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Abstract: A highly-fractionated garnet-bearing muscovite granite represents the marginal granitic facies of the Abu-Diab
multiphase pluton in the Central Eastern Desert of Egypt. New electron microprobe analyses (EMPA) and laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) data from garnets are reported, in order to constrain their
origin and genesis. Garnet in the Abu-Diab host granite is euhedral to subhedral, generally homogeneous and, in rare cases,
it shows weak zonation. The garnet contains appreciable amounts of MnO and FeO, with lesser amounts of MgO and CaO,
yielding an end-member formula of Spse_7,Almys 3sPrp; 4Adry ;. Moreover, it is depleted in large ion lithophile elements
(LILE) with lower values of Ba, Nb and Sr relative to the primitive mantle. Additionally, it contains high concentrations of
HREE and Y and their REE pattern shows strong negative Eu anomalies. The garnet was crystallized under relatively low
temperature (646°C—591°C) and pressure (< 3 kbar) conditions. The textural and chemical features indicate that the garnet
is magmatic in origin and is chemically similar to that from highly-fractionated A-type granite. It was probably formed at
the expense of biotite in a highly-evolved MnO-rich magma and/or by hydroxyl complexing of Mn during the ascending

S

fluid phases.
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1 Introduction

Garnet, with various compositions, occurs as an
accessory mineral and crystallizes under certain
petrogenetic conditions in different granitic rock types.
The abundant occurrence of magmatic garnet has been
reported in pegmatites, aplite dikes and peraluminous S-
type granites (Dahlquist et al. 2007; MUller et al. 2012). A
small occurrence of magmatic garnet members has been
recorded in I- and A-type (SiO, > 70 %) peraluminous
granites (du Bray, 1988; Miller and Stoddard, 1981; Wu et
al. 2004; Zhang et al. 2012). Garnet is an important
geochemical tracer due to its ability to fractionate HREE
from LREE (Gaspar et al.,, 2008). Garnet can also give
insights into granitic magma sources and its origin has
recently drawn the attention of many workers (Gharib,
2012; Honig et al., 2014; Lackey et al., 2012; Samadi et
al., 2014; Zhou et al., 2017). In general, the spessartine-
rich garnet can be formed by direct crystallization from
peraluminous magma in equilibrium with solid phases
such as biotite and white mica at different temperature and
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pressure conditions (Dahlquist et al., 2007). Depending on
the temperature at which the spessartine-rich garnet was
crystallizing, it could be of magmatic and/or metamorphic
origin. It has been demonstrated that spessartine-rich
garnet commonly crystallizes in equilibrium with S-type,
aluminium- and manganese-rich granitic magma at
relatively low pressures (Dahlquist et al., 2007; Zhang et
al. 2012). However, du Bray (1988) claimed that
manganese enrichment alone does not guarantee garnet
nucleation and the presence of excess alumina in the
magma may be a prerequisite for garnet nucleation.
Therefore, the petrogenetic conditions and magmatic
processes that control crystallization of spessartine-garnet
in highly-fractionated granites are still controversial
(Miller and Stoddard, 1981; Taylor and Stevens, 2010;
Villaros et al., 2009; Zhang et al. 2012).

The Eastern Desert of Egypt, as a part of the Arabian-
Nubian Shield, contains large volumes of Neoproterozoic
granites (Fig. 1). The majority of the granites in the
Eastern Desert of Egypt are garnet-free rocks. However,
the spessartine-rich garnet has been recorded in some
highly-fractionated rare metal granites and pegmatites
from the Eastern Desert of Egypt (Abdalla et al., 1994;
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Fig. 1. (a) Schematic map of NE Africa showing the Arabian
—Nubian Shield, the Saharan Metacraton, and Archaean and
Palaeoproterozoic crust that was remobilized during the
Neoproterozoic; (b) Geological map of the Eastern Desert of
Egypt showing the location of the study area (modified after
Ali et al., 2015; Stern and Hedge, 1985).

Helba et al.,, 1997). The Neoproterozoic (585+24 Ma;
Sami et al., 2018) Abu-Diab intrusion represents one of
those highly-fractionated granites in the Central Eastern
Desert of Egypt. Garnet is crystallized as an accessory
mineral in the highly-evolved garnet-bearing muscovite
granite at the margin of the Abu-Diab intrusion (Abu El-
Ela et al., 2017; Sami et al., 2018). In this contribution, the
textural features, zoning patterns, trace and REEs
geochemistry of the garnet will be discussed with the
objective of providing constraints on its origin in the host
granite and its utility as a petrogenetic indicator and
geochemical tracer.

2 Geological Settings
The Arabian-Nubian Shield continental crust (Fig. la)

represents the northern segment of the East African
Orogen. It was formed during the Neoproterozoic between

900 and 550 Ma through the accretion of intra-oceanic
arcs, during the closure of the Mozambique Ocean and the
amalgamation of Gondwana (Stern and Johnson, 2010).
The Arabian-Nubian Shield consists of four main
lithologies, including a juvenile island arc assemblage,
ophiolites, gneisses and granitoid intrusions. The
Neoproterozoic basement in the Eastern Desert of Egypt
(Fig. 1b), comprises a dismembered ophiolite suite, island-
arc metavolcano-sedimentary associations, arc metagabbro
-diorite complex and I-type granitoids formed by
microplate accretion related to subduction processes and
collisional tectonics (720-630 Ma; Ali et al.,, 2012).
During the post-orogenic stage (590-550 Ma), these rocks
were intruded by large masses of mafic to felsic Dokhan
volcanics and shallow level A-type granites (Eliwa et al.,
2014). The Central Eastern Desert of Egypt is marked by
two main tectonostratigraphic units: (1) the infrastructural
unit (gneisses, migmatites, schists and amphibolites) and
(2) Pan-African nappes including low grade
metamorphosed ophiolite slices (serpentinites, pillow
lavas and metagabbros), arc metavolcanics, and arc
metasediments. These two units were intruded by
syntectonic calc-alkaline granites and a metagabbro—
diorite complex (606—614 Ma) and then by late to post-
tectonic granites at ~590-550 Ma (Farahat et al., 2011;
Sami et al., 2017).

The Abu-Diab intrusion is considered to be one of the
highest (~ 1160 m) mountainous granitic plutons in the
Central Eastern Desert of Egypt. The Abu-Diab pluton
occurs in the form of an oval-shaped body, covering
approximately 20 km® between latitudes 25°12'N & 25°15'
N, and longitudes 34°11'E & 34°17'E (Fig. 2). The
granites intruded into the surrounding metavolcanics,
serpentinites, synorogenic calc-alkaline granodiorite, and
metagabbro-diorite rocks at their eastern and northern
sides with sharp and nonreactive contacts. The western
and the southern parts of the pluton are surrounded by
synorogenic calc-alkaline granitoid rocks (c. 655-570 Ma,
El-Gaby et al. 1988) and pan-African ophiolitic
serpentinites, but the contacts are hidden below wadi
deposits.

The granites of the Abu-Diab pluton are massive,
medium- to coarse-grained and become progressively fine-
grained at the northern margin of the pluton. Based on
field observations, colors, structural variations and
petrographic  investigations, the Abu-Diab massif
constitutes a composite pluton consisting of three granitic
phases. The two-mica (biotite and muscovite) granite
constitutes the main phase and the large granitic mass in
the core of the pluton. It is massive, medium- to coarse-
grained with red-grey to reddish-pink colors. The margin
of the pluton consists essentially of garnet-bearing
muscovite granite and is cut by a small intrusion of
muscovite granite at the north (Fig. 2). The garnet-bearing
muscovite granite is medium-grained and shows variation
in color from pink to red-colored blocks without
significant changes in the petrographic and textural
characteristics. Moreover, they are dissected by quartz
veins and quartz fracture filling. Fluorites, in the form of
veins, lenses and/or fissure filling, are scarcely
encountered at the periphery of the pluton. No
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Fig. 2. Simplified geological map of the Abu-Diab intrusion showing the different lithological units in the area.

macroscopic planar, linear structural elements and/or
xenoliths of metasedimentary rocks have been observed in
the pluton (Abu El-Ela et al., 2017).

3 Petrography of the Abu-Diab Garnet-bearing
Muscovite Granite

The garnet-bearing muscovite granite is relatively
homogeneous, massive and reveals medium- to coarse-
grained hypidiomorphic texture (Fig. 3a—c). The rock
shows a mineral assemblage of plagioclase, quartz, K-
feldspar, muscovite and garnet. In decreasing order of
abundance, zircon, columbite, ilmenite, magnetite, rutile,
ilmenorutile, chlorite, apatite, monazite and biotite are the
minor and accessory phases. The K-feldspar phenocrysts
and matrix are represented by orthoclase, microcline and
perthitic microcline and sometimes show poikilitic texture
in which plagioclase and quartz are enclosed. Plagioclase
occurs as euhedral laths with well-developed polysynthetic
twinning, but is free of oscillatory zoning (Fig. 3a—d). The
K-feldspar is dominated by orthoclase (Org7 o), While
plagioclase (phenocrysts and matrix) is purely albite (An,.
») with extremely low CaO content (Abu El-Ela et al.,

2017; Sami et al., 2018). Muscovite occurs as coarse-
grained, euhedral to subhedral crystals of similar sizes to
other rock-forming minerals (Fig. 3a—d). In a few cases,
muscovite occurs as small fine lamellae which probably
formed as replacement products of garnet (Fig. 3e). Biotite
is rare and recorded as a minor mineral in a few thin
sections. When present, it occurs as subhedral flakes,
which sometimes enclose small albite and quartz crystals
and/or intergrowth with muscovite.

4 Sampling and Analytical Methods

The fresh samples were systematically collected from
the garnet-bearing muscovite granite at the margin of the
Abu-Diab pluton. After detailed textural and petrographic
studies, twelve polished sections of representative samples
were selected for systematic major and trace element
analysis of garnet. Garnet was investigated by transmitted
light microscopy and back-scattered electron (BSE), prior
to EMPA and LA-ICP-MS analysis.

Mineralogical analysis was conducted by using polished
carbon-coated thin sections with a CAMECA SX100
electron microprobe equipped with four WDS and one
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Fig. 3. Microphotographs (cross-polarized light) and BSE images showing the mineralogical and textural features of the Abu-Diab
garnet-bearing muscovite granite.

(a) The general medium- to coarse-grains of muscovite, albite, K-feldspar and quartz reflecting the hypidiomorphic texture of the garnet-bearing muscovite
granite; (b-d) Occurrence of euhedral to subhedral garnets with different grain size located in the interstices among quartz, albite and K-feldspar (b-c), or
completely enclosed in magmatic quartz (c) and sharing boundaries between plagioclase and muscovite (d); (e-f) BSE images of subhedral cracked garnet
crystal with some secondary muscovite replacing the garnet along the cracks (e) and hosting zircon, ilmenite, and Nb-Ta rich oxides (f). Mineral abbreviation:
Qtz-quartz; Ab-albite; Kfs—k-feldspar; Ms-muscovite; Grt-garnet; Zrn-zircon; Ilm-ilmenite. All minerals labeled have been confirmed by EMPA.

EDS at the Department of Lithospheric Research, using four wavelength-dispersive spectrometers;
University of Vienna, Austria. All performed analyses acceleration voltage and beam current were 15 kV and 20
were made against natural and synthetic mineral standards, nA respectively. Natural and synthetic standards were
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used for calibration, and the PAP correction (Pouchou and
Pichoir, 1991) was applied to the data. A minimum of
twelve analyses was obtained from each sample and four
from each grain. X-ray compositional mapping was
performed for selected elements in garnet using an energy-
dispersive X-ray detector on the same equipment. The
dwell time was set to 20 ps at the highest possible
resolution.

Trace elements and REEs of garnets were analyzed by
LA-ICP-MS at the NAWI Graz Central Lab ‘Water,
Minerals and Rocks’ (University of Graz and Graz
University of Technology). The material was ablated by
using a 193 nm laser gulsed at 10 Hz, 50 pm spot size with
an energy of ~7 J/cm®. Helium was used as the carrier gas
at ~0.7 I/min flow and data were acquired in time-resolved
mode. For each analysis, a 30 second gas blank was
obtained for background correction. LA-ICP-MS analyses
were standardized using the NIST standard reference
material (SRM) 610 of the National Institute of Standards
and Technology, Gaithersburg, MD, USA. Values for the
SRMs reported by Jochum et al. (2011) were applied for
quantification of the results. The NIST SRM 612 standard
was measured as an unknown to check for accuracy and
reproducibility of the LA-ICP-MS analyses.
Reproducibility of all REE elements for the standard
measurements lies within a relative error of <5% for the
NIST SRM 612 standard during each standard run. Time
averaged concentration values of the LA-ICP-MS analyses
were obtained using GLITTER (ver. 4.0) (Macquarie
University, Sydney).

5 Results

5.1 Garnet petrography

Under the microscope, garnets are usually euhedral to
subhedral and reddish-brown with variable grain sizes (50
—500 pm), composing less than one modal percent of the
rock. It is often enclosed in quartz (Fig. 3c) and sometimes
located in interstitial spaces between quartz, feldspars and
muscovite (Fig. 3b—d). It appears to be in equilibrium with
the other constituents due to the complete absence of any
observable reaction rims between garnet and the other
mineral constituents. Some garnet grains are partially
replaced by and/or filled with secondary muscovite as a
replacement product due to garnet alteration along
fractures (Fig. 3¢). Most of the small-sized garnets (< 100
pm) are inclusion-free (Fig. 4a—b), while the large-sized
(> 400 pm) groundmass garnets are fractured and
occasionally contain inclusions of quartz, zircon, Nb-Ti
oxides and ilmenite, forming late during the crystallization
of the leucocratic minerals (Figs. 3f and 4a—b). Detailed
petrographic and electron microprobe studies show that
the studied garnet is generally homogeneous (Fig. 4a) and,
in rare cases, it shows weak zonation (Fig. 4b).

5.2 Mineral chemistry
5.2.1 Major element composition of garnet

The major element compositions and end-member
formulae of the garnets are given in Table 1. Electron
microprobe analyses show that garnets contain appreciable
amounts of MnO (26-30 wt%), FeO (12-16 wt%), Al,O;

(19.8-20.5 wt%) and SiO, (35.3-36.3 wt%), with lesser
amounts of MgO (0.35-0.94 wt%) and CaO (0.14-0.40
wt%), yielding an end-member formula of Spsg;_7,Almys_
35PI'p1,4AdI'0,|. The hlgh MnO/(FeO + MHO) ratios of
garnet (0.62—0.71) suggest that they are more evolved
(Miiller et al., 2012). It is important to note that all garnet
crystals are of the spessartine-almandine solid solution,
where the ratio of spessartine and almandine together
exceeds 95 mol. %, identical to those recorded in highly-
fractionated granites (Abdalla et al., 1994; Helba et al.,
1997; Zhou et al., 2017).

No remarkable difference is recorded in the
composition between the core and rim of the
homogeneous garnet (Fig. 4a). In contrast, the zoned
crystals show a slight difference in chemistry between the
core and rim where the core is enriched in almandine and
pyrope and depleted in spessartine and andradite relative
to the rim (Fig. 4b). Moreover, the X-ray elemental map of
zoned crystal (Fig. 5) exhibits the homogeneous
distribution of Al and Nb, a slight difference in Fe and Mn
and apparently significant changes in concentrations of
both Ti and Mg between core and rim.

5.2.2 Trace and rare earth elements

The ore metal, trace and rare ecarth element
compositions of garnet are given in Table 2. The garnets
contain a very low concentration of Nb (< 3.46 ppm), Ta
(< 0.97 ppm), W (< 0.40 ppm) and Cu (< 0.68 ppm). By
comparison, it has higher and variable concentrations of
Zn (195-356 ppm), Sn (22—-138 ppm) and Li (67-92 ppm).
In general, garnet is depleted in large ion lithophile
elements (LILE) with lower values of Ba, Nb and Sr
relative to the primitive mantle (Sun and McDonough,
1989) (Table 2, Fig. 6a). This is due to the larger ionic size
of these elements, when compared to the size of the
octahedral and eight coordination sites of the garnet
structure (Gaspar et al., 2008).

The garnet contains high amounts of HREE (681-2494
ppm) and Y (1616-2827 ppm) and is depleted in LREE (3
—11 ppm) and Eu (0.04-0.16 ppm) with both LREE/HREE
and (La/Yb)yratios approaching zero. It is noted that the
rims of the zoned garnet crystals contain much higher
HREE and have relatively high XREE and low LREE/
>HREE ratios, relative to the core (Table 2 and Fig. 6b).
In general, the chondrite-normalized REE patterns of the
studied garnet show HREE enrichment with significantly
negative Eu anomalies.

5.3 Crystallization conditions

Garnets can be used as a potentially useful
geothermometer due to slow diffusion rates of cations and
anions and therefore zonation in garnets can record a
substantial part of a rock's pressure-temperature history
(Spear et al., 1984). Experimentally, as temperatures
decrease, Mn can diffuse into garnet during Fe-Mn
exchange with ilmenite (Pownceby et al, 1987). Therefore,
the coexistence of garnet and ilmenite could provide a
precise and accurate geothermometer relative to others,
due to its accurate calibration, temperature sensitivity, as
well as the chemical and structural simplicity of the
crystalline solutions involved. As shown in Figure 4b, the
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Fig. 4. (a) Variation in the end-members of representative homogeneous subhedral to euhedral garnet crystals that enclose small
zircon crystals; (b) zoned euhedral garnet crystal host ilmenite from garnet-bearing muscovite granite (note that the small garnet
crystal is free of inclusions). Solid circles and numbers represent analytical spots and their symbols.

idiomorphic garnet hosts a well-developed euhedral
ilmenite crystal which has high Mn contents (up to 29
mol.% pyrophanite; Table 3). Accordingly, the calculated
temperature of their formation ranges between 591°C and
646°C (Table 3).

Experimental studies have shown that almandine pyrope
-enriched garnets are normal products of (early magmatic)
medium-pressure crystallization of peraluminous magmas

(Clemens and Wall, 1981), while the progressive increase
of Mn in the granitic liquid led to the crystallization of
spessartine-rich garnet at relatively low pressures,
estimated as low as 2 to 3 kbar by Speer and Becker
(1992) and even as low as 1 kbar by Clemens and Wall
(1981). The studied garnet is generally spessartine-
almandine solid solution, which means that the host
magma of the studied garnets was emplaced to shallower
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Table 2 Representative trace and rare earth elements (ppm) of garnets from the Abu-Diab garnet-bearing muscovite

granite, Central Eastern Desert of Egypt

Grains D5/1 D5/2 D5/3 D5/4 DS5/5 D18/1 D18/2 D18/3 D18/4 DI18/5 DI18/6 D18/7 D5/6
Texture  core rim _ core core _core _ core _ core _ core core core  rim core core core core core  rim
Li 72 92 76 72 73 73 83 86 79 87 68 67 71 73 68 82 83
Be 0.12 0.15 0.12 0.15 0.14 0.12 0.17 0.13 0.14 0.14 0.14 0.11 0.15 0.14 0.14  0.09 0.20
B 063 055 0.60 0.54 060 061 052 051 0.88 0.59 050  0.51 0.90 0.52 0.50 0.61 0.64
Ti 860 1319 890 895 943 934 718 617 1039 933 796 804 943 660 1177 686 775
\% 4.7 7.2 6.6 6.6 6.5 6.7 6.3 3.8 4.6 4.9 6.1 54 4.8 133 59 13.1 141
Cr 1.9 2.0 2.1 2.4 1.9 1.9 2.0 1.9 1.9 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.4
Co 1.7 1.5 2.0 1.8 1.9 1.8 1.9 1.5 1.5 1.6 1.7 1.9 1.6 3.7 1.7 3.6 4.1
Ni 020 025 014 020 0.16 0.17 0.10 0.16 0.21 0.16 0.16 0.16 0.13 0.27 0.23 0.17  0.20
Cu 054 058 054 061 055 053 056 0.52 0.57 0.55 0.60 0.53 0.68 0.55 0.60 057 0.58
Zn 331 315 327 328 330 326 356 313 297 331 320 317 328 196 307 195 199
Ga 61 67 63 64 61 60 56 52 66 64 60 60 62 45 62 46 46
Rb 029 048 030 038 027 041 028 0.17 0.27 025 0.23 0.34 0.26 0.30 0.30 027 0.40
Sr 0.13 046 020 0.19 021 026 0.15 0.04 0.12 0.11  0.14 0.14 0.10 0.17 0.14 021 0.23
Y 1999 2827 2369 2348 2289 2308 2050 1616 2576 2387 2054 2058 2203 1693 2075 1675 2036
Zr 853 1196 794 8.00 794 856 620 432 8.00 8.02 6.64 7.04 8.84 4.99 9.67 481 6.20
Nb 0.72  3.64 056 045 097 069 025 024 0.85 0.80 0.28 0.43 1.06 0.18 2.65 0.19 0.27
Sn 92 138 94 91 87 96 53 22 43 59 81 73 84 32 137 30 36
Cs 0.05 0.05 0.05 0.06 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.06
Ba 0.08 0.09 0.09 0.08 0.12 009 005 0.10 0.11 0.07 0.12 0.09 0.13 0.08 0.12 0.08 0.08
Hf 1.08 1.73  1.20 099 1.09 1.08 0.70 0.62 1.07 1.17  0.88 0.97 1.18 0.28 1.33 0.23  0.30
Ta 023 097 019 021 033 031 0.10 0.07 0.25 022 0.17 0.17 0.31 0.07 0.76  0.07 0.10
w 021 040 023 032 030 026 022 0.13 020 027 0.16 0.21 0.13 0.21 0.15 0.20 0.29
Tl 0.04 0.03 0.04 0.03 003 004 003 0.03 0.03 0.03  0.03 0.04 0.03 0.03 0.03 0.04 0.04
Pb 0.03 0.04 0.03 0.04 0.02 0.02 0.03 0.03 0.03 0.02  0.03 0.02 0.03 0.02 0.03 0.03  0.02
Th 0.02 0.01 0.01 0.01 0.01 001 001 0.01 0.01 0.01  0.01 0.01 0.01 0.01 0.01 0.01  0.01
8] 0.18 032 0.17 0.14 0.18 0.17 0.09 0.08 0.25 0.18 0.11 0.12 0.22 0.08 0.24  0.07 0.09
La 0.01 0.01 0.01 0.01 0.01 001 001 0.01 0.01 0.01  0.01 0.01 0.02 0.01 0.01 0.01  0.01
Ce 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02  0.02 0.01
Pr 0.02 0.02 0.01 0.01 0.02 001 001 0.01 0.01 0.01  0.01 0.01 0.02 0.01 0.03 0.01  0.01
Nd 043 078 047 049 041 050 032 0.19 040 048 031 0.38 0.46 0.13 0.65 0.20 0.26
Sm 854 10.14 7.61 7.61 7.06 750 567 6.28 7.89 8.40 6.15 7.09 8.54 2.60 10.30  2.82  3.68
Eu 0.06 0.06 0.05 0.06 0.07 0.05 0.04 0.08 0.07 0.07 0.06  0.07 0.06 0.15 0.06 0.16 0.13
Gd 57 57 55 52 52 49 47 58 72 65 48 52 63 30 58 28 35
Tb 30 31 31 31 29 28 28 32 42 37 28 30 35 17 30 17 20
Dy 306 343 329 325 318 309 290 288 415 363 301 307 341 213 289 211 256
Ho 66 95 79 81 79 80 71 47 86 80 74 71 73 63 60 59 81
Er 206 429 283 304 290 316 244 118 243 256 263 230 224 251 187 247 330
Tm 37 111 57 60 60 70 43 17 37 43 51 40 37 49 37 51 66
Yb 274 1224 474 513 527 659 349 107 246 324 414 302 261 417 290 438 585
Lu 31 204 61 69 75 94 44 13 28 40 56 34 28 65 32 73 92
YHREE 1007 2494 1368 1433 1430 1606 1116 681 1168 1209 1236 1066 1062 1105 983 1125 1465
YLREE 9 11 8 8 8 8 6 7 8 9 7 8 9 3 11 3 4

crustal levels, promoting its crystallization under declining
temperature and pressure conditions. In summary, the
studied garnets (Mn-rich spessartine-almandine solid
solutions) were crystallized under relatively low
temperature and pressure conditions (e.g., 646—591°C and
< 3 kbar).

6 Discussion

6.1 Garnet zonation

Garnet can preserve chemical zoning below its closure
temperature, due to slow diffusion rates for most cations
and its resistance to alteration (Samadi et al., 2014). The
studied garnet is distinguished by its poorly expressed
zoning (Fig. 5) which is considered typical of liquidus
garnet (Green, 1977). Some authors (e.g., du Bray, 1988;
Macleod, 1992) have attributed zoning in garnet to
fractional crystallization. Normal zoning in garnet (Fe-rich
rim) is generally attributed to growth in a metamorphic
environment during prograde conditions, while reverse
zoning (Mn-rich rim) may indicate metamorphic growth

during retrograde conditions (i.e. falling temperatures and
fractional crystallization) (Deer et al. 1992). Accordingly,
the studied garnets are weakly zoned with Mn-rich rims,
typical of reverse zoning (Fig. 5). The rimward andradite
enrichment in the studied garnets could be attributed to the
subsolidus breakdown of plagioclase and the incorporation
of its calcium component in the garnet rims (Deer et al.,
1992). The high field strength elements (HFSE, such as
Zr, Nb, Ta, Hf, and U) in the studied garnets are
distributed in a manner similar to the REE, being slightly
enriched at the rim (Fig. 6). This weak zonation could be
produced due to crystallization of garnet rims at much
lower pressures during the ascension of the granitic melt.

6.2 Origin and nature of garnet in the host granite

The integration of textural and chemical features of
garnet is the key to determine its origin. Petrographically,
the studied garnet is of magmatic origin, as evidenced by
its presence as individual euhedral fine- to medium-
grained inclusions within a magmatic quartz, interstitial
between the major mineral phases and a lack of
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Fig. 5. Garnet X-ray composition maps showing a homogeneous distribution of Al, Fe, Nb, Mn and Mg, and variation in the distri-

bution of both Ti and Mg between core and rim.

Table 3 EMPA data (wt%) used to calculate the thermometery
of the studied garnet and ilmenite (cations on the basis of 12
and 3 oxygen for garnet and ilmenite, respectively)

Grt- Ilm-  Grt- Im- Grt- Im- Grt- IIm-

158 160 159 161 160 162 161 163
TiO, 0.28 47.07 025 5032 027 50.17 027 49.67
Fe,03"  0.60 9.19  0.61 4.13 0.51 391 0.46 4.47
FeO 12.90 28.41 12.70 31.79 12.67 31.87 12.83 31.20
MnO  28.87 13.47 2889 1296 29.03 12.74 28.98 13.00
MgO 0.67 0.02 0.63 0.01 0.66 0.03 0.68 0.02
Nb,Os - 0.87 - 1.14 - 1.17 - 1.04
ZnO - 034 - 0.43 - 0.38 - 0.35
SiO, 3598 0.04 36.18 0.04 3598 003 36.09 0.02
ALO; 20.12 0.02 19.88 0.03 20.15 0.01 20.29 0.04
CaO 020 - 0.24 - 0.21 - 0.22 -
Total 99.6 994 994 1009 99.5 1003 99.8 99.8
Ti 0.02 0.905 0.02 0952 0.02 0954 0.02 0.949
Fe" 0.04 0.177 0.04 0.078 0.03 0.074 0.03 0.086
Fe™ 0.89 0.607 0.88 0.669 0.88 0.674 0.88  0.663
Mn 2.02 0291 203 0276 2.04 0273 2.02 0280
Mg 0.08 0.001 0.08 0.000 0.08 0.001 0.08 0.001

Point

Nb 0.011 0.015 0.015 - 0014
Zn - 0006 - 0008 - 0007 -  0.007
Si 298 0.001 3.00 0.001 298 0001 298 0.000
Al 1.96 0.001 1.94 0001 197 0.000 197 0.001
Ca 002 - 002 - 0.02 - 0.02 -

Total 8.0l 200 800 200 801 200 801 200
Sp 67.09 67.44 67.57 67.21

Alm  29.59 29.27 29.11 29.37

Py 2.73 2.57 2.69 2.76

Andr  0.59 0.71 0.63 0.65

IIm 67.60 70.80 71.20 70.30
Prn 32.40 29.20 28.80 29.70
T°C® 658 599 591 608

Note: *Fe,0; determined by stoichiometry, “Temperature were calculated
using GPT excel spreadsheet (Reche et al., 1996).

replacement textures with other minerals (Fig. 3b—e). The
small garnet crystals have no inclusions, while the coarser

ones contain randomly-oriented euhedral ilmenite and/or
small euhedral zircons, identical in appearance to those
included in other phenocryst minerals (Fig. 4a—b). Except
for the zircon and ilmenite, garnet is clear and inclusion-
free from typical metamorphic minerals. These textural
features support the magmatic origin of garnet and
enhance its formation by direct crystallization from the
host magmas.

Several mechanisms were proposed for the origin of
garnet, where it could occur as; (1) a restite phase during
partial melting (René and Stelling, 2007); (2) xenocrysts
derived from partially-assimilated metamorphic rocks
(Erdmann et al., 2009); (3) peritectic garnet derived from
wall rock or xenolith material that reacted with the host
magma (Dorais and Tubrett, 2012; Taylor and Stevens,
2010); (4) secondary metasomatic garnet formed by the
interaction between post-magmatic hydrothermal fluids
and the hosting granites (Clarke and Rottura, 1994;
Kontak and Corey, 1988); (5) phenocrysts which
crystallized at high pressure (P > 7 kb) and survived
transport to higher crustal levels (Harangi et al., 2001);
and (6) crystals precipitated from differentiated Mn-
enriched peraluminous magmas at low to moderate
pressures (du Bray, 1988; Miller and Stoddard, 1981;
Yang et al., 2013). The garnet in the Abu-Diab garnet-
bearing muscovite granites is euhedral to subhedral, free
of metamorphic mineral inclusions (Figs. 3 and 4) and
contains extremely low concentrations of CaO (< 0.3
wt%) and high spessartine contents (MnO > 26 wt%)
(Table 1), quite distinct from garnet that was formed at
high pressure and thus has relatively high CaO (> 5 wt%)
and low MnO (< 2 wt%) contents (Harangi et al., 2001).
These characteristics indicate these garnets do not have



772 Sami et al. / Origin of Spessartine Garnet in Granite

100000 g™ T T T T T T T T T T T T T T T T T T T 77T

1000

100

10

0.1

Garnet/Primitive Mantle

0.01 \ \ Field of

hydrothermal garnets
0001 v v vy I T R T Tt O
Rb Th Nb K Ce Pr P Zr Eu Dy Yb

Cs Ba U Ta La Pb Sr Nd Sm Ti Y Lu

100000 — T T T T T T T T T T T T T T
(b) Field of
10000 magmatic garnets a
31000
5
T 100
o
@)
0 Field of
g hydrothermal garnets
O 1
0.1 @ core
O rim
0.01 1 1 1 1 1 1 1 1

La Pr Pm gy Tb Ho Tm Lu

Fig. 6. (a) Primitive mantle normalized incompatible element
spider diagram; (b) Chondrite-normalized REE patterns of
the garnets from the Abu-Diab garnet-bearing muscovite
granite. Fields of magmatic and hydrothermal garnets from
Zhou et al. (2017) and references therein. Samples were
normalized to chondrite and the primitive mantle values of
Sun and McDonough (1989).

xenocrystic or restite origins and were not derived from
wall rock metasediments. Moreover, the studied garnets
have high spessartine molecule contents (61-72 mol. %)
with low Mg" values [10'Mg/ (Mg + Fe) = 0.47-1.12;
Table 1] which argue against the peritectic origin (Taylor
and Stevens, 2010). The elevated HREE contents and
significantly negative Eu anomalies of the analyzed
garnets are similar to the REE compositions of other
magmatic garnets and contrast sharply with hydrothermal
garnets worldwide (Fig. 6b). Therefore, the studied
spessartine-rich garnet in highly-fractionated garnet-
bearing muscovite granite has a typical magmatic origin.
This is further supported by the ternary discrimination
diagram of Miller and Stoddard (1981), where all of the
analyzed garnet crystals fall into the magmatic field (Fig.
7), suggesting a magmatic rather than hydrothermal origin
of garnet. Also, using the trace and REE of the studied
garnets in comparison with those obtained from magmatic
and hydrothermal garnet from elsewhere around the world
(Fig. 6a-b), it is clear that the garnets have similar REE
patterns to magmatic garnets and completely different
from those of hydrothermal origin worldwide (Zhou et al.,
2017 and references therein). It is important to note that

Magmatic garnet in
peraluminous granitoids ¢7
according to du Bray (1984) =
and Dahlquist (2007) 3,

Magmatic garnet field
(Miller and Stoddard, 1981) \/‘

Mg Fe*

Fig. 7. Garnet compositions (Mg-Mn—Fe*") from the Abu-
Diab garnet-bearing muscovite granite modified according to
Dahlquist et al. (2007). The bluish field denotes the garnet
compositions from the compilation of Miller and Stoddard
(1981), and the garnet compositions in peraluminous granites
are from du Bray (1988) and Dahlquist et al. (2007). The com-
pilation of Miller and Stoddard (1981) revealed that an over-
whelming majority of garnets found in granitoid contain >
10% spessartine component.

except for the partial transformation of garnet to chlorite
and/or secondary muscovite along microcracks and
interstitial fractures (Fig. 3b—e), the post-magmatic fluids
have no significant effect on the structure and composition
of the studied garnets.

6.3 Genesis of garnet

In general, magmas initially contain very little
manganese. As such, it is to be expected that pure or
almost pure spessartine garnet will crystallize due to the
high concentration of Mn in the terminal stages of magma
crystallization. Moreover, spessartine-rich garnet
crystallizes when the liquid and muscovite become
saturated with Mn®" (Abbott, 1985). Since muscovite does
not concentrate MnO relative to garnet, the crystallization
and widespread occurrence of muscovites in the Abu-Diab
garnet-bearing muscovite granite led to increasing MnO in
the magma. Therefore, the appearance of garnet late
during fractional crystallization is probably attributed to
strong partitioning of Mn*" in the liquid relative to
muscovite. The homogeneity and absence of complex
zoning in the studied spessartine garnets (Figs. 3 and 4),
all indicate that the garnets grew from a compositionally
homogeneous liquid, rich in Mn, in order to sustain garnet
growth at low pressure and temperature.

Textural equilibrium of the studied garnets with other
phases indicates that they could be crystallized directly
from the melt in response to high MnO relative to FeO +
MgO and/or may have grown by reaction between earlier-
formed biotite and silicate liquid. As for the other highly-
fractionated peraluminous garnet-bearing granites
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elsewhere (e.g., Miller and Stoddard, 1981), the possible
reaction that controls garnet paragenesis in the Abu-Diab
garnet-bearing muscovite granite is biotite + MnO + Al,O;
+ SiO; (from liquid) = garnet+muscovite. This means that
with increasing magma differentiation, spessartine-rich
garnets will precipitate, followed by the disappearance of
biotite. The exclusive occurrence of garnets and complete
disappearance and/or very rare occurrence of biotite in
garnet-bearing muscovite granite (Fig. 3a—d), supports the
above mechanism and indicates that the studied
spessartine garnet was formed at the expense of biotite in a
highly-evolved MnO-rich magma.

The last scenario for the genesis of spessartine garnet in
the Abu-Diab intrusion is that Mn - rich garnet could
crystallize from Mn - rich fluids that exsolved from the
fractionated silica-rich magma as suggested by Whitworth
(1992) and Hildreth (1981). This model involves hydroxyl
complexing of Mn in an ascending fluid phase to produce
discrete areas of Mn enrichment in the roof zone of the
magma chamber. Accordingly, the aqueous fluids released
during the evolution of the Abu-Diab granitic melt are
believed to have complexed the available Mn and
transported it to the nucleation sites, allowing garnets to
crystallize, while the chemistry of the melt as a whole
evolved (Whitworth, 1992). This model may also explain
the exclusive occurrence of spessartine garnet in the
marginal granitic phase of the Abu-Diab intrusion.

6.4 Petrogenetic implications

The interpretation of garnet textures, chemistry,
zonation and crystallization conditions will greatly help to
define the magmatic and subsolidus crystallization
histories of their host granites. The appearance of garnet
late in the fractional crystallization of muscovite-saturated
granitic magmas is probably due to the partitioning of
manganese into the liquid rather than into early minerals.

The garnet-bearing granites are recorded in all
petrogenetic types of granites, but the majority belong to S
-type, which formed by partial melting of
metasedimentary crustal rocks (Dahlquist et al., 2007,
Taylor and Stevens, 2010). In a few cases, garnet-bearing
granites could have I- and A-type magma characters with
different origins in both anorogenic and extensional
environments (du Bray, 1988; Honig et al., 2014; Zhang et
al., 2017). Some authors (e.g., Mohamed and Abu El-Ela,
2011; Shahin, 2015; Sami et al., 2018) have classified the
Abu-Diab garnet muscovite granite as A-type granite due
to their high FeO/MgO ratios and extremely low MgO,
CaO and V contents. However, Abu El-Ela et al. (2017)
noted that the Abu-Diab granitic phases are not completely
consistent with A-type granite, owing to their low high
field strength element (HFSE) contents (e.g. REE, Zr, and
Y). The chemical composition of garnet can give insights
into the nature and type of the granitic magma of its host.
Zhang et al. (2012 and references therein) used the
reported major elements of magmatic garnets from various
granites in the literature and the results are summarized in
figure 8. The studied garnets are plotted within and at the
boundary of the A-type granite field (Fig. 8), confirming
their A-type granite affinity and reflecting the highly-
fractionated nature of their host garnet-bearing muscovite

10X MgO

FeO! MnO

Fig. 8. FeO-10xMgO-MnO triangular diagram of garnet
from various genetic granite types. Fields of garnets from I-,
S- and A-type granites and igneous rocks originating from
the mantle are from Zhang et al. (2012) and references
therein.

granite.

It is possible from the garnet chemistry and from the
relative proportion of various garnet end members, to
know the possible origin of granitic magmas and also the
approximate depth of formation (Whitworth, 1992). In
general, almandine-rich garnets are associated with less
well-evolved granitic rocks, possibly generated at greater
depths than more evolved granites which contain high-
spessartine garnets (du Bray, 1988). Therefore, the
crystallization of high spessartine garnets within the Abu-
Diab granites (Table 1; Fig. 4) confirms that they were
formed at a shallower crustal depth (~ 15 km; Abu El-Ela
et al., 2017) in highly-fractionated granitic magmas.

The temperature of formation for the reverse zoning
idiomorphic garnet ranges between 591°C and 646°C
(Table 3). These temperatures represent the minimum
temperature of Abu-Diab garnet formation (i.e. garnet was
crystallized later in the magma) when compared with the
upper temperature limit of their host garnet-bearing
muscovite granite, as inferred from zircon saturation
temperatures (733+28°C; Abu El-Ela et al., 2017). The
Abu-Diab garnet-bearing muscovite granite is rich in
fluorine as indicated from both whole-rock (F = 1735
2460 ppm) and muscovite (F = 2.08-2.83 wt%) (Sami et
al., 2018). Experimentally, fluorine can extend the eutectic
temperature range of granite crystallization up to 560°C
for fluorine-rich granite (Manning, 1981). As a
consequence, the measured temperature indicates that the
garnet in the host granite is crystallized later from the
granitic magma and is formed as a result of the
accumulation of the manganese element in the residual
melt, because manganese is an incompatible element for
the minerals (e.g. feldspar and muscovite) of granite.

Based on LA-ICP-MS analyses of garnets, the
progressive increase of HREE from core to rim (Table 2;
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Fig. 6) indicates that the rim was directly crystallized from
the relatively HREE-rich fluid. In general, the presence of
HREE-enriched rims in garnet crystals can be attributed to
the formation of minerals that fractionate LREE from
HREE (e.g., monazite). The F-rich fluids have the capacity
to transport immobile HFSE and HREE elements (Agangi
et al. 2010). Therefore, during the late magmatic stage of
the Abu-Diab garnet-bearing muscovite granite, fluorine
dissolved in the magma is concentrated in the fluids,
causing REE and HFSE complexing and mobilization (i.e.
they behave as incompatible elements). The interaction of
these fluids with the hot, solid granite led to the
crystallization of spessartine garnet in the interstices
between the major mineral phases of the Abu-Diab garnet-
bearing muscovite granite.

7 Conclusions

(1) The garnet-bearing muscovite granite represents the
highly-fractionated granitic body in the outer rim of the
Abu-Diab intrusion, which is located in the Central
Eastern Desert of Egypt (north Arabian-Nubian Shield). It
consists of quartz, k-feldspars, albite and Li-phengite as
major phases. The most important accessory minerals
include garnet, columbite, zircon, rutile, ilmenorutile,
ilmenite, apatite and monazite.

(2) Homogeneous to weakly-zoned garnet crystals are
euhedral to subhedral and reddish-brown with variable
grain size, enclosed in magmatic quartz and located in
interstitial spaces Dbetween quartz, feldspars and
muscovite. All studied garnet crystals have a spessartine-
almandine solid solution and contain appreciable amounts
of MnO, FeO, Al,O; and SiO,, with lesser amounts of
MgO and CaO0, yielding an end-member formula of Spsg;_
7 Almys_3sPrp; 4Adry ;. Moreover, the garnets contain a
very low concentration of Nb, Ta, W and Cu, but contain
higher and variable concentrations of Zn, Sn, Li Y and
high > REE concentrations (especially HREE). The
studied garnet was crystallized under relatively low
temperature and pressure conditions (646—591°C and < 3
kbar) at shallower crustal levels.

(3) The chemistry and textural criteria of the studied
garnet suggest a pure magmatic origin and support its
formation by direct crystallization from the host magmas.
The spessartine-rich garnet of the Abu-Diab garnet-
bearing muscovite granite could be formed by hydroxyl
complexing of manganese at the roof of the magma
chamber and/or at the expense of biotite, and grew from
compositionally homogeneous liquid rich in Mn in order
to sustain garnet growth at low pressure and temperature.

(4) The chemistry of garnet confirms the A-type granitic
affinity of the host, the highly-fractionated garnet-bearing
muscovite granite. Fluorine-rich fluids play an important
role during the formation of spessartine garnet in the Abu-
Diab intrusion. These F-rich fluids have the ability to
complex and mobilize the REE and HFSE and can extend
the eutectic temperature of granite crystallization up to
560°C. During the late magmatic stage, the interaction of
these F-rich fluids with the hot, solid granite led to the
crystallization of HREE-rich minerals including
spessartine garnet in the interstices between the major

mineral phases of the Abu-Diab garnet-bearing muscovite
granite.
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