; OHMM-unit of resistivity; RHOB-density; RQI-
reservoir quality index; Type I, II, III, etc.-reservoir type. 

 
3.2.1 Reservoir classification of cored wells 

Core, thin section and physical property data can reflect 
reservoir  lithology,  porosity  and  permeability 
characteristics and pore space characteristics, which are 
important reference data for reservoir quality evaluation. 
Based on the analysis of cored well data, a reservoir 
classification of cored well was carried out, which then 
laid  a  foundation  for  reservoir  classification  and 
recognition of non-cored wells. 

While classifying cored wells with core, thin section, 
and physical property data, it is also necessary to combine 
the logging characteristics corresponding to various types 
of reservoirs. This is done with the aid of qualitative or 
quantitative relationships between reservoirs and logging 
curves,  to  help  reservoir  classification,  forming  a 
relatively accurate reservoir classification result for cored 
wells that can be discriminated based on logging data. 

 
3.2.2 Establishment of reservoir classification criteria 
based on logging parameters 

Logging  parameters  are  an  important  bridge  for 
comparison and analysis between cored well and non-
cored well. According to the classification results of cored 
wells  with  the  geological  data,  the  quantitative 
characterization criteria of a single well is established by 
using the logging data, and then applied to the non-cored 
wells with the same type of logging data for reservoir 
recognition. The specific steps are as follows: 

(1) in order to eliminate the systematic error between 
logging data of different time and different instruments, it 
is necessary to standardize the logging parameters (Umer 
et al., 2019); 

(2) selection of sensitive logging curve types. There are 
two main bases for optimizing the types of logging curves. 
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One is the geological  meaning expressed by a  single 
logging  curve.  The  second  is  the  effect  of  several 
combinations of logging curves to distinguish different 
types of reservoirs. The optimized logging curves can 
reflect the sedimentary characteristics of the reservoir, 
being able to effectively distinguish the reservoir types by 
reasonable combination. 

(3)  establishment  of  reservoir  logging  classification 
standard.  For  the study of reservoir  classification, the 
classification scheme suitable for  the study area  is a 
unified  research  platform,  and  each  reservoir  type is 
uniquely determined.  Therefore,  this paper adopts the 
classical clustering algorithm that can give the number of 
clustering, i.e., K-means clustering, which is a clustering 
analysis algorithm for iterative solution. The specific steps 
are as follows: 
·determine the number of clustering, i.e., K; 
·select a vector from the data set as the initial cluster 

center, i.e., B1, B2, B3...BK. The vector value of the cluster 
center can be set randomly, and its value will impact the 
clustering result; 
·assign the samples that need to be classified Xi (i = 

1,2,3…,n) one by one to a certain clustering center Bj (0 < 
j ≤ k), 

‖Xi  Bj‖= min1<s<k‖Xi  Bs‖; 

·calculate the new vector  value of each clustering 
center 

where Nj is the number of samples contained in the j-th 
clustering domain Sj; and 
·if the clustering center no longer changes, terminate 

the process, otherwise return to step (3). 
(4)  reservoir  logging  classification  criteria  are 

established. According to the logging classification criteria 
initially established by the K-means clustering method, the 
reservoir of the cored well is divided.   Next, calculate the 

accuracy rate, compared with  the classification  results 
based  on  core  data.  Then  continue  to  modify  the 
classification criteria until the accuracy rate meets the 
requirements, and establish the final  reservoir  logging 
classification criteria. 
 
3.2.3  Establishment  of  discriminant  formula  of 
reservoir types 

After establishing the logging classification criteria of a 
reservoir,  it  is  necessary  to  establish  a  reasonable 
verification  method  to  check  the  accuracy  of  the 
classification  results.  This  paper  adopts  Bayesian 
discrimination method. 

The  Bayesian  discrimination  method  constructs  a 
discriminant function with the determined variable data, so 
that the function has some optimal properties to obtain the 
posterior probability of the unknown variable, so as to 
distinguish  as  much  as  possible  the  sample  points 
belonging to different categories (Larsen and Ulvmoen, 
2006; Wang et al., 2014; Liu and Chen, 2016). 

The principle to establish the discriminant formula of 
reservoir types is as follows: if there are M parent classes, 
then L samples shall be taken, and each sample shall 
belong to one of the M parent groups. If each sample has p 
observation indices (x1, x2, x3...xp), then each sample can 
be regarded as a point in the p-dimensional space {Q}, and 
L  samples  constitute  a  p-dimensional  space  {T}. 
Simultaneously,  each  sample  is  regarded  as  an 
independent normal random vector, and then the m-th 
class  xm  {m  =  1,2...M}  is  a  multivariate  normal 
distribution. If there is a class from a certain new sample 
x= (x1, x2, x3..., xp),  then the posterior probability of 
sample x belonging to the m-th class can be calculated 
according to Bayesian. 

where p(m) is the prior probability of the m-th class. p
(k|m) is the probability density function when x belonging 
to the m-th class. p(Mi) is the prior probability of the Mj-th 
data point. p(x|Mj) is the probability density function when 
x belonging to the Mj-th data point. 

Among the calculated M posterior probabilities, if the 
posterior probability p(k|x) when x belongs to the k-th 
class is the largest, then the sample x is classified into the 
k-th class. 

The discriminant formula  of the probability density 
function of the m-th class is as follows: 

where βm is the discriminating coefficient and xmi is the i-
th observation index of the m-th class. 

According to the reservoir classification results obtained 
by  the  classification  standard,  the  logging  data  are 
respectively substituted into the discriminant formulas of 
various  types  of  reservoirs  to  obtain  their  posterior 
probabilities,  which  can  further  judge  the  types  of 
reservoirs and calculate the accuracy. Subsequently, the 
discriminant formula is adjusted until the accuracy meets 

Fig. 3. Reservoir type recognition process for a single well. 
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the requirements. Finally, the final discriminant formula of 
reservoir type is determined. 

 
3.2.4 Recognition of reservoir types in non-cored wells 

Discrimination criteria of each reservoir is applied to 
non-cored wells to achieve recognition results of reservoir 
types  from  non-cored  wells.  Next,  the  Bayesian 
discriminant formula is applied to verify various types of 
reservoirs, obtaining the type attribution of all logging 
data points and the accuracy rate. Reservoir units with low 
accuracy can  be  modified  manually based  on  expert 
experience until the accuracy meets the requirements, and, 
finally, the non-cored well reservoir type recognition is 
completed. 
 
4 Applied Cases 
 

Taking the Mishrif Formation carbonate reservoir in W 
Oilfield of Iraq as an example, the method of recognition 
of reservoir types based on K-means clustering and Bayes 
discrimination is further expounded below. 
 
4.1 Reservoir classification of cored well 
4.1.1 Reservoir classification based on core data 

According to classification method in Dunham (1962) 
based on  different  types of grain  and mud supported 
during deposition of rocks, the rocks in the Iraqi study 
area are divided into grainstone, packstone, wackestone, 
and mudstone. Rudstone is also commonly developed in 
the  W  oil  field,  which  has  greater  porosity  and 
permeability than grainstone (Dunham, 1962). Based on 
the  actual  drilling  core  description,  only  grainstone, 
packstone, and mudstone provide reservoirs in the W 
Oilfield, and mudstone is a non-reservoir. 

The  pore  development  and  physical  property 
distribution of the Mishrif Formation in the study area are 
obviously controlled by the distribution of sedimentary 
facies and late-stage diagenetic transformation. There are 
six types of sedimentary sub facies in Mishrif Formation 
reservoir:  limited  platform,  open  platform,  platform 
margin reef, platform front slope, and open shelf. High-
quality reservoirs are developed in the reef sub facies at 
the margin of the platform. Rudstone and grainstone are 
grain-supported lacking lime mud, and mainly contain 
rudists  (e.g.,  Theni,  1998),  bivalves  and  echinoids. 
Packstone are grain-supported with the lime and mud 
filled into the space between  grains, such as benthic 
forams, gastropods, and echinoids. Wackestone is mud-
supported with  more than 10% bioclastic grains, and 
contains bivalves,  benthic and planktonic forams.  The 
rock types of such a reservoir are rudstone and grainstone. 
Medium-quality reservoirs are developed in open platform 
sub facies and the rock type is packstone. Low quality 
reservoirs  are  developed  in  the  limited platform and 
platform front slope, with wackestone and mudstone rock 
types. The distribution of porosity and permeability of a 
reservoir is controlled by the rock types (Fig. 4). The 
porosity and permeability of a rudstone reservoir are the 
highest, with the porosity greater than 22.3%, and the 
permeability greater  than  99.8 mD.  The second  is  a 
grainstone reservoir, with porosity ranging from 18.7% to 

23.1% and permeability ranging from 21.2–428 mD. The 
least effective is the wackestone reservoir with porosity 
less  than  8.9% and  permeability less  than  0.78 mD. 
However, the distribution range of the packstone reservoir 
overlaps with that of the grainstone reservoir  and the 
wackestone reservoir, indicating that the environment in 
which the packstone developed was similar to the two 
former rock types. 

On the basis of the sedimentary environment, diagenesis 
had  a  strong  impact  on  the  late  transformation  of 
carbonate reservoirs in the Mishrif Formation in the study 
area, which is mainly reflected in two aspects: differential 
cementation and differential dissolution. Diagenesis is an 
important factor controlling the development of the main 
pore space (intergranular dissolved and moldic pores) of 
the formation. 

Considering  the  impacting  factor  of  diagenesis, 
according to the degree of transformation of carbonate 
reservoirs by strong dissolution,  weak dissolution  and 
strong cementation, rudstone reservoirs with intergranular 
dissolved and moldic pores under strong dissolution can 
be classified as high-quality reservoirs, whereas grainstone 
reservoirs can be classified as medium- to high-quality 
reservoirs.  Packstone  reservoir  with  intergranular  and 
moldic pores under predominant medium dissolution and 
medium  cementation  is  regarded  as  medium-quality 
reservoir. The packstone and wackestone reservoirs with 
moldic and intragranular  pores developed under weak 
dissolution and strong cementation are classified as low-
quality reservoirs. A wackestone reservoirs dominated by 
extra-strong cementation and with micro-pores developed 
is classified as a poor reservoir. 

Based  on  the  rock  types  under  the  control  of 
sedimentation and the reservoir physical properties under 
the control of diagenesis, the reservoirs can be divided into 
five  types  by  comprehensively  considering  the 
transformation  of  the  reservoirs  under  the  control  of 
sedimentation and diagenesis (Table 1): Type I is a high-
quality reservoir; Type II is a medium- to high-quality 
reservoir; Type III is a medium-quality reservoir; Type IV 

Fig. 4. Porosity and permeability characteristics of the Mishrif 

Formation reservoir (mD-Unit of permeability, millidarcy). 

 



Fang et al. / Quantitative Method to Classify and Discriminate Porous Carbonate Reservoirs  182 

is a medium-porosity and low-permeability reservoir; and 
Type  V  reservoir  has  low  porosity  and  ultra-low 
permeability,  and  such  a  reservoir  is  poor.  Their 
characteristics are discussed below. 
 
4.1.2 Relationship between reservoir types and logging 
facies 

Compared with clastic reservoirs, carbonate reservoirs 
are  characterized  by  multiple  types  of  pores,  great 
variation  of  logging  response  characteristics,  strong 
reservoir  heterogeneity (especially fracture and cavern 
reservoirs),  poor  correspondence  between  logging 
response and reservoir  physical properties, and similar 
logging  response  characteristics  of  true  and  false 
reservoirs. These factors restrict the division of carbonate 
reservoirs based on logging data, which can easily lead to 
wrong  or  missing  reservoirs.  The  classification  of 
carbonate reservoirs based on logging data needs to make 
full use of all kinds of logging data to analyze the logging 
response characteristics of different reservoir types, so as 
to lay a foundation for subsequent reservoir recognition. 
Based on the determined reservoir classification scheme 
and the accurate recognition of reservoir types in 12 core 
Wells of Mishrif Formation in the study area, the logging 
response characteristics of each reservoir type in Mishrif 
Formation in the study area are summarized, and the 
conversion model between reservoir types and logging 
facies is established (Fig. 5). 

The petrophysical characteristics of carbonate rocks are 
the  physical  basis  of  reservoir  logging  response 
evaluation. Different types of reservoirs have different 
logging response characteristics due to their different rock 
and pore types. The rock types of Type I and Type II 
reservoirs are mainly rudstone and grainstone, which are 
developed in high-energy deposition environment, such as 
plat form margin reef. Its main bioclastic composition is 
rudist, with long axis greater than 2mm and micritization 
locally. Rudstone contains rudist with its body size greater 
than 4 mm (Fig. 5). The composition of limestone is high, 
showing low natural gamma ray and high resistivity. On 
the other hand, Type I and Type II reservoirs suffer from 
strong  dissolution,  and  develop  a  large  number  of 
intergranular, moldic and dissolution pores, with good 
porosity and  high  neutron  value,  high  acoustic  time 
difference value and low-density value. The rock type of 
Type III reservoir is packstone, which is developed in 
restricted platform and open platform, affected by the 
weakening of the sedimentary hydrodynamic force, the 
mud content increases with the characteristics of medium 
natural  gamma  and  medium  resistivity.  In  addition, 

affected  by  medium  cementation,  the  primary 
intergranular  pores of Type III  are damaged to some 
extent, with medium and high neutron values, medium and 
low sonic time difference values, and medium density 
values. The rock types of Type IV and Type V reservoirs 
are packstone, wackestone, which is developed in platform 
slope and open shelf, with high mud content and the 
characteristics of high natural gamma and low resistivity. 
The types of bioclasts in the packstone are diverse, mainly 
including benthic foraminifers, bivalves, echinoderms, and 
sponge spicules, gastropods, pelletoid (Fig. 5). These two 
types  of  reservoirs  are  strongly affected  cementation, 
primary pores are seriously destructed,  leading to the 
characteristics of low neutron value, low acoustic time 
difference, and high-density value (Fig.5). 
 
4.1.3 Selection of sensitive logging curves 

For all kinds of logging data, the histogram method is 
firstly used to standardize them. Secondly, a set of well 
logging curves are selected to make cross plot of each 
reservoir, and the results of distinguishing reservoir types 
with different sets of well logging data are compared and 
analyzed. It can be seen from the cross plot that resistivity 
(ILD), acoustic time difference (DT), natural gamma ray 
(GR), neutron porosity (NPHI) and density (DEN) can 
distinguish the five types of reservoirs well  (Fig. 6). 
Therefore, five logging parameters, such as resistivity, 
density, acoustic time difference, neutron porosity and 
natural  gamma  ray,  are  selected  as  sensitive  logging 
parameters to study the classification criteria of reservoir 
types. 
 
4.1.4 Establishment of classification criteria 

In order to make the clustering results more accurate, 
the average value of sensitive logging data corresponding 
to  each  reservoir  is  calculated  as  the  given  initial 
clustering  center,  and  the  final  clustering  results  of 
different types of reservoirs are obtained through the K-
means clustering method (Table 2). 
 
4.1.5 Establishment of discriminant formula 

The  Bayesian  discriminating  method  is  applied  to 
establish the discriminant models for different types of 
reservoirs  according to the selected  sensitive  logging 
parameters: 

P1 = 3788.967NPHI + 3002.375RHOB 5.834GR +  

2.023ILD + 0.683DT 3101.436              (3) 

P2 = 3653.523NPHI + 2176.436RHOB 3.498GR +  

1.889ILD + 0.765DT 3034.587             (4) 

Table 1 Reservoir classification and characteristics of the Mishrif Formation based on core data 

Reservoir 

types 

Porosity 

(%) 

Permeability 

(mD) 
Facies 

Dissolution 

degree 

Cementation 

degree 

Rock 

types 
Pore types 

Type I > 22.3 > 99.8 Platform margin reef High Low Rudstone Intergranular, moldic, dissolution 

Type II 18.7–23.1 43.2–428 Platform margin reef High Low Grainstone Intergranular, moldic, dissolution 

Type III 16.3–22.3 10.2–44.6 
Restricted platform 

Open platform 
Moderate Moderate Packstone 

Intergranular, moldic, dissolution, 

micropore 

Type IV 12.6–17.8 3.2–11.3 Platform front slope Low Moderate Packstone 
Intergranular, moldic, intragranular, 

micropore 

Type V 7.6–13.9 0.08–4.1 Open shelf Low High 
Packstone 

Wackstone 

Moldic, micropore, 

intragranular  
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P3 = 3590.478NPHI + 2172.423RHOB 3.325GR +  

1.234ILD + 0.698DT 2989.689             (5) 

P4 = 3497.346NPHI + 2019.532RHOB 3.921GR +  

1.653ILD + 0.712DT 2901.145             (6) 

P5 = 3392.793NPHI + 2102.876RHOB 4.128GR +  

1.286ILD + 0.467DT 2890.563             (7) 

 

4.2 Test of discriminating model 
The established reservoir type discriminating model was 

used to discriminate the 205 samples participating in the 
training. Due to the limited number of Type V cores, 25 
samples were selected, and 45 samples were selected for 
the remaining four types of reservoirs. The accuracy of 
discrimination is as follows (Table 3). Judging from the 
overall discriminating results, the Bayesian discriminating 

 

Fig. 5. Relationship between reservoir types and logging characteristics of the Mishrif Formation. 
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accuracy rate and the cross-confirmation accuracy rate are 
both over 80%, and the two discriminating accuracy rates 
are very close, indicating that the established reservoir 
type discriminating model is very stable and meets the 
requirements of oilfield production and development. It 
can be seen from Table 3 that the discriminating accuracy 
and cross-confirmation accuracy rate of Type I, Type II, 
and Type V reservoirs all exceed 80%, while these two-
accuracy rate of Type III reservoirs are 75.6% and 77.8%, 
respectively. The discriminating accuracy rate of Type IV 
reservoirs  is  71.1%,  and  the  accuracy rate  of  cross 
confirmation is 75.6%. 

The reservoir type discriminating method proposed in 

this paper was applied to reservoir prediction of W-271 
well, another cored well in the study area, which did not 
participate in training (Fig. 7). Comparing the prediction 
results with the core analysis, it can be seen that the 
classification of the Type IV reservoir at the depth of 2256 
m is Type V, and the classification of Type I reservoir at 
the depth of 2333 m is Type II. Although some depth 
points are misjudged, the overall effect is good. 

 
4.3 Recognition of reservoir types in non-cored wells 

After standardized processing of sensitive logging data 
selected by cross-plot method, the logging classification 
standard obtained by K-means clustering method was used 

Fig. 6. Cross plot of logging characteristics of the different reservoir types in the Mishrif Formation. 

 

Table 2 Initial clustering center and final clustering results of K-means clustering 

Reservoir type Clustering section GR (API) ILD (OHMM) DT (μs/ft) RHOB (g/cm
3
) NPHI (V/V) 

Type I 
Initial clustering center 7.8 992.3 81.4 2.3 25.3 

Final clustering results < 9.2 > 954.8 > 78.6 < 2.38 > 24.7 

Type II 
Initial clustering center 9.6 636.9 76.2 2.42 24.1 

Final clustering results 3.3–13.2 103.2–1003.5 67.8–80.2 2.37–2.54 16.2–25.4 

Type III 
Initial clustering center 14.4 68.9 63.4 2.51 18.8 

Final clustering results 10.4–25.4 10.8–104.8 57.8–74.3 2.44–2.58 12.4–23.8 

Type IV 
Initial clustering center 25.8 8.4 59.3 2.62 10.4 

Final clustering results 23.8–36.2 1.8–11.8 53.8–64.7 2.57–2.73 5.6–15.4 

Type V 
Initial clustering center 38.6 0.94 47.1 2.74 8.9 

Final clustering results > 35.8 0.12–1.8 < 53.2 2.69–2.85 4.2–13.4  

Table 3 Bayesian discriminating results 

 Predicted 
Core 

Type I Type II Type III Type IV Type V Total 

Discriminant results of 

original samples 

Number 

Type I 38 7 0 0 0 45 

Type II 3 39 3 0 0 45 

Type III 0 5 34 6 0 45 

Type IV 0 0 5 32 8 45 

Type V 0 0 0 3 22 25 

Percentage (%) 

Type I 84.4 15.6 0.0 0.0 0.0 100.0 

Type II 6.7 86.7 6.6 0.0 0.0 100.0 

Type III 0.0 11.1 75.6 13.3 0.0 100.0 

Type IV 0.0 0.0 11.1 71.1 17.8 100.0 

Type V 0.0 0.0 0.0 12.0 88.0 100.0 

Cross confirmation of 

discrimination results 

Number 

Type I 39 6 0 0 0 45 

Type II 2 39 4 0 0 45 

Type III 0 3 35 7 0 45 

Type IV 0 0 6 34 5 45 

Type V 0 0 0 4 21 25 

Percentage (%) 

Type I 86.7 13.3 0.0 0.0 0.0 100.0 

Type II 4.4 86.7 8.9 0.0 0.0 100.0 

Type III 0.0 6.7 77.8 15.5 0.0 100.0 

Type IV 0.0 0.0 13.3 75.6 11.1 100.0 

Type V 0.0 0.0 0.0 16.0 84.0 100.0  
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as constraint conditions to classify non-cored wells. The 
discriminant formula obtained by Bayesian discriminating 
method was used to verify the discriminating accuracy of 
various types of reservoirs in non-cored wells. 

Taking wells W-131, W-58, and W-190,  W-181 as 
examples, the accuracy of the recognition of various types 
of reservoirs in the Mishrif Formation of the three wells 
was calculated respectively. Among them, the results of 
recognition from well W-131 is shown in Fig. 8. The 

lateral distribution of the reservoir type is obtained by 
combining the prediction results of non-cored single well 
reservoir type (Fig. 9).  

It can be seen from the table that the average accuracy 
of recognition of five types of reservoirs is 76.5%–93.3%. 
The average accuracy of recognition of each single type of 
reservoir is 70% to 94%. Compared with the other four 
types of reservoirs, the recognition accuracy rate of Type 
IV reservoirs is the lowest,  mainly because Type IV 
reservoirs are formed in the cross-transition zone from the 
margin of the high-energy sedimentary facies belt to the 
low-energy sedimentary facies belt, which leads to more 
complex rock fabric. They have similar parts to the rock 
fabric formed at the margin of the high-energy facies belt 
and the low-energy facies belt, so their logging response 
characteristics also show similar ones, which decreases the 
recognition rate of Type IV reservoirs and increases the 
difficulty  of  recognition.  Although  the  recognition 
accuracy of Type IV reservoirs is generally low, it can be 
seen from the Fig. 8 that as the thickness increases, the 
accuracy is increasing. The greater the thickness of the 
reservoir,  the  impact  caused  by  the  depositional 
environment in the transition zone will be eliminated, 
thereby  further  improving  the  accuracy  of  reservoir 
recognition. 
 
5 Discussion 
  
The established discriminant model of reservoir types 

has a very high accuracy rate and overall consistency in 
the  W  oil  field.  However,  the  two  main  factors, 
sedimentary environment and diagenesis, may affect the 
discrimination effect. When affected by these factors, he 
characteristics of logging curve of different  reservoirs 
could generate some similarity and not discriminant the 
reservoir types, lowering the accuracy of the model. The 
discrimination accuracy rate of the model would be further 
improved by increasing the number of core samples in the 

Fig. 8. Reservoir types discrimination results of non-cored well 

W-131. 

 

Fig. 9. Prediction results of non-cored wells with proposed methods. 

 



Acta Geologica Sinica (English Edition), 2023, 97(1): 176–189 187   

future. In terms of the calculation method, the covariance 
inverse matrix data Aij

 of the core samples may affect 
the  independence  of  the  discriminant  model  in  the 
calculating  process,  and  the  smaller  value  of  the 
normalized logging data will result in the large value of 
the covariance inverse matrix data Aij

, which will lead to 
some systematic errors. 

According to Fig. 7, it can be seen that the conclusions 
of external verification are consistent with those of a self-
check. The discrimination accuracy of Types I, II, and V 
reservoirs  is  the  highest,  which  is  above  80%.  The 
discrimination accuracy of Types III and IV reservoirs is 
lower than that of Type V. The main reason for this error 
is mainly related to the sedimentary environment and 
diagenesis.  The  rock  type  of  Type  IV  reservoir  is 
packstone, which is supported by particles, and affected by 
the weaker sedimentary hydrodynamic force, with mud 
content higher than that of grainstone, mainly found in 
open  platform  and platform front  margin,  where  the 
hydrodynamic  force  is  gradually  weakening.  In  the 
transition region from platform margin reef to limited 
platform gradually, the packstone formed is located at the 
edge of a high-energy environment, and the pore type and 
structure  are  very similar  to  grainstone,  so  that  the 
reservoir in this area has been misjudged as a Type III 
reservoir. With hydrodynamic waning, the mud content 
gradually increased, in addition it was affected by the 
compaction, cementation, which seriously damaged the 
primary pore. So, logging response characteristics and 
pore structure of Type IV and Type V reservoirs have 
similar  parts  to  some  extent,  which  increases  the 
possibility that a Type IV reservoir can be recognized as 
Type V reservoir,  ultimately affecting the discriminant 
accuracy.  The  pore  structure  of  Types  I,  II  and  V 
reservoirs is dissimilar to other two types of reservoirs, 
and the logging response characteristics are unique and 
specific. Therefore, the discrimination accuracy of these 
three types of reservoirs is relatively high.  

On the basis of inheriting the sedimentary environment, 
the diagenesis impacts strongly in the later reformation of 
the carbonate reservoirs of the Mishrif Formation in the 
studied area, which is mainly reflected in two aspects: 
differential cementation and differential dissolution. The 
better the reservoir quality, the stronger the dissolution 
and the weaker the cementation. Dissolution is excellently 
conducive to the transformation of pore structure. In terms 
of diagenesis, according to the degree of transformation of 
a  carbonate  reservoir  by  strong  dissolution,  weak 
dissolution, weak cementation and strong cementation, the 
rudstone and grainstone with  intergranular  dissolution 
pores and mold pores developed under strong dissolution 
can be considered as a high-quality reservoir, i.e., Type I. 
The grainstone with intergranular pore and mold pore 
development dominated by weak dissolution is considered 
as a good reservoir, i.e., Type II. The packstone with 
partial primary pores cemented under weak cementation is 
considered as medium reservoir,  i.e.,  Type III.  Under 
strong cementation, all the primary intergranular pores are 
cemented and sealed marl, which is considered as weak 
reservoir, i.e., Types IV and V. 

It can be seen from the prediction results that although 

the  Bayesian  discrimination  method  still  has  certain 
shortcomings, compared with the results of core analysis, 
the overall discrimination results show that this method is 
still  well  adapted  to  the  quantitative  recognition  of 
reservoir types in the study area. 

As the pore structure of grainstone and rudstone is 
much better than in wackestone and mudstone, with no 
infilled  lime  mud,  lower  shale  content,  and  greater 
porosity, Type I and Type II are characterized by very 
high  deep  resistivity.  While  the  pore  structure  mud-
supported of Types IV and V leads to higher mud content 
and fewer effective porosity, these two reservoirs have 
very  low  resistivity  (Table  2).  Correspondingly,  the 
natural gamma ray (GR) of Type I and Type II is lower 
than in Type IV and Type V, in addition acoustic time 
difference (DT) of Type I and Type II is higher than Type 
IV and Type V (Figs. 7, 8). The higher porosity and 
permeability, the better the oil quality of the reservoir. 
Therefore, in the studied area, based on typical logging 
curves, such as resistivity, gamma ray, and acoustic time 
difference, we could distinguish the type of reservoir and 
rock. The Type I reservoir is most well developed in the 
upper  mB2, distributed in a wide range of sheets; in 
addition, the thickness of the upper part of the structure is 
better than that of the lower part, which conforms to the 
sedimentary background of the platform marginal reef in 
this section (Fig. 9). Reservoir thickness and sedimentary 
environment  are  greatly  related  to  the  accuracy  of 
reservoir prediction. The mB1 and mB2 Upper is a high-
energy facies  zone with  less  mud content  and large 
reservoir thickness. The pore structure formed by mB1 
and mB2 has less crossover with other types of reservoirs, 
which improves the recognition accuracy. Therefore, these 
characteristics are conducive to recognizing the Type I and 
Type II reservoirs. 

However, because of the impact of actual geological 
characteristics, this method needs more core data, which 
will impact the accuracy of prediction. As it has some 
similarity in sedimentary characteristics in Middle East 
oilfield,  the  new method  could  be  referred  to  other 
oilfields in the Middle East. The structure of the new 
method could also be applied to sandstone reservoirs. 
 
6 Conclusions 
 

This study is based on the core, logging, and logging 
data of 10 cored wells in the Mishirif Formation, W 
oilfield, Iraq, and the physical properties of the reservoir 
under the comprehensive influence of sedimentation and 
diagenesis.  We  put  forward  a  method  for  automatic 
classification  and  verification  of  reservoir  types  to 
improve the  efficiency of  reservoir  classification  and 
accuracy of recognition. 

(1) The reservoir type recognition method based on K-
means  clustering  and  Bayesian  discrimination  mainly 
includes reservoir classification of cored well based on 
core data, establishment of logging classification criteria 
for the reservoir, establishment of discriminating formulas 
of reservoir types, and recognition of reservoir types in 
non-cored  wells.  This  method  can  be  applied  to the 
establishment of reservoir classification criteria of a single 
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well and the establishment of discriminating formulas in 
other study areas. 

(2) Three problems need to be paid attention to when 
using the method proposed to recognize the reservoir types 
in  non-cored  wells.  Firstly,  when  using core  data  to 
classify the reservoir, the depositional characteristics of 
the reservoir must be fully understood. Next, in order to 
obtain  the  clustering  result  with  high  accuracy,  it  is 
necessary to adjust the logging curve combination and set 
the appropriate initial clustering center when establishing 
the logging classification criteria. The accuracy of the 
discriminating  formula  established  by  the  Bayesian 
discriminant  method  depends  largely on  whether  the 
parameters selected for modeling are appropriate or not. 
The higher the matching degree between  the selected 
parameters  and  the  deposition  and  diagenesis  of  the 
reservoir, the higher the accuracy of the discrimination 
will be. 

(3) According to the analysis of test results, the various 
geological  factors,  especially  sedimentation  and 
diagenesis,  are  important  reasons  for  the  decrease  in 
recognition accuracy. In Iraq, the transition zone of the 
sedimentary facies  belt  with  the  development  of  IV 
reservoirs leads to the existence of intersecting areas of 
lithology,  in  addition  of  cementation,  making  its 
petrophysical characteristics very similar to those of Type 
V reservoirs, resulting in a decrease in the difference of 
logging curves, and finally the recognition results of Type 
IV reservoirs are poor. 
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