
1 Introduction 
 
The most significant factor controlling the rare earth 

elements (REE) chemistry of carbonate rocks is the 
composition of these elements dissolved in seawater 
(Elderfield et al., 1988; Piepgras and Jacobsen, 1992). 
REE signatures of ancient seawater reflect (1) the secular 
changes in the input source of REEs (Kamber and Webb, 
2001; Kamber et al., 2004; Feng et al., 2009); (2) the 
variations in alkalinity and oxygenation levels of 
depositional environments (Greaves et al., 1999; Kim et 
al., 2012; Hu et al., 2014); and (3) paleobathymetry, 
oceanic circulation, paleogeography, and depositional 
environments (Kamber and Webb, 2001; Kemp and 
Trueman, 2003). In addition, REEs in carbonates can be 
useful to investigate the impact of diagenetic processes 
(Jiang et al., 2014 and 2015; Franchi et al., 2015). 

REE compositions in carbonate are relatively stable and 
remain unaltered as long as the carbonate rocks have not 
undergone dissolution and recrystallization processes 
(Webb and Kamber, 2000; Shields and Webb, 2004; 

Azmy et al., 2011). Hence, the REE signatures in 
carbonates are regarded as proxies for paleoenvironment 
reconstructions in both Precambrian (Kamber and Webb, 
2001; Allwood et al., 2007; Allwood et al., 2010) and 
Phanerozoic strata (Webb and Kamber, 2000; Nothdurft et 
al., 2004; Olivier and Boyet, 2006; Eltom et al., 2017). 

REE characteristics of reefal limestones are good 
indicators of paleoenvironment conditions, such as the 
REE analyses of reefs during the Holocene (Webb and 
Kamber, 2000) and Devonian (Nothdurft et al., 2004), 
although there is an ongoing debate regarding the extent to 
which reefal limestones retain their original REE 
signatures. Foremost, concerns were largely focused on 
the potentials of diagenesis modifications (Webb and 
Kamber, 2000; Nothdurft, et al., 2004, Franchi et al., 
2015). In this sense, any attempts to examine the possible 
impact on paleoenvironment of reefal limestones must 
first evaluate the diagenetic effect (Webb and Kamber, 
2000). 

In the Ordovician Tarim Basin, the REE analyses are 
seldom studied, and most of the published papers are 
about the study of diagenesis processes on the dolomite 
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(Zhang et al., 2006; Han et al., 2009; Wang et al., 2009; 
Zhang et al., 2010; Zhang et al., 2014; Liu et al., 2017; 
Guo et al., 2018) and vein samples (Cai et al., 2008): 
however, the REY analysis of limestones is very limited. 
This motivates our study. The presented work is the first 
attempt to explore paleoenvironment based on the 
analyses of REE data from reefal limestones in the 
Ordovician Tarim Basin. 

In this study, we collected a bunch of petrological and 
geochemical datasets (e.g., major and trace elements, 
REEs, carbon and oxygen isotopes) of reefal limestones 
in the Ordovician Tarim Basin. We use them to 
investigate the impact of diagenesis, redox, and 
terrestrial input on REY distributions of reefal 
limestones. Specifically, the tasks of this study are to (1) 
determine the REY patterns of different reefal-related 
facies; (2) evaluate the source of these REYs; (3) assess 
the possibility of using the REY patterns of the reefs as a 
paleoenvironment archive; (4) provide recommendations 
for future studies of REYs. 

 
2 Geological Background 

 
The Tarim Basin is the largest sedimentary basin in 

China, which is rich in oil and gas resources (Fig. 1a; 
Kang and Kang, 1996). The petroleum reservoirs are 
dominantly within the Ordovician strata, mainly consisting 
of shallow-water platform carbonates (Huang et al., 2017). 
The Tarim Basin is next to the Kunlun and Altun 
Mountains to the south, Tianshan Mountains to the north. 
It has an area of 560,000 km2 (Fig. 1b). This basin, a peri-
Gondwanan paleo-plate, was situated in the low to middle 
latitudes during the Ordovician (Huang et al., 2000; 
Torsvik and Cocks, 2013; Yang et al., 2017). During this 
period, reefs were developed worldwide (Webby, 2002), 
especially in the Ordovician Tarim Basin. The reef-related 
reservoirs in this basin are considered to be with high 
porosity and permeability. The reef complex occurs along 
the Lianglitage Mountain in the Yingshan and Yijianfang 
formations of the Lower-Middle Ordovician (Fig. 1c and 
1d; Guo et al., 2010; Jiao et al., 2012; Li et al., 2017a). 

The Yingshan Formation (O1-2y, about 520 m thick) is 
characterized by grainstones, packstones, and dolostones 
(Fig. 1d). This formation was evolved from a restricted 
platform facies to an open platform facies. The Yijianfang 
Formation (O2yj, about 70 m thick) is characterized by 
bioclastic grainstones and intraclastic grainstones that 
deposited in a platform margin setting (Fig. 1d; Gu et al., 
2005). 

 
3 Samples and Methods 
 
3.1 Sample collections 

A well-exposed reef in the Nanyigou profile (NYG reef) 
along the Lianglitage Mountain provides an outcrop that 
could possibly be used for studying the REY 
characteristics of reefal limestones. A total of twenty-five 
samples were carefully selected from the NYG reef (Fig. 
2a).  Four of them were collected from the base facies, two 
from the reef-core facies, five from the reef-flank facies, 
and fourteen from the sealing facies (Fig. 2b). When 

sampling, the following criteria were adopted to minimize 
potential contaminations: (1) siliciclastic materials, 
ferromanganese minerals, and phosphates were picked out 
as suggested by previous reseachers (Banner et al., 1988; 
Zhang, et al., 2008), (2) veins were ruled out, as they 
imply the diagenesis process, such as the influences of 
hydrothermal (Murray et al., 1991, 1992; Bau and Dulski, 
1999; Franchi et al., 2015), (3) micro-sampling techniques 
were used to sample the limestones and avoid areas like 
muddy laminae, stylolites or fractures, and (4) 5% acetic 
acid is used for carbonate dissolution for the REY 
analyses to minimize the impact of terrigenous 
contamination (Webby and Kamber, 2000; Rongemaille et 
al., 2011). 

 
3.2 Thin section observations 

A total of twenty-five thin sections, as well as oriented 
and polished slabs, were cut perpendicular to bedding and 
were prepared at the China University of Geosciences 
(Beijing). Another set of thin sections were stained with 
Alizarin Red S to distinguish calcite and dolomite. The 
petrography, depositional structures, and diagenesis 
characteristics in these thin sections were described using 
a Leica polarizing microscope housed at the Bureau of 
Economic Geology, the University of Texas at Austin. 

 
3.3 Geochemical analyses 

All samples were crushed and powdered down to a 
grain-size smaller than 200-mesh for geochemical 
analyzes. A total of 500 mg powder was obtained for each 
sample. 

Approximately 200 mg of powdered samples were 
analyzed for major and trace elements. Major elements 
were measured using an X-ray fluorescence spectrometer 
(AB-104L), with an analytical precision better than 2%. 
For trace elements, samples were cleaned in ultra-pure 
water before dissolution in 2 ml of 15 N double-distilled 
HNO3. Solutions were then spiked with 10 ppb of internal 
standards for NexION300D ICP-MS (ELAN DRC-e) 
analyses with an analytical precision better than 5%. All 
geochemical tests were performed at the analytical 
laboratory of the Beijing Research Institute of Uranium 
Geology. The experimental procedures have been 
described in other publications (e.g., Nothdurft et al., 
2004). 

About 50 mg of powdered samples were weighted for 
the carbon and oxygen isotope analyses. These samples 
were reacted in an inert atmosphere with ultrapure 
concentrated (100%) orthophosphoric acid at 25ºC in a 
Thermo-Finnigan Gasbench II. The CO2 from carbonate 
minerals was then automatically released through a 
chromatographic column and delivered via a stream of 
helium to the source of a Thermo Scientific MAT253 
stable isotope mass spectrometer, where the gas was 
ionized, and its isotopic ratios were measured. All the 
reported values were based on the Vienna Pee Dee 
Belemnite (V-PDB) standard by referring to GBW-
04416 (reference number GB04416: δ13C＝1.61‰
±0.03‰ V-PDB, δ18O＝−11.59‰±0.11‰ V-PDB). The 
test results are presented in ‰. The precisions of the 
δ18O and δ13C measurements are ±0.1‰ and ±0.2‰, 
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Fig. 1. Tectonic sketch map of the Tarim Basin and stratigraphic column of the Lower to Middle Ordovician. 
(a) the location of the Tarim Basin in China (after China National Bureau of Surveying and Mapping Geographical Information); (b) the tectonic 
units of the Tarim Basin; (c) the location of the NYG reef along the Lianglitage Mountain; (d) the stratigraphic column of the Lower to Middle 
Ordovician at the Lianglitage Mountain (modified from Guo et al., 2010).  
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respectively. 
 
4 Results 

 
4.1 Petrography and diagenesis 

Based on the types of lithology and organisms, as well 
as the geometric characteristics, from bottom to top, the 
reef is subdivided into four depositional facies: the base 
facies, reef-core facies, reef-flank facies, and sealing 
facies (Fig. 1e), adopting the nomenclature proposed by 
Gül and Eren (2003). The base facies is mainly composed 
of bioclastic grainstones (Fig. 3a). The reef-core facies is 
the major part of the reef buildup and displays a low-relief 
dome. The main lithology in this subfacies is composed of 
bafflestones, and the reef-building organism is Calathium 
(Li et al., 2017b; Fig. 3b). The reef-flank facies deposits 

on top of the reef-core facies and is mainly composed of 
bioclastic wackestones and packstones (Fig. 3c). The 
predominant lithology of the sealing facies is intraclastic 
grainstones (Fig. 3d). Stratigraphically, this reef evolved 
from an initial colonization phase (base facies) into a 
vertical aggradation phase (reef-core facies) and ultimately 
into a capping phase (sealing facies), that is mainly 
controlled by sea-level changes (Meng et al., 2018). 

The diagenetic fabrics include cements, dissolution 
pores and fractures which is linked to the following three 
main stages: marine, subaerial exposure and meteoric, and 
burial diagenesis. Marine (near-surface) diagenesis 
accompanied the deposition of micrite and micritic algae, 
skeletal components, and accretion of sediments. It is 
supported by the occurrence of the fibrous or bladed 
isopachous (C1) marine cements (Fig. 4a–d) with internal 

 

Fig. 2. Morphologies and sampling locations of the NYG reef. 
(a) five vertical transects (L1-L5) (outlined by blue closed curves) and locations of samples (red dots) in the NYG reef; (b) facies units of the NYG 
reef, including the base facies, reef-core facies, reef-flank facies, and sealing facies.  
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sediments and microborings. Subaerial exposure and 
meteoric diagenesis resulted in the development of an 
early secondary dissolution pores (D1, D2) (Fig. 4a–c). 
Meteoric equant cements (C2) precipitated below water 
table in some of the interparticle pore spaces (Fig. 4a–d). 
Burial diagenesis accompanied exists of microfractures 
(Fig. 4e, 4f) that affected by the tectonic movement. 

 
4.2 Geochemical results 
4.2.1 Major and trace elements 

Analyses of major elements indicate that the CaO 
contents of these samples (ranging from 50.58% to 
56.23%, with an average of 54.38%) are close to the 
theoretical value of calcite (56.03%). Moreover, the total 
value of Al, Fe, K, Na, Ti, P, Mg, and Mn are all less than 
5‰. This means that these samples represent pure 
limestones that are dominantly composed of calcite. The 
results of major and trace elements are listed in Tables 1 
and 2. 

 
4.2.2 Isotopes data 

The δ18C values of reefal limestones are clustered 
around zero (ranging from −0.70‰ to +0.60‰, with an 
average of 0), whereas the δ13O values vary from −7.30‰ 
to −4.80‰, with an average of −6.00‰ (Table 2). A plot 
of all carbon and oxygen isotope data shows no apparent 
correlation between δ18O and δ13C values (Fig. 5). 

 
4.2.3 Rare earth elements and Yttrium (REYs) 

The REY concentrations of twenty-five samples are 
shown in Table 3. The REY contents in most plots are 

normalized (and given the subscript SN) to a standard 
shale average (PAAS-Post Archaean Australian Shales; 

 

Fig. 3. Lithologies from different facies units of the NYG 
reef. 
(a) photomicrograph shows bioclastic grainstones from the reef base, in 
which crinoids are the main bioclasts, which are shown as donut-shaped 
(DO), semicircular (SE), or rectangular (RE) (sample NYG-2-1, plane-
polarized light); (b) bafflestones from the reef core, Calathium framworks 
(CA) are scattered in the reef core; (c) photomicrograph shows the bio-
clastic wackestones from the reef-flank, in which bioclasts contain single-
row  foraminifera  (FO)  and  crinoid  (CR)  (sample  NYG-1-3,  plane-
polarized light). (d) photomicrograph showing the intraclastic grainstones 
from the sealing facies, in which grains have a high degree of roundness 
(sample NYG-3-5, plane-polarized light).  

 

Fig. 4. The diagenetic features of the NYG reef. 
(a) photomicrograph of intraclastic grainstones; arrows point at the fi-
brous isopachous cement (C1), early equant cement (C2) and intraparti-
cle dissolution pore (D1) (sample NYG-3-6, plane-polarized light); (b) 
photomicrograph of intraclastic grainstones; arrows point at the fibrous 
isopachous cement (C1), early equant cement (C2) and intraparticle 
dissolution  pore  (D1)  (sample  NYG-5-4,  plane-polarized  light);  (c) 
photomicrograph of intraclastic grainstones; arrows point at the intrapar-
ticle  dissolution  pore  (D1)  and  interparticle  dissolution  pore  (D2) 
(sample NYG-4-2, plane-polarized light); (d) photomicrograph of algae 
grainstones (sample 2-2); arrows point at the bladed isopachous cement 
(C1) and early equant cement (C2) (sample NYG-2-2, plane-polarized 
light); (e) photomicrograph of bioclastic grainstones; arrows point at the 
microfracture (Fr) (sample NYG-2-1, plane-polarized light); (f) photomi-
crograph of bioclastic grainstones; arrows point at the microfracture (Fr) 
(sample NYG-4-1, plane-polarized light).  

Fig. 5. Cross-plot of carbon and oxygen isotopes from twenty
-five samples of the NYG reef.  
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McLennan, 1989). Yttrium (Y) has been inserted between 
Ho and Dy in analyses of REY patterns due to its similar 
properties to the Lanthanides and similar radius to its 
neighbors (Bau and Dulski, 1996). 

The ratios of NdSN/YbSN are computed to determine the 

“depletion” of LREEs owning to the presence of positive 
La anomalies and negative Ce anomalies in shallow 
seawater (Nothdurft et al., 2004). The calculation of Ce 
and La anomalies follows the technique of Bau and Dulski 
(1996), where Pr/Pr* = PrSN/ (0.5 CeSN + 0.5 NdSN) and 

 Table 1 Major elements results of samples from the NYG reef (wt%) 
Number Samples Lithologies facies units Ca Si Al Fe K Na Ti  P Mg Mn 

1 NYG-1-1 Bioclasticic packstones base facies 55.45 1.040 0.116 <0.010 0.021 0.148 0.008 0.007 0.302 <0.0031
2 NYG-1-2 Peloidal grainstones base facies 56.23 0.540 0.110 <0.010 0.025 0.063 0.006 0.008 0.202 0.002 
3 NYG-1-3 Bioclasticic wackestones reef-flank facies 55.74 0.551 0.181 <0.010 0.036 0.052 0.007 0.006 0.275 <0.0031
4 NYG-1-4 Intraclasticic grainstones sealing facies 55.13 1.150 0.300 <0.010 0.096 0.054 0.016 0.007 0.287 0.004 
5 NYG-1-5 Intraclasticic grainstones sealing facies 55.62 1.150 0.344 0.038 0.113 0.061 0.018 0.007 0.328 0.004 
6 NYG-1-6 Intraclasticic grainstones sealing facies 55.62 1.150 0.292 0.032 0.106 0.050 0.017 0.006 0.312 0.005 
7 NYG-2-1 Bioclasticic packstones reef base 55.66 0.658 0.119 0.011 0.031 0.050 0.007 0.006 0.227 0.002 
8 NYG-2-2 Bioclasticic wackestones reef-flank facies 55.73 0.849 0.138 <0.010 0.040 0.048 0.010 0.007 0.278 <0.0031
9 NYG-2-3 Peloidal grainstones reef-flank facies 55.36 1.310 0.292 0.031 0.090 0.058 0.015 0.007 0.307 0.002 
10 NYG-2-4 Intraclasticic grainstones sealing facies 54.35 1.700 0.360 0.039 0.119 0.070 0.016 0.007 0.377 <0.0031
11 NYG-2-5 Intraclasticic grainstones sealing facies 55.07 1.010 0.253 0.027 0.085 0.062 0.014 0.007 0.392 0.002 
12 NYG-2-6 Intraclastic grainstones sealing facies 54.28 1.870 0.460 0.092 0.162 0.057 0.025 0.006 0.373 0.006 
13 NYG-3-1 Bioclastic wackestones base facies 55.78 0.520 0.126 <0.010 0.035 0.065 0.009 0.007 0.233 0.002 
14 NYG-3-2 Bafflestones reef-core facies 55.73 0.921 0.135 <0.010 0.031 0.060 0.006 0.007 0.238 0.002 
15 NYG-3-3 Bafflestones reef-core facies 55.30 0.554 0.109 0.012 0.028 0.047 0.009 0.008 0.257 0.003
16 NYG-3-5 Intraclastic grainstones sealing facies 54.03 1.780 0.385 0.141 0.138 0.084 0.023 0.009 0.309 0.004 
17 NYG-3-6 Intraclastic grainstones sealing facies 54.35 1.400 0.348 0.023 0.132 0.050 0.020 0.007 0.337 0.004 
18 NYG-4-1 Bioclastic packstones reef-flank facies 53.33 4.610 0.191 0.017 0.074 0.053 0.013 0.006 0.444 0.002
19 NYG-4-2 Intraclastic grainstones sealing facies 53.96 2.840 0.236 0.033 0.087 0.082 0.013 0.006 0.471 <0.0031
20 NYG-4-3 Intraclastic grainstones sealing facies 54.27 2.160 0.411 0.084 0.159 0.082 0.024 0.009 0.406 0.005 
21 NYG-4-4 Intraclastic grainstones sealing facies 53.63 2.090 0.500 0.096 0.167 0.104 0.024 0.007 0.385 0.004
22 NYG-5-1 Bioclastic grainstones reef-flank facies 54.04 2.260 0.355 0.046 0.093 0.089 0.014 0.010 0.438 <0.0031
23 NYG-5-2 Intraclastic grainstones sealing facies 54.39 2.060 0.412 0.058 0.174 0.083 0.028 0.008 0.428 0.005 
24 NYG-5-3 Intraclastic grainstones sealing facies 53.33 3.030 0.260 0.017 0.093 0.054 0.013 0.008 0.500 <0.0031
25 NYG-5-4 Intraclastic grainstones sealing facies 54.72 1.680 0.441 0.110 0.125 0.112 0.015 0.008 0.371 0.003 

Minimum value 53.33 0.520 0.109 0.011 0.021 0.047 0.006 0.006 0.202 0.002 
Maximum value 56.23 4.610 0.500 0.141 0.174 0.148 0.028 0.010 0.500 0.006 
Average value 54.84 1.555 0.2750 0.050 0.090 0.070 0.015 0.007 0.339 0.004

Standard deviation 0.85 0.951 0.124 0.038 0.049 0.024 0.006 0.001 0.081 0.001 
 

Table 2 Trace elements and carbon and oxygen isotopes results of samples from the NYG reef 

Number Samples V 
(ppm) 

Cr 
(ppm)

Co 
(ppm) 

Cu 
(ppm) 

Zn 
(ppm)

Sr 
(ppm)

Mo 
(ppm)

Ba  
(ppm)

Th 
(ppm)

U 
(ppm) 

Zr 
(ppm) 

δ13 C 
(PDB) (‰)

δ18 O 
(PDB) (‰)

1 NYG-1-1 6.17  2.570 1.300  0.392  2.220 307.000 0.219 2.970 0.133 1.060  0.477  –0.40 –6.60 
2 NYG-1-2 7.73  3.120 1.460  0.650  2.460 174.000 0.248 5.480 0.150 0.825  0.500  0.10 –6.60 
3 NYG-1-3 7.01  2.440 1.330  0.419  1.990 238.000 0.204 9.060 0.183 0.773  0.703  0.10 –6.30 
4 NYG-1-4 7.14  3.230 1.390  0.786  3.670 230.000 0.356 20.000 0.558 2.160  1.630  0.10 –6.60 
5 NYG-1-5 6.84  3.390 1.440  0.892  3.340 290.000 0.313 32.100 0.640 1.800  1.950  –0.30 –6.20 
6 NYG-1-6 6.98  3.290 1.590  1.070  3.490 286.000 0.333 43.600 0.593 1.790  1.910  –0.10 –6.10 
7 NYG-2-1 5.38  2.250 1.530  0.991  3.230 213.000 0.307 4.780 0.194 0.734  0.533  0.10 –7.00 
8 NYG-2-2 6.78  2.560 1.330  0.527  2.250 256.000 0.222 6.790 0.194 0.753  0.699  0.10 –6.30 
9 NYG-2-3 6.91  3.350 1.310  0.875  3.550 224.000 0.461 18.300 0.510 2.210  1.340  –0.10 –6.20 
10 NYG-2-4 7.82  3.950 1.410  0.681  6.100 352.000 0.367 9.400 0.606 1.370  1.880  –0.10 –5.40 
11 NYG-2-5 6.54  3.000 1.400  0.604  2.550 322.000 0.416 10.700 0.425 1.420  1.270  –0.10 –5.00 
12 NYG-2-6 6.75  4.270 1.860  0.867  5.650 291.000 0.614 21.300 0.844 1.620  2.630  0.10 –5.80 
13 NYG-3-1 9.88  2.970 1.320  0.823  2.860 205.000 0.177 4.770 0.170 0.642  1.630  –0.10 –6.80 
14 NYG-3-2 10.60  2.660 1.230  0.590  3.430 248.000 0.178 11.900 0.158 0.875  1.320  0.20 –7.30 
15 NYG-3-3 9.88  2.990 1.260  0.781  2.900 277.000 0.331 18.600 0.184 1.300  0.820  0.10 –6.00 
16 NYG-3-5 8.30  4.270 1.400  3.330  4.980 252.000 0.475 22.300 0.787 1.750  3.920  –0.50 –5.90 
17 NYG-3-6 9.03  3.700 1.320  0.732  4.290 283.000 0.250 22.000 0.718 2.370  2.760  –0.10 –6.40
18 NYG-4-1 6.92  3.340 1.330  0.801  2.210 362.000 0.272 6.830 0.282 0.834  1.500  0.10 –5.80 
19 NYG-4-2 8.66  2.960 1.230  1.120  2.860 409.000 0.361 7.930 0.354 0.571  2.060  0.30 –5.50 
20 NYG-4-3 8.87  4.110 1.280  0.972  4.800 291.000 0.553 23.200 0.772 1.320  3.210  0.60 –4.80
21 NYG-4-4 9.07  4.290 1.480  3.280  4.340 280.000 0.549 38.800 0.928 1.700  3.870  –0.70 –5.60 
22 NYG-5-1 8.47  5.720 1.580  217.00 4.130 327.000 0.536 10.900 0.478 1.830  3.010  –0.10 –5.90 
23 NYG-5-2 9.04  4.710 1.400  1.230  4.380 294.000 0.305 13.500 0.822 1.640  3.750  0.10 –5.60
24 NYG-5-3 7.81  4.980 1.370  0.622  3.460 449.000 0.277 24.100 0.492 0.927  2.260  0.50 –5.30 
25 NYG-5-4 9.85  3.650 2.710  0.599  4.930 336.000 1.390 16.900 0.518 1.700  2.790  0.20 –4.90 
Minimum value 5.38 2.250 1.230  0.392  1.990 174.000 0.177 2.970 0.133 0.571  0.477  –0.70 –7.30 
Maximum value 10.6 5.720 2.710  217.00  6.100 449.000 1.390 43.600 0.928 2.370  3.920  0.60 –4.80 
Average value 7.94  3.511 1.450  9.625  3.603 287.840 0.389 16.248 0.468 1.359  1.937  0.00 –6.00 

Standard deviation 1.35  0.856 0.296  43.209  1.118 62.961 0.243 10.655 0.256 0.534  1.076  0.28 0.65  
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Ce/Ce*=CeSN/ (0.5 LaSN + 0.5 PrSN). When Pr/Pr* >1.05, a 
negative Ce anomaly exists; when Ce/Ce* <1, a positive 
La anomaly exists. GdSN and EuSN anomalies were 
calculated as GdSN /Gd* where Gd* = (0.5Eu + 0.5Tb) and 
as Eu/Eu* where Eu* = EuSN/ (0.5SmSN + 0.5GdSN) (Bau 
and Dulski, 1996; Nothdurft et al., 2004). Y anomalies 
were calculated as YSN/Y* where Y* = (0.5 DySN + 0.5 
HoSN) (Bau et al., 1996). 

(1) The overall characteristic of REY patterns 
The REY concentrations of reefal limestones in the 

study area are generally low (ranging from 2.7 ppm to 

22.0 ppm, arithmetic mean 9.2 ppm). The REYs of all 
samples have flat patterns, but also exhibit subtle 
variations. When comparing the REYs to that of modern 
seawater, the total REYs (ΣREYs) are generally three to 
four orders of magnitude higher in concentration. With the 
increase of REY concentrations, changes can be discerned 
from seawater-like to shale-like patterns (Fig. 6). Reefal 
limestones in this study have relatively low ΣREYs than 
that of modern carbonates. 

All samples show the seawater-like REESN 
distributions: characteristic of light REE (LREE) depletion 

 Table 3 The REY concentrations of 25 from the NYG reef (ppm) 
Sample NYG-1-1 NYG-1-2 NYG-2-1 NYG-3-1 NYG-3-2 NYG-3-3 NYG-1-3 NYG-2-2 NYG-2-3 NYG-4-1 NYG-5-1 NYG-1-4
Facies Base Base Base Base Reef-core Reef-core Reef-flank Reef-flank Reef-flank Reef-flank Reef-flank Sealing

La 0.762 0.809 1.120 0.702 0.602 0.673 0.806 0.777 2.490 0.990 1.260 2.860 
Ce 1.240 1.280 1.790 1.160 0.954 1.130 1.310 1.260 4.160 1.770 2.140 5.100 
Pr 0.134 0.141 0.202 0.142 0.120 0.118 0.154 0.136 0.458 0.207 0.254 0.565 
Nd 0.506 0.513 0.721 0.553 0.481 0.440 0.505 0.539 1.650 0.763 1.000 2.160 
Sm 0.087 0.079 0.110 0.092 0.095 0.089 0.098 0.079 0.258 0.129 0.194 0.364 
Eu 0.017 0.018 0.024 0.016 0.017 0.018 0.024 0.018 0.055 0.026 0.034 0.067 
Gd 0.064 0.084 0.100 0.095 0.095 0.097 0.105 0.087 0.239 0.142 0.159 0.344 
Tb 0.014 0.012 0.018 0.021 0.018 0.015 0.017 0.018 0.039 0.021 0.037 0.056 
Dy 0.062 0.077 0.100 0.116 0.121 0.083 0.098 0.083 0.221 0.129 0.191 0.322 
Y 0.772 0.660 0.915 1.050 1.160 0.857 0.894 0.761 1.560 0.908 1.400 2.400 

Ho 0.017 0.016 0.022 0.024 0.020 0.017 0.019 0.018 0.049 0.028 0.037 0.064 
Er 0.049 0.052 0.074 0.087 0.067 0.065 0.064 0.058 0.151 0.084 0.118 0.204 
Tm 0.010 0.008 0.011 0.014 0.013 0.011 0.012 0.012 0.023 0.014 0.019 0.034 
Yb 0.054 0.046 0.076 0.081 0.083 0.071 0.081 0.068 0.157 0.098 0.122 0.203 
Lu 0.008 0.007 0.010 0.011 0.015 0.010 0.011 0.010 0.022 0.012 0.021 0.025 

ΣREY 3.796 3.802 5.293 4.164 3.861 3.694 4.198 3.924 11.532 5.321 6.986 14.768
Ce/Ce* 0.842 0.822 0.818 0.801 0.773 0.870 0.809 0.841 0.847 0.852 0.824 0.874 
Eu/Eu* 1.060 1.023 1.066 0.794 0.831 0.896 1.095 1.003 1.032 0.888 0.903 0.882 
Pr/Pr* 1.070 1.100 1.125 1.117 1.113 1.058 1.197 1.043 1.106 1.126 1.095 1.076 

Gd/Gd* 0.787 1.184 0.961 0.853 0.951 1.128 1.086 0.911 1.035 1.168 0.775 1.043 
NdSN/YbSN 0.820 0.976 0.830 0.597 0.507 0.542 0.546 0.694 0.920 0.681 0.717 0.931 

DySN/YbSN 0.731 1.065 0.837 0.911 0.928 0.744 0.770 0.777 0.896 0.838 0.996 1.009 
Y/Y* 2.257 1.791 1.860 1.895 2.220 2.172 1.969 1.877 1.429 1.440 1.583 1.590 
Y/Ho 45.412 41.250 41.591 43.750 58.000 50.412 47.053 42.278 31.837 32.429 37.838 37.500

Sample NYG-1-5 NYG-1-6 NYG-2-4 NYG-2-5 NYG-2-6 NYG-3-5 NYG-3-6 NYG-4-2 NYG-4-3 NYG-4-4 NYG-5-2 NYG-5-3 NYG-5-4
Facies Sealing Sealing Sealing Sealing Sealing Sealing Sealing Sealing Sealing Sealing Sealing Sealing Sealing

La 2.620  3.850  1.740  2.320  3.380 2.680 2.490 1.600 2.880 3.000  2.590  1.710 1.990 
Ce 4.710  7.040  3.170  3.950  6.320 4.810 4.710 2.910 5.320 5.580  4.720  3.150 3.600 
Pr 0.543  0.757  0.377  0.447  0.741 0.561 0.531 0.338 0.607 0.648  0.546  0.363 0.427 
Nd 2.040  2.760  1.430  1.610  2.820 2.170 2.090 1.300 2.360 2.590  2.110  1.380 1.600 
Sm 0.384  0.473  0.261  0.276  0.541 0.391 0.392 0.232 0.490 0.490  0.402  0.254 0.274 
Eu 0.074  0.085  0.041  0.047  0.090 0.073 0.072 0.041 0.080 0.082  0.075  0.054 0.053 
Gd 0.364  0.473  0.224  0.257  0.482 0.441 0.381 0.236 0.472 0.437  0.392  0.253 0.294 
Tb 0.063  0.076  0.042  0.047  0.089 0.075 0.068 0.041 0.085 0.084  0.071  0.043 0.050 
Dy 0.358  0.420  0.225  0.217  0.506 0.401 0.418 0.243 0.492 0.490  0.411  0.245 0.312 
Y 2.380  2.960  1.510  1.680  3.240 2.700 2.620 1.630 2.850 2.960  2.780  2.040 2.220 
Ho 0.073  0.090  0.048  0.051  0.114 0.090 0.079 0.051 0.097 0.098  0.083  0.057 0.064 
Er 0.208  0.258  0.143  0.142  0.293 0.234 0.235 0.139 0.289 0.307  0.232  0.169 0.180 
Tm 0.039  0.050  0.021  0.023  0.054 0.046 0.043 0.027 0.045 0.054  0.040  0.029 0.033 
Yb 0.224  0.272  0.151  0.152  0.305 0.274 0.250 0.167 0.311 0.317  0.244  0.169 0.205 
Lu 0.032  0.037  0.018  0.020  0.044 0.038 0.036 0.021 0.045 0.047  0.038  0.025 0.029 

ΣREY 14.112  19.601  9.401  11.239  19.019 14.984 14.415 8.976 16.423 17.184  14.734  9.941 11.331 
Ce/Ce* 0.861  0.898  0.853  0.845  0.870 0.855 0.893 0.862 0.877 0.872  0.865  0.871 0.851 
Eu/Eu* 0.921  0.835  0.791  0.822  0.822 0.811 0.867 0.813 0.774 0.826  0.879  0.990 0.864 
Pr/Pr* 1.107  1.086  1.118  1.121  1.108 1.096 1.069 1.097 1.082 1.075  1.093  1.100 1.124 

Gd/Gd* 1.000  1.071  0.918  0.957  0.938 1.063 0.985 1.018 0.977 0.912  0.976  1.028 1.049 
NdSN/YbSN 0.797  0.888  0.829  0.927  0.809 0.693 0.732 0.681 0.664 0.715  0.757  0.714 0.683 

DySN/YbSN 1.017  0.983  0.948  0.908  1.056 0.931 1.064 0.926 1.007 0.984  1.072  0.923 0.969 
Y/Y* 1.402  1.451  1.385  1.522  1.286 1.355 1.369 1.395 1.241 1.285  1.433  1.646 1.496 
Y/Ho 32.603  32.889  31.458  32.941  28.421 30.000 33.165 31.961 29.381 30.204  33.494  35.789 34.688 
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(NdSN/YbSN  range from 0.51 to 0.98, average at 0.75) 
(Table 3; Fig. 6), positive PrSN anomalies (Pr/Pr* range 
from 1.04 to 1.20, average at 1.10) and negative CeSN 
anomalies (Ce/Ce* range from 0.77 to 0.90, average at 
0.85) (Fig. 7), and positive Y anomalies (YSN/Y* range 
from 1.24 to 2.26, average at 1.62) (Table 3). 

GdSN anomalies are in the range of 0.78 to 1.18, with an 
average of 0.99. Twelve out of twenty-five samples have 
slightly positive Gd anomalies. The Y/Ho ratios of 
samples range from 28.4 to 58.0, with an average of 37.5. 
To explore the effect of facies on REY characteristics, we 
further differentiate these REYs specific to each facies. 

(2) REY patterns in each facies 
The REY concentrations in different facies are shown in 

Table 4 and Fig. 8. Samples from the reef-core facies 
show the lowest values of total REY (ΣREY), light REE 
(LREE), medium REE (MREE), and heavy REE (HREE) 
(3.78 ppm, 2.35 ppm, 1.24 ppm and 0.19 ppm, 
respectively). In contrast, samples from the sealing facies 
display the highest values of ΣREE, LREE, MREE, and 
HREE (14.01ppm, 10.14 ppm, 3.28 ppm and 0.60 ppm, 
respectively). Samples from both the base facies and reef-
flank facies have REE values that are slightly higher than 
the reef-core facies but significantly lower than the sealing 
facies. 

Samples from the base facies (n=4) show seawater-like 
REY patterns (Fig. 8a) with the characteristics of (1) 
LREE depletion (average NdSN/YbSN=0.81, SD=0.16), (2) 
slightly negative Ce and positive La anomalies (mean Ce/
Ce*=0.82 and mean Pr/Pr*=1.10), (3) slightly high Y/Ho 
ratios (mean 43.0, SD=1.95), and (4) weak negative Gd 

 

Fig. 6. Mean PAAS-normalized REY patterns of different 
facies  of  the  NYG  reef,  as  shown  in  table  3.  PAAS-
normalized REY patterns of modern seawater from different 
water depths are also displayed for comparison (Alibo and 
Nozaki, 1999).  

 

Fig. 7. Cross-plot shows the relationship between Ce/Ce* 
and Pr/Pr* using the method described by Bau and Dulski 
(1996) (as modified by Webb and Kamber, 2000).  
Note that nearly all samples cluster tightly in the field of negative Ce and 
positive La anomalies in perfect agreement with modern open oceanic 
surface water. 

 Table 4 Summary statistics of REY concentrations (ppm) of the four facies in the NYG reef 
  Base (n=4) Reef-core (n=2) Reef-flank (n=5) Sealing (n=14) 
  Min Max Ave SD Min Max Ave SD Min Max Ave SD Min Max Ave SD 

La 0.702  1.120  0.848  0.186  0.602  0.673 0.638 0.050 0.777 2.490 1.265 0.712  1.600  3.850  2.551 0.647 
Ce 1.160  1.790  1.368  0.286  0.954  1.130 1.042 0.124 1.260 4.160 2.128 1.192  2.910  7.040  4.649 1.213 
Pr 0.134  0.202  0.155  0.032  0.118  0.120 0.119 0.001 0.136 0.458 0.242 0.129  0.338  0.757  0.532 0.131 
Nd 0.506  0.721  0.573  0.101  0.440  0.481 0.461 0.029 0.505 1.650 0.891 0.468  1.300  2.820  2.030 0.504 
Sm 0.079  0.110  0.092  0.013  0.089  0.095 0.092 0.004 0.079 0.258 0.152 0.074  0.232  0.541  0.373 0.101 
Eu 0.016  0.024  0.019  0.004  0.017  0.018 0.018 0.001 0.018 0.055 0.031 0.014  0.041  0.090  0.067 0.016 
Gd 0.064  0.100  0.086  0.016  0.095  0.097 0.096 0.001 0.087 0.239 0.146 0.059  0.224  0.482  0.361 0.094 
Tb 0.012  0.021  0.016  0.004  0.015  0.018 0.017 0.002 0.017 0.039 0.026 0.011  0.041  0.089  0.064 0.017 
Dy 0.062  0.116  0.089  0.024  0.083  0.121 0.102 0.027 0.083 0.221 0.144 0.060  0.217  0.506  0.361 0.102 
Y 0.660  1.050  0.849  0.170  0.857  1.160 1.009 0.214 0.761 1.560 1.105 0.352  1.510  3.240  2.426 0.546 
Ho 0.016  0.024  0.020  0.004  0.017  0.020 0.019 0.002 0.018 0.049 0.030 0.013  0.048  0.114  0.076 0.021 
Er 0.049  0.087  0.066  0.018  0.065  0.067 0.066 0.001 0.058 0.151 0.095 0.039  0.139  0.307  0.217 0.057 
Tm 0.008  0.014  0.011  0.003  0.011  0.013 0.012 0.001 0.012 0.023 0.016 0.005  0.021  0.054  0.038 0.011 
Yb 0.046  0.081  0.064  0.017  0.071  0.083 0.077 0.008 0.068 0.157 0.105 0.035  0.151  0.317  0.232 0.059 
Lu 0.007  0.011  0.009  0.002  0.010  0.015 0.013 0.004 0.010 0.022 0.015 0.006  0.018  0.047  0.033 0.010 

ΣREYs 3.796  5.293  4.264  0.707  3.694  3.861 3.778 0.118 3.924 11.532 6.392 3.115  8.976  19.601  14.009 3.425 
LREE 2.649  3.943  3.036  0.609  2.252  2.450 2.351 0.140 2.791 9.016 4.677 2.566  6.380  14.880  10.135 2.577 
MREE 0.851  1.298  1.059  0.206  1.070  1.411 1.241 0.241 0.967 2.114 1.453 0.490  2.042  4.407  3.279 0.768 
HREE 0.129  0.217  0.169  0.043  0.174  0.198 0.186 0.017 0.166 0.402 0.262 0.098  0.381  0.823  0.595 0.156 

Note: n= total sample numbers 
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anomalies (mean Gd/Gd*=0.95). 
Samples from the reef-core facies (n=2) have seawater-

like REY patterns (Fig. 8b) with the characteristics of (1) 
LREE depletion (mean NdSN/YbSN=0.56, SD=0.02), (2) 
consistent negative Ce and weak positive La anomalies 
(mean Ce/Ce*=0.81 and mean Pr/Pr*=1.09), (3) relatively 
high Y/Ho ratios (mean 54.2, SD=5.37), and (4) 
consistently weak positive Gd anomalies (mean GdSN/
Gd*=1.04). 

Samples from the reef-flank facies (n=5) show less 
seawater-like features (Fig. 8c). However, LREE 
depletions (mean NdSN/YbSN=0.71, SD=0.13), and 
negative Ce anomalies and positive La anomalies (mean 
Ce/Ce*=0.84 and mean Pr/Pr*=0.02) are present. It also 
shows non-seawater-like features (1) weakly negative Gd 
anomalies (mean Gd/Gd*=1.00), and (2) low Y/Ho ratios 
(mean 38.3, SD=6.5). 

Samples from the sealing facies (n=14) display non-
seawater-like characteristics including their REY patterns 
(Fig. 8d), low Y/Ho ratios (mean 32.5, SD=2.5), and lack 
of Gd anomalies (mean Gd/Gd*=1.00). However, LREE 
depletion (mean NdSN/YbSN=0.77, SD=0.09), negative Ce 
and positive La anomalies (mean Ce/Ce*=0.88 and mean 
Pr/Pr*=1.10) are observed in these samples as well. 

5 Discussion 
 
5.1 Implication for carbon and oxygen Isotopes  

The original geochemical signals of ancient marine 
carbonates can be easily modified by diagenetic processes 
such as meteoric water diagenesis, sulfate reduction and 
dolomitization (Jiang et al., 2018a, 2018b). These 
processes can change the primary chemical composition of 
the seawater at the time of deposition (Veizer and Hoefs, 
1976; Veizer et al., 1999). Thus, it is essential to evaluate 
the potential diagenetic alteration impacts. 

A compilation of C and O isotopes of carbonates is 
widely used to study the origin and the nature of 
diagenetic fluids (Jiang et al., 2018a, 2018b). For example, 
the most-positive δ18O value of Paleozoic marine 
limestones likely represent the original precipitation 
conditions with the least diagenetic alterations (Tobin and 
Bergstrom, 2002; Trotter et al., 2008). Hence, mudstones 
from the Ordovician strata of the Tarim Basin yield the 
more positive δ18O values than dolomites and veins, which 
likely retain the original ancient seawater information 
(Fig. 9; Zhang et al., 2006; Liu et al., 2016). The δ13C 
values of limestone samples in this study vary from 
−0.9‰ to +0.9‰ but cluster around zero, and the δ18O 

 

Fig. 8. Shale-normalized REY patterns of different facies of the NYG reef. 
(a) REE patterns of samples from the base facies (n=4); (b) REE patterns of samples from the reef-core facies (n=2); (c) REE patterns of samples from the 
reef-flank facies (n=5); (d) REE patterns of samples from the sealing facies (n=10).  
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values varies from approximately −7‰ to −5‰, which 
shows relatively positive C and O isotopes values. This 
means that limestone samples are clearly not modified by 
diagenesis (Trotter et al., 2008; Saltzman and Thomas, 
2012) 

 
5.2 Sources of REY patterns 

The processes that can affect REY concentrations and 
patterns in carbonates include diagenesis (German and 
Elderfield, 1990; Byrne et al., 1996; Azmy et al., 2011, 
2013; Li and Jones, 2014; Jiang et al., 2015), unusual 
redox conditions (Bau et al., 1996; Webb and Kamber, 
2000), and terrestrial detritus (Goldstein and Jaconsen, 
1988; Elderfield et al., 1990; Nothdurft et al., 2004; 
Frimmel, 2009). To assess the potential factors that 
control the sources of REYs, factor analysis followed by 
multiple linear regressions with REY is performed. This 
analysis minimizes the impact of co-linearity of the 
variable regression models. 

 
5.2.1 Diagenesis effects 

Ancient carbonates have commonly been considered 
unreliable sources for REY proxies, owing to perceived 
problems with diagenetic alterations (e.g., Holser, 1997), 
Elements, such as Ba, Na, Sr, Mg, and P, have been 
utilized as indicators of the susceptibility of a rock to 
diagenetic alteration of the REY patterns (Li and Jones, 

2013a, 2013b; Li and Jones, 2014). To assess whether 
diagenesis controls the REY distributions, we examined 
the relationship between the REYs and these elements. 
Univariate analysis indicated the weak correlation between 
these elements and REY contents (Table 5). Although 
phosphates have a high affinity for ΣREYs in diagenetic 
fluids and show non-uniform incorporation across the 
REY mass range in some cases (German and Elderfield, 
1990; Byrne et al., 1996), the very low P concentrations 
and its irrelevance to the ΣREYs (Fig. 10) suggest that the 
diagenesis did not change the REE concentrations. 

Further, weak negative Eu anomalies (range from 0.77 
to 1.10, mean 0.90) present in these reefal carbonates has 
precluded diagenetic processes such as hydrothermal 
events and thermochemical sulfate reduction. These 
processes typically cause a prominent positive Eu 
anomaly (Banner et al., 1988; Michard, 1989; Murray et 

Fig. 9. Summary of C and O isotopes from the Ordovician strata of the Tarim basin. Data of  mudstones, dolomites, and 
calcite veins  is collected from previous papers (Jiang et al., 2001; Zhang et al., 2006; Zhu et al., 2010; Li et al., 2011; Dong 
et al., 2013; Liu et al., 2016). The rectangle shows the ranges of C and O isotopes from conodonts and brachiopods through 
Ordovician (data from Trotter et al., 2008; Saltzman and Thomas, 2012).  

 Table 5 Correlation coefficients of the relationship between 
diagenesis-related elements and Σ REYs of the NYG reef 

 ΣREYs Ba Na Sr Mg P
ΣREYs 1 
Ba 0.674 1 
Na 0.048 −0.095 1 
Sr 0.097 0.138 0.197 1 

Mg 0.360 0.190 0.227 0.873 1 
P −0.080 0.170 0.257 0.112 0.174 1
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al., 1991).  
5.2.2 Redox conditions 

Elements, such as Co, Cr, Cu, V, Fe, U, Zn, and Mo, are 
redox-sensitive (Algeo and Maynard, 2004; Eltom, et al., 
2017). Accordingly, the correlation coefficients between 
redox-sensitive trace elements and ΣREYs of the NYG 
reef were computed to test whether changes in redox 
conditions have altered REY distributions (Table 6). The 
results show that these elements are poorly correlated with 
the total REYs. This means that REY distributions are 
unlikely altered by the change of redox conditions. 

 
5.2.3 Terrestrial input 

The REY concentrations in marine carbonates are very 
sensitive to terrestrial detritus. Small amounts of detrital 
contaminants can significantly change the total REY 
contents and patterns of carbonates (Nothdurft et al., 2004; 
Frimmel, 2009). 

Elements, such as Zr, Th, and Al, have been 
demonstrated to be useful indictors for evaluating the 
extent of contamination from terrestrial detritus (Nothdurft 
et al., 2004; Frimmel, 2009; Eltom et al., 2017). These 
elements have high concentrations in detrital minerals but 
very low abundances in seawater. As depicted in Fig. 11, 
there is a positive correlation between the total REY 
concentrations and contents of Zr, Th, and Al. This likely 
indicates the contamination of mud (shale). The samples 

from both the sealing facies and reef-flank facies have 
high REY contents and low Y/Ho values, and they are 
likely contaminated by terrestrial detritus. 

Another approach to evaluate detrital siliciclastic 
influences is based on Y/Ho ratios, which differ between 
sediments with detrital sources (about 25–30) and 
hydrogenous sources (about 60) (Webb and Kamber, 
2000; Mclennan, 2001). This study shows that the mean 
Y/Ho ratios of the reef-core facies (54.206, SD = 5.366) 
are in the range of shallow seawater (44–76). 
Specifically, the mean Y/Ho ratios of the base facies 
(43.0) are close to those expected for shallow seawater. 
Whereas the mean Y/Ho ratios of the reef-flank facies 
and sealing facies are 38.3 and 32.5, respectively (Table 
7, Fig. 12), which are lower than the values of shallow 
seawater. The low Y/Ho ratios of the reef-flank facies 
and sealing facies are consistent with the introduction of 
terrestrial detritus. This detritus may represent the 
accumulation of windblown dust in these facies. In this 
case, the extent of Y/Ho will likely be related to the 
water energy level of the sedimentary environment 

 

Fig. 10. The scatter plot shows phosphates vs ΣREYs of 
samples from the NYG reef, where P concentrations that do 
not correlate with ΣREEs, suggesting that diagenesis does 
not alter REY concentrations.  

Table 6 Correlation coefficients of the relationship between 
redox-sensitive trace elements and ΣREYs of the NYG reef

ΣREYs Co Cr Cu V Fe U Zn Mo
ΣREYs 1.00 

Co 0.28 1.00 
Cr 0.51 0.22 1.00 
Cu −0.10 0.10 0.54 1.00 
V −0.08 0.05 0.22 0.07 1.00 
Fe 0.64 0.52 0.55 0.06 0.20 1.00 
U 0.69 0.25 0.46 0.19 0.03 0.41 1.00 
Zn 0.64 0.42 0.64 0.11 0.25 0.72 0.54 1.00
Mo 0.35 0.87 0.33 0.13 0.23 0.69 0.37 0.53 1.00 

 

 

Fig. 11. Plot shows that positive correlations between REY 
concentrations and Zr, Th and Al, reflecting that the reefal 
limestones are easily affected by terrestrial contaminations.  
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where these rocks accumulated. 
5.3. Potential for REY proxies of reefal limestones to 
paleoenvironment study 

The REY data presented above have shown that the 
reefal limestones have a dominantly seawater-like 
character, although there are exceptions to this 
generalization. After analyzing the relationship between 
REYs and the sensitive elements, we conclude that 
diagenesis and redox condition have no or weak effects 
while terrestrial detritus have a significant effect on the 
REY patterns. 

The relative low Y/Ho ratios and high REY 
concentrations in the reef-flank and sealing facies appear 
to reflect the impact of terrestrial detritus input. The REY 
characteristics of reef-flank facies and sealing facies 
therefore cannot be used to estimate the composition of 
Ordovician ancient seawater of the Tarim Basin. However, 
REY patterns of base facies and reef-core facies may have 
potential in preserving the contemporaneous seawater 
signals. Increasing in the input of terrestrial detritus into 
shelf reef facies can be driven by a decreased sea-level, 
resulting in an increased erosion rate (Grötsch, 2009; Jiao 
et al., 2012). 

 
6 Conclusions 

 
The most significant findings of this study on the REY 

characteristics of reefal limestones in the Ordovician 

Tarim Basin are as follows: 
(1) Diagenesis has little effect on the REY patterns of 

reefal limestones, hence these REY patterns can be used to 
study the paleoenvironment. 

(2) The REY contents of reefal limestones are low 
(range from 3.69 to 19.60 ppm, mean 10.22 ppm). The 
PAAS-normalized REY patterns of all samples generally 
show consistent and flat patterns and display seawater-like 
features. However, REY partitioning behaviors are also 
related to facies: the base facies and reef-core facies are 
characterized by seawater-like features, whereas, the reef-
flank facies and sealing facies contain both seawater-like 
and non-seawater-like features. 

(3) Both negative NdSN/YbSN anomalies (ranging from 
0.51 to 0.98) and values of DySN/YbSN anomalies (ranging 
from 0.73 to 1.07) are consistent with the observation of 
LREE depletion. Positive La anomalies, negative Ce 
anomalies, and positive Y anomalies suggest that these 
reefal limestones are likely an indicative of 
contemporaneous seawater REY signals. 

(4) The low Y/Ho ratios (range from 28.42 to 58.00, 
mean 37.51) of the samples from the reef-flank facies and 
sealing facies suggest non-seawater-like characteristics. 
These low Y/Ho ratios and non-seawater-like 
characteristics are most likely impacted by terrestrial 
detritus. Hence, this study confirms that depositional 
environments can be a controlling factor when applying 
REY to the study of marine paleoenvironment. 
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