Research Advances

A New Palynological Assemblage from the Nenjiang Formation of Dayangshu Basin, and its Geological Implication

SUN Lei¹, WANG Chenglong^{2,*} and BIAN Xiongfei¹

¹ Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, Liaoning, China

² School of Earth Sciences, Northeast Petroleum University, Daqing 163318, Heilongjiang, China

Citation: Sun et al., 2020. A New Palynological Assemblage from the Nenjiang Formation of Dayangshu Basin, and its Geological Implication. Acta Geologica Sinica (English Edition), 94(1): 198–199. DOI: 10.1111/1755-6724.14416

Objective

The Dayangshu Basin located in eastern Inner Mongolia, is one of the key areas for oil and gas exploration in the periphery of Songliao Basin. So far, this basin has been poorly explored, and the basic geological research is still weak, due to the lack of high-quality paleontologic and stratigraphic data. The previous oil and gas investigations were mainly focused on the Early Cretaceous strata. However, the Late Cretaceous Nenjiang Formation in the basin also has hydrocarbon potential according to the latest research. In recent oil and gas geological survey, palynological fossils have been discovered from the Nenjiang Formation in the Dayangshu Basin, providing new evidence for biostratigraphic division and correlation.

Methods

Five grey black mudstone samples were collected from the outcrops of Nenjiang Formation, Ganhe area, Central Dayangshu Basin. The samples were treated with hydrochloric and hydrofluoric acid to remove carbonates and silicates, respectively. An Olympus BX51 biomicroscope was used for fossil imaging and identification. All slides are stored at the Palynology Lab, Research Center of Paleontology and Stratigraphy, Jilin University.

Results

All the five samples were rich in palynological fossils. Based on the quantitatively important taxa, the *Cedripites medius - Podocarpidites nageiaformis - Lythraites giganteus* palynological assemblage was recognized. The characteristics of this assemblage are as follow (Fig. 1):

(1) It is dominated by gymnosperm pollen (89.45-98.48%), followed by pteridophyte spores (1.27-8.00%), and angiosperm pollen are rare (0-2.55%).

(2) Pteridophyte spores are diverse in terms of number of species, but their abundance is low. They include *Verrucosisporites* sp. (0-1.31%), *Klukisporites* sp. (0-

Fig. 1. Typical palynological fossils from Nenjiang Formation, Dayangshu Basin

Lycopodiumsporites sp.; (2) Biretisporites sp.; (3) Cicatricosisporites
sp.; (4) Leiotriletes sp.; (5) Hymenophyllumsporites sp.; (6) Lygodiumsporites sp.; (7) Schizaeoisporites retiformis; (8) Verrucosisporites
sp.; (9) Borealipollis songliaoensis; (10) Callistopollenites tumidoporus;
(11) Lythraites giganteus; (12-13) Pentapollenites asymmetricus; (14-15) Parcisporites parvisaccus; (16-18) Cedripites medius; (19) Cedripites microsaccoides; (20) Podocarpidites nageiaformis; (21) Pinuspollenites labdacus; (22) Piceaepollenites sp.; (23-24) Abiespollenites sp.

1.09%), and other species that are typically less than 1%, such as Lycopodiumsporites sp., Schizaeoisporites sp., S. retiformis, Leiotriletes sp., Calamospora sp., Cyathidites sp., C. minor, Foveosporites sp., Polycingulatisporites sp., Biretisporites sp., Hymenophyllumsporites sp., H. osmundaformia, Verrucosisporites sp., Lophotriletes sp., Klukisporites sp., Baculatisporites sp., Lygodioisporites *Lygodiumsporites* sp., *Cyclogranisporites* sp., SD.. *Granulatisporites* sp., *Ceratosporites* equalis, *Radiorugoisporites* Cicatricosisporites sp., sp., Camarozonotriletes sp., Toroisporis sp., Aequitriradites

© 2020 Geological Society of China

http://www.geojournals.cn/dzxbcn/ch/index.aspx; https://onlinelibrary.wiley.com/journal/17556724

^{*} Corresponding author. E-mail: 841082952@qq.com

spinulosus, Densoisporites sp., and Appendicisporites sp..

(3) Cedripites medius (32.00-40.61%) is dominant pollen, among the gymnosperm followed by (5.96-29.74%) **Podocarpidites** nageiaformis). Parcisporites parvisaccus (9.55–15.64%), Pinuspollenites labdacus (5.23-11.78%) and Psophosphaera sp. (3.81-12.63%). Abietineaepollenites sp. (0-5.08%), A. minimus (0-7.02%), Abiespollenites (0-3.51%), sp. Keteleeriaepollenites sp. (0-4.06%) and Piceaepollenites sp. (1.09-6.67%) are common. Cycadopites sp., Abietineaepollenites microsibiricus, Cedripites sp., Ce. densireticulatus, Ce. leptodermus, Ce. microsaccoides, **Pinuspollenites** minutes, *Parcisporites* minutes, Rugubivesiculites sp., Protopinus sp., Protoconiferus sp., Pseudowalchia **Pristinus** pollenites sp., sp., Perinopollenites sp. and Araucariacutes sp. are rare.

(4) Among the angiosperm pollen, Retitricolpites sp., Liquidambarpollenites sp., Borealipollis sp., yaojianica, В. songliaoensis, **Callistopollenites** tumidoporus, Lythraites giganteus, Consoliduspollenites songliaoensis, Pentapollenites asymmetricus, and Euphorbiacites majorporus are seen, but the abundance of each species is less than 1%.

Most of pteridophyte spores and gymnosperm pollen recovered in this study were commonly seen in the Meso-Cenozoic Songliao Basin (Wang Chenglong et al., 2017, However. the angiosperm 2018). pollen have biostratigraphic significance. **Callistopollenites** tumidoporus. *Consoliduspollenites* songliaoensis. Lythraites giganteus and Pentapollenites asymmetricus are typical fossils in the Nenjiang Formation of the Songliao Basin, Borealipollis songliaoensis is distributed from the Nenjiang Formation to the Mingshui Formation, and Borealipollis yaojianica is found in the Yaojia Formation in the Songliao Basin. In general, the palynological assemblage reported in this paper can be correlated with that of the Nenjiang Formation in the Songliao Basin. The palynoflora of angiosperm pollen reflect the characteristics of both the "*Lytharites-Xinjiangpollis* stage" and the "Advanced angiospermous pollen stage" that were recognized by Zhang Yiyong (1999). The geological age of the Nenjiang Formation in the Dayangshu Basin is thought to be Coniacian-Campanian.

Conclusion

A new palynological assemblage, *Cedripites medius* -*Podocarpidites nageiaformis* - *Lythraites giganteus* assemblage was reported from the Nenjiang Formation in the Dayangshu Basin. According to the palynological data, the geological age of the Nenjiang Formation of the Dayangshu Basin is thought to be Coniacian-Campanian.

Acknowledgments

This research was supported by the China Geological Survey (Grant No. DD20160163 and DD20190097).

References

- Wang, C.L., Zhang, M.S., Li, X.B., and Wang, Y.N., 2017. Early Cretaceous palynological assemblages of the Shuangliao Fault Depression, Songliao Basin and their geological implications. Acta Geologica Sinica (English Edition), 91(6): 1949–1963.
- Wang, C.L., Zhang, M.S., Liu, X.S., and Sun, K., 2018. New Discovery of Palynological Assemblage for the Shahezi Formation from Type Locality, Southeastern Songliao Basin. Acta Geologica Sinica (English Edition), 92(1): 396–397.
- Zhang, Y.Y., 1999. The evolutionary succession of Cretaceous angiosperm pollen in China. Acta Palaeontologica Sinica (in Chinese with English abstract), 38(4): 435–453.