
Thermobarometric  calculations  for  mineral  diamond 
inclusions and associations (DIA) provide a systematic 
comparison of PTXFO2 conditions for different cratons 
worldwide,  using a  database  of  4440  mineral  EPMA 
analyses  (Ashchepkov  et  al.,  2021).  Comparison  by 
minerals shows that the PT estimates for clinopyroxenes 
(Fig. 1A) (Nimis, Taylor, 2000; Ashchepkov et al., 2017) 
and orthopyroxenes from peridotites and eclogites are 
representing mainly the middle part of the sub-lithospheric 
mantle while garnets gives more high-pressure estimates 
for peridotites (Fig. 1B) and eclogites and reflect the 
processes of the differentiation during migration of partial 
melts. This produces the trends of joint decreasing Mg’ 
and  pressures.  The  PT  conditions  for  the  chromites 
(Ashchepkov et al., 2010) (Fig. 1C)  reflect conditions just 
above the lithosphere-asthenosphere boundary formed due 
to interaction with hydrous plume protokimberlite melts.  

There are significant differences between the Archean 
diamond inclusions and those found in diamonds from 
Archeab Proterozoic, Devonian and Mesozoic and other 
later kimberlites. Those from Wawa province found in 
Archean lamprophyres (De Stefano et al., 2006) are, on 
average, more enriched in and Ca (pyropes) and reveal 
lower  temperature  conditions  than  those  in  younger 
kimberlites in the Superior and Slave cratons (Aulbach et 
al.,  2018)  (Fig.  2) showing complex high-temperature 
geotherms due to later plumes influences.  

The  Proterozoic  kimberlites  from the  Kaapvaal  are 
much higher temperature but this is probably due to the 
influence of the Bushveld superplume (Korolev et al., 
2018) which also caused extensive removal of all the ultra
-depleted dunitic garnets. The eclogitic inclusions are very 
high-temperature and also seem to be mainly re-melted. 
This is less pronounced for the Mesozoic pipes (Field et 
al., 2008). Those from the Roberts Victor pipe known by 
eclogite xenoliths show less influence of the plume melts 
and as reported and keep their primary subduction features 
but also they are relatively high temperatures compared to 
DIA from the  other  Mesozoic  pipes  in  South Africa 
(Stachel  and  Luth,  2015).  In  general,  the  Proterozoic 
kimberlites contain more eclogitic inclusions of various 
types.  The  study  of  the  eclogitic  diamonds  gives 

information about the subduction  formation of the ancient 
crust  

Beneath all  cratons,  the cold branch of the mantle 
geotherm (35–32 mWm−2) relates to the sub-Ca garnets 
and rarely omphacitic diamond inclusions, referring to 
major  continental  growth  events  in  Archean.  High-
temperature  plume-related  geotherms  are  common  in 
Proterozoic kimberlites (Korolev et al., 2018)  (Fig. 3) 
such as Premier, Mesozoic–Roberts Victor etc. and are 
common in Slave and Siberian cratons. For the Mesozoic 
pipes in Kaapvaal, the heating is less pronounced (Figs. 
3a, b). In the mobile belts: Limpopo, Magondi, Ural Ural, 
Khapchan belts and in the marginal parts of cratons like 
Kimberly Australia pyroxenitic and eclogitic pyroxenes 
and garnets prevail (Sobolev et al., 1976; Ashchepkov et 
al., 2021). The pyropes in the mobile belts are more Fe- 
and Ca-rich, in central parts of cratons, the peridotitic 
associations  with  sub-Ca  pyropes  prevail.  The 
accretionary complexes like Khapchan and Magondi belts 
a thick eclogite-pyroxenite lens is highly diamondiferous.  

The PT conditions estimated for the different terranes in 
Yakutia (Siberia) are quite variable (Sobolev et al., 1976; 
Logvinova et al., 2005). The age of the diamonds vary 
from Archean to Paleozoic time (Pearson and Shirey, 
1999).  The  late  Archean  Early  Proterozoic  granulite-
orthogneiss Daldyn and Alakit terranes marking ancient 
suture zones differ mainly in the amount of pyroxenitic 
pyropes which are abundant in the East Daldyn (Alakit) 
terrane They all demonstrate the folded structure of the 
mantle structure (Ashchepkov et al., 2013). beneath the 
Anabar and Aldan shields, dunite cores are more roughly 
layered  (3–4  units)  The  suture  and  accretion terranes 
concentrate  mainly  on  mafic  eclogites  and  basic 
pyroxenites.  

One could also find the PT arrays regarded as the 
advective geotherms which mark the interaction with the 
ascending protokimberlitic melts This boundar show the 
abundance  of  the  pyroxenitic  and  fe-  enriched 
associations.  Commonly  the  protokimberlite  magmas 
create  Ti-rich  associations  which  are  not  so  frequent 
among the DIA and their are mainly composed of the 
megacrystic association . Very often large well-shaped 
diamonds of type II determined as megacrysts (Moore, 
2009). There are also geochemical evidences for the crys-
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Fig. 1. PTXFO2 diagram for DIA for A. Cr-diopside Cpx  Pressure estimates (1–Nimis, Taylor, 2000; 2, 3, 4, 5–

Ashchepkov et al., 2017; 6–McGregor, 1974; 7–Ashchepkov et al., 2010).  
The lines on the oxidation states are from (Sragno et al., 2013).  
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Fig. 2. PTXFO2 diagram for DIA from A. Archean lamprophyres Wawa province, Superior, B. for DIA from 
the Mesozoic pipes from Slave craton, Canada. The signs see (Ashchepkov et al., 2017).  

Acta Geologica Sinica (English Edition), 2021, 95(supp.1): 18–21 19    



tallization of diamonds from protokimberlites. 
There  are  many evidences  that  the  diamonds were 

created  at  the  vicinity  of  the  magmatic  systems  and 
chambers and mechanically capture minerals from the 
mag-matic-fluid  mush  of  different  associations.  The 
magmatic systems cold increase the pres-sure around the 
magmatic system due to the hydraulic effect transferring it 
from  the  depth.  Hydrous  conditions  and  extra  fluid 
pressure  could  expand  the  diamond sta-bility  field  to 
lower pressure. 

Commonly  the  peridotitic  inclusions  are  lower 
temperature than pyroxenitic and ec-logitic ones due to a 
greater degree of reaction to plume influences of later 
inclusions. Pressures above the diamond stability field 
could result from the expansion of the diamond stability 
field at fluid and volatile influence. Another possibility is 
in in-creasing pressures transferring from depth due to the 
hydraulic effect. The kimberlites in off-craton settings and 
mobile belts show also higher temperature conditions and 
prevailing pyroxenitic and eclogitic assemblages. There 
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Fig. 3. PTXFO2 diagram for DIA from A. from Mesozoic kimberlites and B. Proterozoic kimberlites Kaapvaal 

craton, S. Africa. The signs see (Ashchepkov et al., 2017). 
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Fig. 4. PTXFO2 diagram for DIA from A. kimberlite of Mirninsky field  and B. Alakite field. The signs see 

(Ashchepkov et al., 2017). 
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are essential difference in compositions of garnets from 
mantle sub-terrains such as Alakit and Daldyn (and other 
examples) containing continental arc and abyssal oceanic 
material, respectively. 
 
Key  words:  diamond  inclusions,  craton,  garnet, 
clinopyrogene, orthopyroxene, geothermal regime, manle 
lithosphere 
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