
1 Introduction 
 
The  Cambrian  Kuanchuanpu Formation  in  southern 

Shaanxi, China, ca. 535 Million years ago, has been well 
known for its three-dimensional preservation of various 
microscopic metazoans and embryo fossils (Qian, 1977; 
Han et al., 2017). Although simple in appearance, the 
microfossils from the Kuanchuanpu Formation have been 
a critical window for the understanding of the Cambrian 
explosion and the origin  of  phyla  due to  soft-bodied 
preservation (Han et al., 2017; Yang and Han, 2017). 
Hitherto, a wide scope of fossil associations, including 
cyanobacteria (Zheng et al., 2017), algae (Liu et al., 2014), 
possible protists (Zhang et al., 2017), nine animal phyla 
(Steiner et al., 2004a; Zhang and Dong, 2015; Zhang et al., 
2015), and many problematic forms (Steiner et al., 2004a) 
organisms  have  been  found  from  this  formation. 
Traditionally,  finding  new  taxa  among  numerous 
microfossil  specimens  is  time-consuming  and  labor 
costing, and it became lower efficient after more than 40 
years of research as the gradual addition of the species 
menus. All-new taxon (Liu et al., 2017) in recent years 
and in the future have been proven very rare . While 
taking advantage of  stable morphological  profiles  and 
extremely abundance of these microfossils, it is possible to 

adopt artificial intelligence to recognize and select target 
microfossils. Recently we have succeeded in dealing with 
the  simplest  case:  to  test  manually  isolated  single 
specimen by developing a multicategory fossil recognizer 
based on support vector machine (SVM) (Zhang et al., 
2019). But a more common complicated case is multi-type 
mixed image, which means one image acquired under 
microscope frequently contains several microfossils that 
are separated from each other or being attached together. 
In this circumstance, we develop a new procedure of 
accurate  image  segmentation  and  an  improved  fossil 
recognition method ensuring a high accuracy of fossil 
recognition. 

 
2 Geological Settings 

 
All the fossils materials for AI test were collected from 

are found in phosphatic limestone, belonging to Lower 
Cambrian  Kuanchuanpu  Formation  in  Hexi  Section, 
Xixiang County,  Shaanxi  Province.  The Kuanchuanpu 
Formation  is  separated  by  an  unconformity  from the 
underlying dolostone of Ediacaran Dengying Formation 
and  underlies  disconformably  the  Lower  Cambrian 
Guojiaba Formation of black shale (Fig. 1b). The age of 
sampling horizon is estimated as 535 Ma, belongs to the 

 
 

Artificial Intelligence Identification of Multiple Microfossils 
from the Cambrian Kuanchuanpu Formation in Southern 
Shaanxi, China   
 
 
ZHANG Tao1, 2, WANG Bin1, *, LI Dedong1, NIU Ben1, SUN Jie2, SUN Yifei2,  
YANG Xiaoguang2, *, LUO Juan2 and HAN Jian2   

 
1 School of Information Science & Technology, Northwest University. Chang’an District, Xi’an 710075, China. 
2 Shaanxi Key Laboratory of Early Life and Environmensts, State Key Laboratory of Continental Dynamics, Department of 

Geology, Northwest University, Xi’an 710069, China.   
 
 
Abstract: The Cambrian Kuanchuanpu Formation in southern Shaanxi, China is a critical window for the understanding of 
the Cambrian explosion, because of abundant and various exceptionally preserved metazoans and embryo fossils yielded. 
The efficiency of traditional sample manually selecting with microscopes is quite low and hinder the discoveries of new 
species, thus recognition and classification of microfossils by artificial intelligence (AI) is substantially in the request. In 
this paper, we develop a procedure for fossil area segmentation in common multi-typed mixed photos by improved 
watershed algorithm. And for better fossil recognition, previous histogram of oriented grandient (HOG) algorithm is 
replaced by scale invariant feature transform (SIFT), which is feasible for the segmented images and increase the accuracy 
significantly. Thus, the scope of application of AI fossil recognition can be extended form single fossil image to multi-typed 
mixed images and the reliability is also secured, as the result of our test presents a high (at least 84%) accuracy of fossil 
recognition.   

 
Key words: watershed segmentation, scale invariant feature transform, visual vocabulary, support vector machine  
 
Citation: Zhang et al., 2020.  Artificial Intelligence Identification of Multiple Microfossils from the Cambrian Kuanchuanpu Formation in Southern 
Shaanxi, China. Acta Geologica Sinica (English Edition), 94(1): 189–197. DOI: 10.1111/1755-6724.14498 

* Corresponding author. E-mail: wbin@nwu.edu.cn, lqzy0301@gmail.com  

Acta Geologica Sinica (English Edition), 2020, 94(1): 189–197 

© 2020 Geological Society of China 
http://www.geojournals.cn/dzxbcn/ch/index.aspx; https://onlinelibrary.wiley.com/journal/17556724 

 

 



Zhang et al. / Identification of Cambrian microfossils by AI      190 

Fortunian Stage, Terreneuvian Series (Peng et al., 2012), 
since  the  micro  fossils  can  be  comparable  with  the 
Anabarites  trisulcatus-Protohertzina  anabarica 
assemblage  zone  and  different  from  spatiotemporally 
contiguous Ediacaran microfossils assemblages, such as 
Sinotubulites and Cloudina (Steiner et al., 2007, 2014; Gu 
et al., 2018).  
 
3 Materials and Methods 
 

The rock samples were treated with 8%~10% acetic 
acid solution, with the insoluble remains being examined 
with microscopes.  

The  fossils  were  photographed  by a  Leica  M205C 
microscope with a Leica LED5000HDI light source and a 
NatureGene ProgRes C3 CCD. All the fossils images were 
taken under uniform brightness and magnification (×10). 
The original image resolution is 2592×1944 in pixel, then 
the resolution was converted into 800×600 for later digital 
process. A blue background is used to enhance the contrast 
with white or black microfossils. Hardware and software 
environment for all the tests and analyses was based on 
DELL T7600 graphical workstation, with Windows 10 OS 
and Python 3.6 for algorithmic design and development. 

We have acquired more than 5000 images in total and 
those with good quality were selected. The number of 
images  for  AI  training  and  testing  is  615  and  150 
respectively. In initial stage, all fossils materials were 
divided into 3 types: tubular fossils, spherical fossils and 
dross. We chose 205 images of each types to construct 
training set. These images only contained single fossil. On 
the other hand, we chose 100 images of mix-type fossils, 
then used segmentation algorithm (see in 5.1) to achieved 
hundreds of images of each type. We selected 150 images 
(50 of each type) form them as the final testing set. 
  

4  Paleontological  Background  and  Requirements 
Analysis 
  
4.1 The characteristics of target fossils 

This program focusses on the microfossils form early 
Cambrian,  which  have  been  intensively  studied  for 
decades.The dominant morphology types of all fossils are 
tubular and spherical ones.  

The Genus Conotheca and  Anabarites are the most 
common tubular components of this fossil assemblage. 
Conotheca are small conical tubes with circular cross-
section and blunt terminations. The conch surfaces are 
almost smooth, except for some weak growth lines parallel 
the  aperture  (Fig.2b).  Anabarites  are  similar  elongate 
cones while the cross-sections are tri-radial. Accordingly, 
each tube is divided into 3 lobes by 3 longitudinal sulci. 
Some species have similar conch surfaces as Conotheca, 
while  some  possess  prominent  transverse  ridges. 
Protoconodonts can also be assigned into tubular type 
approximately.  These  fossils  are  abundant  and  key 
elements among many of the earliest skeletal faunas and 
Genus  Protohertzina  is  the  commonest  kind. 
Protohertzina are tiny and gently curved spines, which is 
much slenderer than those tubes mentioned above. The 
strongest  curvature occurs on distal  part,  whereas the 
proximal part is almost straight. The cross-sections are 
teardrop-shaped,  with  two  shoulders  formed  by 
posterolateral ridges (Fig. 2c). Some other fossil taxa also 
appear as general tubular shape, including Hyolithellus, 
Siphogonuchites, Rhabdochites and Lopochites (Bengtson 
et al., 1990; Steiner et al., 2004a). 

Most of the spherical ones are embryo fossils (Fig. 2d). 
Those  embryos  belong  to  varied  taxa  with  different 
surface  textures  and  ornaments.  The  most  common 
Olivooides late embryos show pentaradial symmetry in 
oral part, some holoblastic cleavage embryos in the early 

 

Fig. 1. The locality (modified from Han et al., 2017b) and stratigraphic column (modified from modified from Yang et al., 
2017) of Kuanchuanpu Fomation in Xixiang, Shaanxi, China.  
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blastula stage show confined blastomeres clearly, while 
some embryos are covered by intact envelope and appear 
as smooth spheres. Although the internal structures of 
these spherical  fossils  vary dramatically,  their  general 
external form is distinguishable. Other fossils may form 
spheres in less regular shape, such as colonies of algae or 
bacteria (Steiner et al., 2004a, 2004b; Han et al., 2013, 
2016). 

 
4.2 Function requirements 

The system of AI fossil identification comprises of 
software and hardware. The key function of hardware 
would include transportation of unselected samples, image 
acquisition and partition of targets by fossil types. In this 
initial stage, our hardware system could transport samples 
and spread them on a small platform for image acquisition 
(see supplement). Based on the images acquired, we can 
design algorithm of fossil identification. Those identified 
specimens will be picked up and moved into different 
storages by a new mechanical part, which is still under 
developing.  

In previous study (Zhang et al.,  2019),  we already 
developed a prototype, using single fossil images which 
are deliberately selected by human (Fig. 2a–d), for the test 
the feasibility of AI fossil identification. Although the 
result is promising, this prototype is only theoretical. In 
order to put it into practice, two essential functions are 
needed: 

(1) The ability of dealing with multi-type mixed images 
with different taxa of microfossils and debris. In normal 
circumstance, what obtained by human eyes during sample 

selecting  are  such  mixed  images.  In  our  system,  the 
mechanical part will spread some raw samples on a small 
platform  for  image  acquisition  (Fig.  2e–g),  simply 
simulating  this  process.  Then  the  software  needs  to 
separate each fossil or dross from the original images.  

(2)  Identifying and classifying targets  into different 
categories  based  on  fossil  features.  For  a  quick  and 
primary application, we set 3 categories: tubular fossils, 
spherical fossils  and dross. It  will  also maximize the 
practicality of this system in paleontological  research, 
since  tubular  and  spherical  types  cover  a  substantial 
portion of fossil materials.  
 
5 Algorithm Design and Execution 
 
5.1 Image segmentation 

As our new requirement, the first step is segmenting 
single  targets  from  the  multi-type  mixed  images. 
Watershed algorithm is the most common approach and 
the main steps are as follow (Fig. 3): 

 
5.1.1 Image binarization and morphological operation 
of s component 

For accuracy, all the images for AI recognition need to 
be converted into HSV (hue-saturation-value) color space 
images, then binarizing them with the S component by 
threshold segmentation method defined in formula 1. S(x, 
y)  represents  the  value  of  S  component  image  at 
coordinates  (x,  y)  and  th  correspond  threshold  of 
binarization. Comparing the value of each pixel in the S 
component image with the threshold value, if S(x, y)≥th, 

 

Fig. 2. Fossil image acquisition in different strategies. 
(a-d) Single fossil images; (a) dross particle; (b) Conotheca; (c) Protohertzina; (d) Embryo fossil; (e-g) Multi-type mixed images. (Scale bar: 1 mm)  
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value in the coordinate position is reset to 1, otherwise it is 
reset to 0, thus realizing binarization. 

Then mean shift filter algorithm was applied to perform 
image smoothing processing. In the filter, the offset radius 
of physical space is 10 pixels, the offset radius of colour 
space is 100 (number range from 0 to 255). After that, 
smaller noise points within fossil areas need to be dealt 
with by opening and closing operation in the binary S-
component image. The opening operation in mathematical 
morphology (defined as Formula 2:  

A represents S component image after binarization, B 
represents structural image of morphological operation, 
the structuring element of B is a 3×3 matrix, ㊀ represents 
erosion operation and ㊉ represents dilatation operation) 
means to perform erosion operation with B and A first, 
and then use dilatation operation with B and A (Gonzalez 
and Woods, 2008). The result of opening operation is 
removing small noise points in binary image. Meanwhile, 
the closing operation (defined as Formula 3) is to fill the 
void in the fossil area by using dilatation operation with B 
and S first and then use erosion operation with B and S. 

            A○B=(S㊀B) ㊉ B                          (2) 
 A●B=(S㊉B) ㊀ B                         (3) 

5.1.2  Distance  transformation  and  completing  the 
segmentation 

In the binary image, taking the four neighborhoods of 
the central pixel as an example: if the central pixel is a 
pixel value of 1 and the surrounding four neighborhoods 
are all pixel value of 1, then the point is denoted the 
internal point. If the central pixel is a pixel value of 1 and 
the surrounding four neighborhoods are all pixel value of 
0, the central point is denoted isolated point (Malik et al., 
2001). 

Distance  transformation  is  to  obtain  the  set  of  all 
internal points that denoted S1 and the set of non-internal 
points that denoted S2 in the binary image at first; then, for 
each interior point P(x, y) in S1, the minimum distance 
between P and points in S2 is calculated by distance 
formula 4, and the minimum distance is formed into a set 
D1; finally, the maximum Dmax and minimum Dmin values 
in D1 are obtained, and the gray value (G) of each internal 
point in the set S1 is converted by the formula 5(Vincent, 
1993). According to the Euclidean distance between each 
pixel and the surrounding pixels in the binary image, a 
distance image reflecting the distance between the fossil 
and the background can be obtained. 

D=sqrt[(x− i)2 + (y − j)2]                       (4) 
Where the sqrt denotes square root, (x, y) represents the 

coordinates  of  the  target  pixel,  (i,  j)  represents  the 

Fig. 3. Watershed segmentation process and results of multi-type mixed fossil images.  

 (1) 
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coordinates of background pixel. 
G(x, y)=255×|D1(x, y) −Dmin|/|Dmax− Dmin|         (5) 

After distance transformation, In the distance matrix D, 
those elements with value lager then threshold value will 
be set as boundaries. The threshold value is determined by 
formula 6 (dij represents each element in matrix D). Then 
the boundaries of each fossil area can be achieved. With 
these boundaries, the contour information of the fossil is 
extracted and the segmentation mask can be constructed 
accordingly, which finally realizes the segmentation and 
so that each target is extracted from a multi-type mixed 
image (Fig. 3). 

 
5.2 Fossil recognition 
5.2.1 Feature extraction of fossil images 

Segmented images are now processed for recognizing 
and classifying base on the different features, which can 
be described by Scale Invariant Feature Transform (SIFT) 
for a computer. SIFT shows in-variance with rotation, 
scale and brightness, and resistance of view transformation 
and image noise (Lindeberg, 2012). Major steps of SIFT 
analysis  are  as  follows:  1)  Space  extremum  points 
detection with difference of Gaussians (DoG); 2) Location 
of SIFT feature points; 3) Direction detection of SIFT 
feature points; 4) Generation of SIFT feature vectors. 

Normally, when an object is observed by human eyes, it 
can be distinguished regardless of the size changes within 
a certain range. In order to make the computer achieve 

similar behavior and extract the features of an object with 
similar scale-invariant characteristics, it is necessary to 
provide various object images of different sizes and clarity 
to the computer for learning. For this reason, the SIFT 
feature extraction algorithm designs a multi-scale object 
image DoG pyramid to find SIFT feature points (Fig. 4b) 
and  finally  construct  a  128-dimensional  SIFT  feature 
vector (Fig. 4c) (Mortensen et al., 2005). 
 
5.2.2 SIFT bag of words model of the training set of 
fossil samples  

Due to the difference of perspective, shape, surface 
texture and the number  of  feature points  in  different 
samples, the bag of words (BoW) model (Zhang et al., 
2010) is needed to find the common features of the same 
type of fossil images and the differences between different 
types of fossils. 

As in Fig. 4, we take three types of the targets as an 
example,  assuming the total amount of fossil  training 
image is n, namely I1-Source, I2-Source, … In-Source. 
First, the SIFT features of each image need to be extracted 
and represent as I1-SIFT, I2-SIFT, … In-SIFT, then all 128-
dimensional feature vectors in each image form a matrix 
in Fig. 4c, at last, K-Means clustering algorithm (Wagstaff 
et al., 2001) cluster the column of C and form a new 
matrix in Fig. 4d, which shall be the visual vocabulary or 
“codebook”.  The  clustering  process  can  also  be 
understood as classifying SIFT feature points of all fossil 
sample images. In this “codebook”, the center of each 
identified cluster is a single “word”, which represents 
major feature of each fossil type. 

 

Fig. 4. The process of constructing the SIFT-BoW model (visual vocabulary).   
(a) The segmented fossil image list including tubular fossil, spheroidal fossil, residue detritus; (b) the SIFT feature points of fossil images; (c) 
matrix of SIFT features of all images in the training set; (d) visual vocabulary formed by K-Means clustering; (e) frequency statistic of SIFT 
features within visual vocabulary of each image (TF); (f)  inverse document frequency calculated by accumulating each histogram in C (IDF) .  

 (6) 
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5.2.3 Inverse Document Frequency Analysis of Bag of 
Word Model of Fossil Sample Image in Training Set 

The technology of term frequency–inverse document 
frequency (TF-IDF) (Chum et al., 2008), which is mainly 
used in text data mining, can evaluate the importance of 
words in a document or a file set in a corpus. This method 
is mainly divided into two parts: term frequency (TF) 
statistics  and  inverse  document  frequency  (IDF).  TF 
mainly counts the occurrence of words in documents, and 
IDF mainly reflects the occurrence of the file containing 
particular words among all files. 

The idea of the TF-IDF technique can also be applied in 
the analysis of fossil image features. In this scenario, each 
SIFT feature point in each fossil sample image is regarded 
as a word, and the visual vocabulary formed by clustering 
in  SIFT-BoW model  is  regarded  as  a  document.  TF 
vectors are generated by counting the frequency of SIFT 
feature points appearing in the visual dictionary of each 
fossil image. The TF vectors in all fossil images of the 
training  set  are  accumulated  by  K clustering  centers. 
Finally, the IDF vectors are calculated by formula 7 and 
the flow chart of this calculation is shown in Fig.5. 

IDFi = log[K/(Ni + 1)]  i=1,2,…,K                  (7) 
The K represents the number of clustering centers in 

visual  vocabulary,  the  Ni  represents  the  accumulated 
occurrence in all training set when the clustering centers 
count to i，IDFi represents inverse document frequency 

when the clustering centers count to i. IDF vectors can be 
generated after the calculation has been performed in all 
clustering centers. 

IDF plays the key role of feature weighting in the 
representation  of  fossil  image  features.  According  to 
formula 7, SIFT features with high occurrence (Ni ) among 
all types of fossils in the training set will have low IDF 
values, while SIFT features with fewer occurrences will 
have high IDF values. These features of SIFT with high 
IDF values will be more useful for fossil classification.  
  
5.3 The representation of fossil image features of the 
training set 

Fossil samples in the training set are comprised of many 
different  types.  In  order  to  construct  the  features  for 
learning and training of each type of fossil image, TF-IDF 
features processing is needed for every type of fossil. The 
process is shown in Fig. 5 and it can be divided into 3 
steps:  

(1) SIFT features are extracted from each image of the 
same type of fossil image (I1, I2, …, In), and a 128×n 
SIFT feature matrix in (a) is constructed. 

(2) Comparing the SIFT features of each image with the 
visual  vocabulary  of  clustering  centers  expressed  by 
matrix in (b). Judging the assignment and statistic the 
number of occurrences of feature points, and finally, the 
TF histogram vectors of each image will be obtained. 

 

Fig. 5. The feature representation procedures for each type of fossil training set. 
(a) The SIFT feature matrix of fossil training set images of the same type. (b) the visual vocabulary based on K-Means clustering of all types of 
training set images. (c) The TF statistics of similar fossil images. (d) The IDF vectors generated from images of all types of the training set. (e) 
The TF-IDF obtained by weighting of TF in C graph with IDF in D graph.  
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(3) The TF histogram of each image in (c) is weighted 
with  IDF  histogram  one  by  one,  and  the  weighted 
corrected TF-IDF is generated. 

After the TF-IDF process of SIFT features of fossil 
images, the representative features of the certain type of 
fossil images can be better selected. 
 
5.4 Recognition of segmented fossil images 

Considering lots of individual fossil images that have 
been artificially recognized and labeled previously, we use 
support vector machine (SVM), which is a supervised 
machine learning method,  for  fossil  classification and 
recognition. At present, SVM algorithm has been widely 
used in various fields of data mining, data classification 
and data recognition (Cortes and Vapnik, 1995; Cusano et 
al., 2003). The SVM in this paper is almost the same with 
the one we design formerly (Zhang et al., 2019).    

For AI training and learning, each single fossil image 
that has been labeled artificially is used as a sample in the 
training set. SIFT features are extracted from each type of 
single fossil sample and clustered to generate SIFT-BoW 
model. Then TF-IDF algorithm could find representative 
feature vectors. Finally, the feature vectors are sent to the 
SVM classifier. As we know, the fossils are divided into 3 
types:  tubular,  spherical,  and  dross,  so  two  SVM 
classifiers need to be trained, namely, SVM1 separate 
dross from other types, and SVM2 separate spherical and 
tubular fossils (Abedi et al., 2012; Lee and Lee, 2007; 
Lindeberg, 2012). 

Fig. 6 shows the testing process of identification of 
multi-types mixed fossil images. Firstly, each image with 
mixed  fossils  is  segmented  into  several  images  with 

individual  fossil  by  watershed  algorithm.  Then  SIFT 
features are extracted from each segmented fossil image 
and  TF-IDF  processing  is  performed  to  generate  the 
recognizable features. Finally, the features are imported 
into two SVM classifiers of fossils to be discriminated. 

 
6 Discussion 
 
6.1  Image  binarization  as  preparation of  applying 
watershed algorithm. 

The  idea  of  the  watershed  image  segmentation 
algorithm originates from topography. In an image, the 
boundaries  of  different  objects  and  background  are 
considered as virtual ridges between the basins which can 
segment images like watersheds (Haris et al., 1998). The 
most commonly used watershed algorithm is the flooding 
algorithm (Asundi and Wensen, 1998) (Fig. 7). 

However,  during  the  image  processing,  due  to 
equivalence of gray value of the pixels in the image and 
the elevation of the topographic map, using the original 
gray value in a common photo will make the algorithm too 
sensitive to the noise and small gray changes and lead to 
the over-segmentation that the image region originally 
belonging to the same object is divided into multiple 
regions  (Beucher,  1994).  In  order  to  avoid  over-
segmentation, the original gray-scale image needs to be 
converted  into  the  binary  image  and  the  method  of 
distance transform is necessary to reflect the distance 
between the target and the background (Bailey, 2004). 
After these steps, the watershed algorithm can be eligible 
to find the boundaries of target areas in a gray-scale 
image. 

 
6.2  Adoption  of  S-component  for  successful 
segmentation 

In most instances, the color photos of fossils are stored 
and presented by RGB (red-green-blue) color space color 
space (Süsstrunk et al., 1999). However, the RGB space 
couldn't distinguish fossils from the blue background very 
well. Therefore, HSV color space is more appropriate for 
extracting fossil areas and segmentation, because the three 
components:  H  (hue),  S  (saturation),  and  V  (value) 
(Cucchiara et al., 2001; Sural et al., 2002) are different 
attributes of a color image. H is measuring the range of 
color  by  angle,  S  represent  the  degree  of  closeness 
between color in image and spectral color, V define the 
brightness  of  color.  We  need  to  find  which  of  3 

 

Fig. 6. The process of multi-types mixed fossils identifica-
tion.  

 

Fig.7. Watershed image segmentation algorithm model  
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components is the best for distinguishing fossils from 
background. Base on a random test of 200 fossil images, 
we extracted all 3 components and made comparisons, the 
results  reveal  that  image  binarization  by  using  S 
component  can  better  highlight  fossils  from  the 
background, since in this situation, the difference between 
background and fossil  could be maximized and more 
integrate fossil area could be extracted accurately. While 
using H component usually cause incomplete extraction of 
fossil areas because the difference of blue background and 
fossil areas are not adequate to distinguish each other, and 
using V always cause failure for extracting targets, since V 
component  shows  almost  no  difference  between 
background and fossil areas. 

 
6.3 SFIT algorithm for more accurately recognition 

Fossil  features  acquisition  is  the  first  step  of  AI 
recognition.  Previously,  this task is  completed by the 
HOG algorithm. the HOG algorithm is a feature algorithm 
for object edge detection, which can construct features by 
collecting  and  computing  statistical  information  of  a 
specific area of an image. When dealing with image which 
only contain single fossil sample, it could achieve 95% or 
higher  accuracy  for  fossil  recognition,  by  extracting 
statistical gradient data as the fossil boundaries (Zhang et 
al., 2019).  

However, when the HOG algorithm is applied to each 
segmented image form a multi-type mixed photo,  the 
accuracy dropped dramatically to approximate 60%. The 
reason we assumed is the nature of HOG algorithm is not 
suitable in this condition. The essential idea of HOG is 
extracting the gradient in an image, the accuracy depends 
on the difference of gradient feature. In our experiment, 
during the segmentation, each target object area (fossil or 
dross) were extracted and given a new background in the 
new segmented images, which caused the loss of gradient 
features along the object edges and lead to the rapidly 
decreased recognition accuracy. In this paper, after a series 
of tests of feature extracting algorithm, we finally develop 
a new model by using SIFT with BoW model to extract 
and present fossil features, which can effectively avoid the 
error before and after image segmentation. 

 
7 Conclusion 

 
The results of AI recognition are shown in Table 1. In 

this experiment, totally 615 images are used for training 
set. Those images are composed of three types (tubular, 
spherical, dross, each type 205 images) of selected single 
fossils sample. While totaly150 images are used as testing 
set. These images are segmented from multi-type mixed 
fossil  images  and  classified  into  three  types  (tubular, 
spherical, dross, each type 50 images). 

The  data  demonstrate  that:  (1)  with  considerable 

amount of training, we have achieved at least very high 
accuracy in identification microfossils, proving a great 
perspective  of  AI  identification  for  early  Cambrian 
microfossils. (2) We extend the scope of application of AI 
recognition form images with single fossil to multi-typed 
mixed fossil images with microfossils in different types, 
positions, amounts and postures. (3) We develop reliable 
approaches  for  fossil  image  segmentation  by  the 
watershed algorithm, and for more accurate fossil feature 
extraction under the circumstance of segmented image 
based on SIFT algorithm rather than HOG algorithm. 
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