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Heavy minerals with densities higher than 2.8 g.cm™ are
generally considered minor components of sand or sandstone,
typically forming 1% of the weight in the samples (Mange and
Wright, 2007). Heavy-mineral analysis is an effective tool for
studying the sedimentary provenance of siliciclastic rocks,
reconstructing sedimentary sources to sink routes, subdividing
and correlating non-fossiliferous siliciclastic strata, and finds
various uses in mining, exploration and forensic science (Mange
and Wright, 2007). Many heavy minerals are diagnostic of
particular sources and the factors affecting the distribution of
heavy minerals in sediment are well understood (Garzanti and
Ando, 2007). However, due to the lack of rapid and accurate
analytical instruments the identification of heavy minerals still
relies on visual microscopical identification. The traditional
composition analysis of heavy-mineral assemblage is laborious,
time-consuming, and requires a highly skilled operator, which
greatly restricts the use of heavy mineral analysis (Vermeesch et
al., 2017). Development of a fast and reliable heavy mineral
automatic identification system would not only have great
significance for the basic sedimentological research, but also
important applications in the exploration of oil, gas and mining
industries.

In recent years some researchers focused on the technological
development of automated classification and identification for
heavy minerals, but little progress has been made. Ando and
Garzanti (2014) applied Raman spectroscopy as an innovative
tool for the reliable identification of heavy minerals. However,
this method is used as an auxiliary for single mineral
identification, not automatic identification. Currently, the
quantitative evaluation of minerals by scanning electron
microscopy (QEMSCAN), produced by the FEI Company, is the
only commercially available method for heavy mineral analysis
(Gu, 2003). Generally speaking, QEMSCAN is a good choice for
this purpose since it is simple and adaptable. However, Nie and
Peng (2014) compared the heavy mineral assays obtained by
QEMSCAN and traditional optical resolution both in Chinese
loess and red clay, and found significant deviations between
results. For instance, QEMSCAN yielded estimates of
hornblende content three times higher than were obtained from
traditional optical methods. The accuracy of rutile abundance
was two times higher, and the accuracies of tourmaline, garnet,
zircon, and epidote by QUESCAN reaches 97%, 54%, 51%, and
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35% higher than were obtained from traditional optical method,
respectively. These discrepancies arise primarily because 1)
QEMSCAN cannot distinguish minerals having the same
chemical composition (e.g., titanium oxides) or rock fragments;
and 2) mineral composition is variable, which means that the
measured mineral energy spectrum may differ greatly from that
of the standard mineral database used to calibrate the
QEMSCAN software.

Recently, SEM-EDS has proved to be an effective, reliable,
intuitive and quantitative elemental analysis method, which has
been widely used in both rock and mineral identification (Akkas
et al., 2015). However, the SEM-EDS method does not provide
accurate and precise results of trace elements (Newbury and
Ritchie, 2013). This makes manual mineral identification-based
SEM-EDS data very challenging. Thus, the search for reliable
computer-aided identification techniques goes on.

At their early stages,computer-aided techniques for mineral
classification based on SEM-EDS data onlychecked look-up
tables or identified minerals in the scanning electron micrograph
frames using maximum likelihood classification (Tovey and
Krinsley, 1991). With the development of artificial intelligence,
researchers have attempted to use machine-learning methods to
carry out automatic mineral identification. In a pioneering
investigation, Ruisanchez (1996) used the Kohonen neural
network to analyze the EDS data from 12 different minerals.
Gallagher and Deacon (2002) used three different multilayer
perceptrons and the Kohonen self-organizing map to
automatically classify minerals based on their SEM-EDS data.
These authors concluded that backpropagation and quasi-Newton
algorithms perform well at mineral-identification tasks. Tsuji et
al. (2010) also used the Kohonen self-organizing map to
automatically classify eight minerals based on electron probe
data. Akkas et al. (2015) employed SEM-EDS data to evaluate
use of a decision-tree approach to the automatic classification of
10 different minerals and obtained a good result. Ishikawa and
Gulick (2013) used a backpropagation algorithm of artificial
neural networks to train the Raman spectra of igneous minerals
and successfully used the method to automatically identify
minerals including olivine, quartz, plagioclase, potassium
feldspar, mica and pyroxene with accuracy reaching up to 83-100
in percentage. Some researchers have even combined image
analysis (backscattered electron, BSE) with mineral energy-
dispersive  X-ray = emission  spectroscopy for  mineral
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Table 1 Chemical composition of common heavy mineral in sand or sandstone and potential analysis for automatic

identification
Chemical classification Mineral Abbre- . Chemical Image
. s Chemical formula . .
of heavy mineral name viation analysis  analysis
Rutile Rt TiO, v
Cassiterite Cst Sn0O, A
Spinel Spl AB>X4, A=Mg. Fe. Zn. Mn, B=Al. Cr. Fe J
Oxide Chromite Chr FeCr,04 A
Magnetite Mag Fe;04 ~/
Ilmenite Ilm FeTiO3 A
Hematite Hem Fe,05 N
Cinnabar Cin HgS v
Sulfide Pyrite Py FeS, v
Sulfate Barite Brt Ba[SO,] ~/
Tungstate Scheelite Sch Ca[WOy] v
Apatite Ap Cas[PO4];5(F,C1,OH) V
Phosphate Monazite Mnz (Ce,La) PO, J
Zircon Zm Zr[SiO4] ~/
. Titanite Ttn CaTi[SiO04]O v
Nesosilicates . . K
Epidote Ep Cax(Fe, ADAL[Si04][Si,07]O(OH ) J v
Garnet Grt A;Bo[SiO];, A=Mg. Fe*’. Mn. Ca, B=Al. Fe’’. Cr. Ti. Mn J v
Inosilicates  Tourmaline  Tur NaR;Al[Sic05](BOs);(OH)s, R represents Mg, Fe*'. Li'+Al J J
Silicate . Wo0.1X2Ys5ZgO0(OH);, W=Na. K, X=Na. Li. Ca. Mg. Fe’'. Mn. Li,
. Amphibole  Amp Y=Mg. Fe*'. Mn. Al. Fe**, Z=Si. Al v v
Inosilicates .
Pyroxene Px Wip (X,Y) 142,06, W=Ca. Na, X=Mn. Mg. Fe". Li, J J
Y Y=Al. Fe*, 7=Si. Al
. Muscovite Ms KAIL[AISi30,0](OH), J
Phyllosilicates .. .
Biotite Bt K(Mg_,Fe);[AlSuOl0](OH,F)2 N

identification. For instance, Frei et al. (2005) and Keulen et al.
(2012) have developed a computer-controlled scanning electron
microscopy (CCSEM) automatic particle analysis system based
on back-scattered electron and energy dispersive X-ray data. The
Geological Survey of Denmark and Greenland used this CCSEM
system to determine the elemental chemistry of both individual
minerals and rock samples.

Generally, the heavy minerals can be classed into different
chemical groups. We can use micro-XRF to get the relative
chemical compositions (major elements larger than 1% in
weight) of each heavy mineral. At this stage, most oxides
(including rutile, cassiterite, spinel, chromite, ilmenite), sulfide
(cinnabar, pyrite), sulfate (barite), tungstate (scheelite), and
phosphate (apatite, monazite) can be recognized easily according
to their specular major chemical composition (Table 1).
Magnetite can be separated from hematite by its magnetism. The
great challenge for automated heavy-mineral identification by
their chemical composition arises in the case of those silicate
minerals which share similar chemical compositions. Among
these, zircon and titanite can be recognized by their chemical
composition. Phyllosilicate minerals, including muscovite and
biotite, are special not only in terms of their crystal shapes, but
also by their potassium contents.

We have applied machine-learning techniques in classifying
22 types of heavy minerals collected from modern river sands in
China based on the EDS data. Preliminary results are promising,
with training accuracy higher than 97.9675% by the random
forest classifier and X-ray probe times of c. 6 sec. Five silicate
groups, including epidote, garnet, tourmaline, amphibole, and
pyroxene, had similar chemical compositions. For the
differentiation of these minerals we suggest using image-analysis
techniques applied to micrographs in polarizing or binocular
microscopes. By using modern image analysis procedures,
augmented by artificial intelligence technologies, a new, fast
method for the accurate identification of heavy mineral

constituents can be achieved.
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