
It is one of the most important part to build an accurate 
gravity  model  in  geophysical  exploration.  Traditional 
gravity modelling is usually based on grid method, such as 
difference method and finite element method widely used. 
Due to self-adaptability lack of division meshes and the 
difficulty of high-dimensional calculation, the accuracy of 
those grid method with uniform size orthogonal mesh  will 
be limited when the boundary shape of solution domain is 
more  complex,  especially  in  continuous  mesh 
reconstruction or large deformation, and even can not be 
solved (Nguyen et al., 2008). Meshfree method is a nodal 
numerical method and showing huge advantages in many 
fields, which avoids cumbersome mesh generation and 
provides a new method for numerical problem solving 
(Liu et al., 2005). 

Radial  basis  function  method  is  a  kind  of  typical 
meshfree method, which has infinite smooth add function 
on a coordinate direction derivative, and can be said for all 
the discrete points along the direction function values of 
the  weighted  linear  combination  (Buhmann,  2000; 
Wendland,  2005).  It  can  solve  all  kinds  of  partial 
differential  equations  (such  as  elliptic,  parabolic  and 
hyperbolic) problem with good results. After more than 20 
years of development, the radial basis method (RBF) has 
been applied to many fields successfully. However, the 
application of RBF and even meshless method in gravity 
and magnetic exploration and other geophysical methods 
is quite rare.  Internationally, Yoshikazu Tanaka (2011) 
applied  radial  point  interpolation  to  transient 
electromagnetic  fields,  Fornberg  (2015)  carried  out 
preliminary geological modeling of radial basis function-
finite  difference  in  spherical  and  finite  domains,  and 
Franciane  et  al.  (2017)  applied  adaptive  meshless 
parameterization technology to full waveform inversion. 
At present, only the elastic wave field (Jia et al., 2005, 
2006a, 2010; Wang et al., 2007; Liu et al., 2020), Radar 
wave field (Feng et al., 2013), magnetotelluric field (Su  et 
al., 2012; Yan et al., 2014; Ji et al., 2016; Lu et al., 2017; 
Yan  et  al.,  2019)  and  the  continuation  and  forward 
modeling of gravity and magnetic potential fields (Kong et 
al., 2017; Li et al., 2018) has achieved certain results. 
Therefore, this paper carry out the approximate calculation 
research of the gravity forward model based on MQ radial 

basis function, so as to make full use of prior information 
and improve efficiency. 

Traditional gravity forward modeling method 
The most classical method of gravity forward modeling 

is to use the formula of Universal Gravitation: 

Divided the underground space of geologic body into 
two or three dimensions, and then calculated the gravity 
value of each unit by formula (1), the forward calculation 
of  global  gravity  is  completed  by  calculating  the 
accumulative gravity values of all position points in the 
observation region one by one. Although the point-by-
point calculation method can obtain the accurate gravity 
value of the working area, it is extremely time-consuming, 
which is not good for the time requirement of repeated 
forward and inverse in large-scale calculation, and the 
precision control is also complicated. 

Point interpolation radial basis function to gravity 
forward modeling 

The  method  of  obtaining  gravity  values  by  point 
interpolation radial basis function is as follows: Select a 
polynomial function as the linear basis function, such as 
PT(x,y)  =  {1,x,y,x2,xy,y2,x3,x2y,y3},  calculate  the  gravity 
values of a small number of random positions, and then 
calculate the coefficient vector C according to the formula 
C = P-1U, where U is a series of calculated gravity values 
corresponding to P(X,Y) position points. Then calculate 
according to the following formula. 

where U(X,Y) is the gravity value of the unknown point, 
and PT(X,Y) is the corresponding basis function matrix. 

Compared with the traditional mesh method, the point 
interpolation  method  can  get  the  required  gravity 
distribution  with  less  computation.  In  the  process  of 
forward inversion, the point interpolation method can not 
only save the operation time, but also can artificially select 
the position and number of discrete points to do multi-
scale analysis and local analysis,  so as to reduce the 
number of inversion parameters and the ill-posed degree 
of gravity inversion. But after testing, it was found to be 
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less accurate. In particular, the calculation method of the 
basis function is a power function, so that the value in the 
distance from the origin of the grid will be very large, 
resulting  in  poor  stability.  However,  the  actual 
underground space will not be different because of the 
selected location of the origin of coordinates, and its value 
will only be related to the distance between the geological 
body  and  the  observation  point.  In  conclusion,  the 
accuracy of pure point interpolation method is still limited. 

MQ  radial  basis  function  to  gravity  forward 
modeling method 

The workflow of the gravity model forward modeling 
method based on MQ radial basis function is designed as 
follows: Divide the underground space of the working area 
into blocks and arrange nodes; According to the problem 
to be solved, the parameters of radial basis function are 
adjusted.The actual data collected or the calculated model 
data were substituted into the functional equation with the 
radial basis function as the shape function, and the weight 
coefficient vector was solved. The actual data included the 
sampled data and the logging data. The weight coefficient 
vector and the points with known information are used to 
solve the information of global grid points, and finally the 
global gravity field distribution is obtained to complete the 
forward modeling. The workflow is shown in Fig. 1. The 
details are as follows: 

(1) Discretization of subdomains according to nodes 
The model of the study area is shown in Fig. 2, where 

AA′ is the surface observation surface. A series of known 
source  Pi  values  are  obtained  from surface  data  and 
logging data, and the influence domain of these Pi values 
is spread to each grid node to calculate the entire solution 
domain. Chebyshev collocation method was optimized by 
experiment.  Chebyshev  nodes  defined  in  the  solution 
interval  are  taken  as  the  collocation  points  in  the 
calculation, and boundary points are added to form the 
collocation points of the closed interval (Fig. 2). 

Selection of shape parameters c and θ of the radial basis 
function of MQ 

The form of MQ radial basis function is as follows: 

where rI is the norm of calculated points and nodes, and 
c and θ need to be selected flexibly according to the actual 
situation (Hardy, 2017). 

In order to select appropriate shape parameters c and θ, 
we carried out  model tests,  and the calculated results 
shows that the influence of c on MQ function is reflected 
in the size of the influence domain. When c is small, MQ 
function is sharper,  which makes the node's influence 
domain smaller, resulting in insufficient utilization of node 
information. When c is too large, although the influence 
domain of nodes can be enlarged, in practice, nodes often 
do not have a large influence scope. Therefore, in previous 
studies, nodes are often divided into supporting domains. 
Under  the premise that  the  support  domain has been 
divided, the choice of large c value will cause serious 
numerical dispersion and will not get ideal results. c is 
selected according to the empirical parameters and the 
distribution law of background grid, i.e., the product of 

 

Fig. 1. Flow chart of gravity forward modeling.  

 

Fig. 2. Model schematic diagram with collocation point and node design of study area. 
AA′ represents the surface, the depth is 0 meter; BB′ represents the base, with a depth of 5000 meters; CC′ is the 

core. gL is the local field and gR is the regional field; Pn (n = 1, 2,...N) is the source point of known information.  
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grid  spacing  12.5  and  empirical  parameter  1.789. 
Similarly, different values of θ represent different types of 
radial basis functions of MQ. The selection of θ does not 
have a significant impact on the shape of the function. In 
addition, exponentials in the derived formulas of gravity 
theory have strict physical meaning, so it is not suitable to 
make great adjustments to the exponentials in the shape 
function, so θ = 1 is taken.  

(3) Block sparse matrix was constructed to solve the 
deformation equation 

The equation of the radial basis function is: 

where RT(X) is the radial basis function and b is the 
coefficient vector. 

The matrix form of R(X) is as follows: 

The error is calculated by the absolute value of the 
difference between the calculated value and the theoretical 
value.  

Compared the interpolation results with radial basis 
function and accumulative point method, the radial basis 
interpolation method does not deviate the geological body 
on the whole, and can better interpolate the target body, 
even cute fitting shape. As high precision are the key 
elements  of  geophysical  inversion,  radial  basis 
interpolation method can also meet  the constraints of 
physical conditions, that is non-negative, so it can show 
better numerical calculation and geophysical inversion. 
The overall error can be controlled within a relatively 
small range; Because of the shape function, there is no 
serious boundary mutation problem. However, there are 
some shortcomings. The local extreme value with large 
error is near the abnormal body of the model. 

In order to better display the results and prepare for the 
next step of inversion weight update,  we present and 
analyze the surface model data and the results obtained by 
the  two  methods.  Point  interpolation  has  a  good 

performance in controlling the overall shape, but there are 
local deviations, which will have a great impact on the 
accuracy of geophysical inversion. However, the accuracy 
of radial basis function mesh-free method is excellent in 
the interpolation results of the dense nodes and the middle 
nodes, but there are still some errors in the boundary 
problem. These are the next work in our efforts. 
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