
1 Introduction 
 
Detrital mineral geochronology and thermochronology 

are increasingly employed to determine the timing of 
crystallization and multiple tectonothermal events, with 
relevance for sediment provenance and tectonic processes 
(Fedo et al., 2003; Hodges et al., 2005; Reiners et al., 
2005; Carrapa, 2010; Hietpas et al., 2010; Filleaudeau et 
al., 2012; Lawton, 2014; Mark et al., 2016; Zhao et al., 
2016; Cheng et al., 2016; Glorie et al., 2017; Zhang et al.,  
2018a). Detrital zircon U-Pb geochronology is the popular 
approach to extracting such information because zircon 
has a very high closure temperature during weathering, 

erosion,  deposition,  and  burial  in  the  sedimentary 
environment so that it could record the age of the igneous 
rock from which it was originally derived (Fedo et al., 
2003;  Dickinson  and  Gehrels,  2009;  Thomas,  2011; 
Cawood et al., 2012; Gehrels, 2014). Unfortunately, the 
refractory nature of the U-Pb zircon system implies that it 
is  hard  to  record  low-  to  medium-temperature 
tectonothermal  events  during  denudation  and  multiple 
erosion-deposition cycles (Carrapa, 2010; Thomas, 2011). 
During the last two decades breakthroughs in multi-dating 
on the same detrital grains allow for determining multiple 
different  geo-thermochronological  ages  simultaneously, 
which  could  provide  more  details  about  sediment 
provenance and regional tectonic processes (Carter and 
Moss et al., 1999; Carter and Bristow, 2000; Bernet et al., 
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characterized by multiple provenances. The crystalline basement of the North China Craton (NCC) and recycled materials 
from pre-Permian sediments that were ultimately sourced from the basement of the NCC are the primary provenance, while 
the Permian magmatites in the northern margin of NCC and Early Paleozoic crystalline rocks in Qinling Orogenic Collage 
act as minor provenance. In addition, the detrital zircon fission-track age peaks reveal four major tectonothermal events, 
including the Late Triassic-Early Jurassic post-depositional tectonothermal event and three other tectonothermal events 
associated with source terrains. The Late Triassic-Early Jurassic (225–179 Ma) tectonothermal event was closely related to 
the upwelling of deep material and energy beneath the southwestern Ordos Basin due to the coeval northward subduction of 
the Yangze Block and the following collision of the Yangze Block and the NCC. The Mid-Late Permian (275–263 Ma) 
tectonothermal event was associated with coeval denudation in the northern part of the NCC and North Qinling terrane, 
resulting from the subduction of the Paleo-Asian Ocean and Tethys Ocean toward the NCC. The Late Devonian-early Late 
Carboniferous (348±33 Ma) tectonothermal event corresponded the long-term denudation in the hinterland and periphery of 
the NCC because of the arc-continent collisions in the northern and southern margins of the NCC. The Late Neoproterozoic 
(813–565 Ma) tectonothermal event was associated with formation of the Great Unconformity within the NCC and may be 
causally related to the Rodinia supercontinent breakup driven by a large-scale mantle upwelling. 
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2006; Dias et al., 2011, 2018; Shen et al., 2012, 2016; Cao 
et al., 2015; De Grave et al., 2016; Glorie and De Grave, 
2016; Thomson et al., 2017; Xu et al., 2017). Detrital 
zircon fission-track and U-Pb double dating represents a 
particularly  effective  thermo-  and  geochronometer 
combination, given that the low (240±30°C) and high 
(>700° C)  temperature  sensitivity  windows  of  these 
systems and the abundance of zircon as an accessory 
mineral in many igneous, metamorphic, and sedimentary 
rocks (Carter and Bristow, 2000; Bernet and Garver, 2005; 
Bernet et al., 2006; Carrapa, 2010). Detrital zircon fission-
track and U-Pb double dating has been proven as a robust 
method to unravel regional tectonics by integrated analysis 
of double-dated single zircon grains from each sample 
(Bernet et al., 2006; Dias et al., 2011, 2018; Curvo et al., 
2013; Cao et al., 2015). 

The Ordos Basin of the western North China Craton is a 
multi-cycle superimposed basin (Yang et al., 2005; Liu et 
al., 2008; Zhu et al., 2013). During the Late Paleozoic to 
Middle Triassic, the Ordos Basin was an intracratonic 
basin with tectonically active margins (Yang et al., 2005, 
2015; Liu et al., 2008; Zhu et al., 2013). Although the 
tectonic activity of majority intracratonic basins is quite 
weak (Klein and Hsui, 1987; Allen and Armitage, 2012; 
Pinet  et  al.,  2013),  the  sediments  within intracratonic 
basins derived from distant tectonically active margins 
could chronicle long-term crustal evolution of the source 
terrains, erosion-transport-deposition processes, and post-
depositional  tectonothermal  events,  offering  invaluable 
information about regional tectonic evolution (Cawood et 
al., 2007; Kounov et al., 2013; Guadagnin et al., 2015; 
Dias et al., 2018). However, little attention has been paid 
to  unravel  the  tectonic  information  archived  in  the 
sediments of intracratonic basins. The main purpose of 
this study is to utilize integrated detrital zircon fission-
track and U-Pb double dating on the Late Paleozoic to 
Middle Triassic sediments of the southern Ordos Basin, to 
decipher the long-term crustal evolution of the source 
terrains  and  discern  hidden  regional  tectonothermal 
events. 

 
2 Geological Setting 

 
The North China Craton (NCC), or the North China 

Plate, can be divided into the Eastern and Western Blocks 
by the  Trans-North  China Orogen that  represents  the 
collision of the two blocks at approximately 1.85 Ga 
(Zhao  et  al.,  2001),  which  suffered  later  reformation 
(Kusky et al., 2007). The Ordos Basin in the western block 
of the NCC, surrounded by the Qinling Orogenic Collage 
in the south, the Yinshan-Yanshan tectonic belt in the 
north,  the  Lvliang  Mountain  in  the  east,  the  Qilian 
Orogenic Collage in the southwest (Fig. 1), is a large 
intraplate  basin  with  multi-stage  evolutionary  history 
(Yang et al., 2005, 2015; Liu et al., 2008).  

After  the  finial  cratonization  of  the  NCC  at 
approximately 1.82 Ga (Zhai,  2011, 2014; Liu et al., 
2012), the Ordos area began to develop sedimentary cover 
(Lu et al., 2008). The Meso-Neoproterozoic volcaniclastic 
and carbonate sediments are the first sedimentary cover in 
the  Ordos  area  during  intracontinental  rifting  and 

aulacogen development period (Zhai et al., 2014; Chen et 
al., 2016; Gong et al., 2016). Subsequently, the Ordos area 
experienced a long-term denudation (He et al., 2017) and 
then stepped into a cratonic evolutionary stage during the 
latest Neoproterozoic-Early Paleozoic (Yang et al., 2005; 
Bai et al., 2013). During the Middle Ordovician-Early 
Carboniferous, the Ordos area experienced a long-term of 
uplift  and  denudation  again,  resulting  ~130  m.y.  of 
missing geologic record (Yang et al., 2005; Wang et al., 
2006). Then, it subsided and evolved as an intracratonic 
basin during the Late Paleozoic to Middle Triassic (Yang 
et  al.,  2015).  During  latest  Middle  Triassic  to  Late 
Triassic,  tectonic  differentiation  of  the  NCC occurred 
initially, as evidenced by the denudation of the eastern 
NCC and the rapid subsidence of the Ordos Basin (Liu et 
al., 2008; Zhao et al., 2009), which might be a respond to 
the coeval collision along the Mianlue Suture that finally 
combinated the South Qinling, the South China plate, and 
the NCC (Meng and Zhang, 2000; Meng, 2017). After the 
latest Triassic-Early Jurassic uplift (Zhang et al., 2018b), 
tectonic differentiation of the NCC further strengthened 
and the Middle Jurassic-Early Cretaceous subsidence of 
Ordos Basin was interrupted by a transient tectonic uplift 
event at the Late Jurassic (Liu et al., 2008; Zhang et al., 
2011; Yang et al., 2015). Later, the convergence of the 
Pacific Ocean Plate and the Indian-Australian Plate toward 
the Eurasia Plate further complicated the Ordos Basin, and 
as such most of this region lacks Late Cretaceous-early 
Miocene sediments, except for the western part (Li and Li, 
2008). Accompanying with the outward-growth of Tibetan 
Plateau and the central Asian aridification (Guo et al., 
2004; Wang et al., 2014), the Ordos area successively 
deposited the late Miocene-Pliocene Red Clay sequence 
and the Quaternary loess-paleosol sequence, constituting 
the so-called Chinese Loess Plateau (Sun et al., 2006). 

 
3 Samples and Methodology 

 
In this study, seven Permian-Middle Triassic sandstone 

samples (Table 1; Fig. 2), 3 kg each, were collected from 
the outcrops in the southern Ordos Basin. Enough zircon 
grains for ZFT test were successfully separated from all of 
the  seven  samples,  using  standard  heavy  liquid  and 
magnetic separation techniques.  

ZFT  analysis  was  performed  in  the  ChronusCamp 
Research, Brazil. The method applied is based on a direct 
uranium determination through LA-ICP-MS (Hasebe et 
al., 2004; Soares et al., 2014). Such method also allows to 
determine the U-Pb ages simultaneously. Experimental 
procedures for this method are described briefly below.  

Firstly,  zircon  grains  per  sample  were  incrusted  in 
Teflon PFA with a thermal plate. Subsequently, sandpapers 
with grit sizes of #1200, #2400 and #4000 were used to 
grind the zircons, followed by a polishing using diamond 
paste with particle size of 1/4 µm. Then samples were 
etched using an eutectic solution (KOH : NaOH, 1:1) at 
220°C for 12 h to reveal spontaneous zircon fission tracks. 
Zircon fission track density was analyzed under an optical 
microscope  (Leica  DM  6000M).  The  uranium 
concentration and U-Pb age were carried out with the 
Agilent 7700 quadrupole ICP-MS coupled with UP213 
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NewWave laser ablation. The spot size was chosen to 
cover  the  maximum  area  which  fission  tracks  were 
measured. The LA-ICP-MS calibration was carried out 
using Fish Canyon Tuff as age standard sample. Moreover, 
NIST610 standard glass was used to control the LA-ICP-
MS  performance.  Finally,  the  fission-track  age  was 

determined following Donelick et al. (2005) equation. Our 
goal was to date about 100 grains per sample, to achieve 
the required level of statistical adequacy for provenance 
studies (Vermeesch, 2004). However, it was not possible 
to find this number of countable grains in all samples 
because of inclusions and dislocations. 

The Kolmogorov-Smirnov test (P(χ2)) (Galbraith, 1984) 
was used to quantify age homogeneity. When P(χ2) >5%, 
ZFT samples contain a single-age population, while P(χ2) 
<5% may reflect a mixture of different age components, 
the decomposition of the grain age is necessarily required 
(Gallagher et al.,  1998). Many methods were used to 
decompose a ZFT grain age distribution from sandstone 
rocks into component grain age populations (Brandon, 
1992; Ketcham et al., 2003; Giorgis et al., 2017). In this 
paper, samples with large scatter in single-grain ZFT ages 
(P(χ2) <5% and/or exhibiting dispersion exceeding 25%), 

 

Fig. 1. Regional tectonics and Mesozoic-Cenozoic basins distribution of the North China Plate and its adjacent regions (modified 
from Darby and Ritts, 2002). 
KL, Kunlun orogenic collage; NC, North China; Q-D, Qinling-Dabie orogenic collage; QL, Qilian orogenic collage; SC, South China; TLF, Tancheng-
Lujiang Fault; NJB, Ningwu-Jingle basin; DTB, Datong basin.  

 Table 1 Sample information for zircon fission-track and 
U/Pb double dating in southern Ordos basin 
Sample 

ID Lithology Strata Longitude  
(E) 

Latitude 
 (N) 

Elevation
(m) 

WB2 Sandstone Middle Triassic 107°46′05″ 34°38′58″ 1113 
WB3 Sandstone Lower Permian 108°29′58″ 34°38′48″ 941
WB4 Sandstone Lower Triassic 108°40′59″ 34°44′38″ 674 
WB5 Sandstone Upper Permian 108°41′29″ 34°44′11″ 652 
WB6 Sandstone Lower Permian 108°41′31″ 34°44′07″ 649 
WB7 Sandstone Lower Permian 110°29′55″ 35°36′38″ 767 
WB9 Sandstone Lower Permian 109°10′36″ 35°01′36″ 1314 
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were decomposed with the binomial peak-fitting method 
using RadialPlotter software (Vermeesch, 2009). 

 
4 Results 
 
4.1 ZFT analysis 

The ZFT data set are presented in Table 2. Radial plots 
and double dating plots of single grain age data distributed 
in  seven  samples  from  the  Permian-Middle  Triassic 
sediments are illustrated in Fig. 3. 

All samples failed the χ2 test (P (χ2) <5%) and are 
characterized  by  age  dispersions  D>35% ,  which  are 
typical for over-dispersed detrital grain age distributions, 
indicating a mixture of different grain-age components 
(Galbraith, 1981; Brandon, 1992). Using binomial peak 
fitting (Brandon, 1992; Vermeesch, 2009), the detrital ZFT 
age distributions of each sample were decomposed into 
two or three distinct age populations (Table 3), which can 
be grouped in five peak age populations that we term P1 to 

P5. The youngest age population P1 (WB2: 225±28 Ma, 
43% of dated grains; WB5: 179±40 Ma, 40% of dated 
grains; and WB6: 207±24 Ma, 21% of dated grains) is 
apparently younger than the corresponding depositional 
age for some of the samples, implying partial resetting of 
these samples. The second younger age population P2 
(WB3: 263±19 Ma, 70% of dated grains; WB4: 275±19 
Ma, 63% of dated grains; and WB9: 269±23 Ma, 54% of 
dated grains) overlaps the corresponding depositional ages 
for  these  samples  within  error,  or  is  slightly  older, 
implying either syn-depositional volcanic input or rapid 
exhumation of the source terrains. The rest three older age 
populations  are  clearly  older  than  the  corresponding 
depositional ages for these samples, recording exhumation 
history of the source terrains rather than that of the basin. 
More detailly, three samples contain a Late Ordovician-
earliest Carboniferous age population P3 (WB5: 459±50 
Ma, 60% of dated grains; WB6: 368±28 Ma, 52% of dated 
grains; and WB7: 348±33 Ma, 53% of dated grains), while 

 

Fig. 2. Simplified geologic map showing sample locations in the southern Ordos Basin.  

Table 2 Zircon fission-track results of the Late Paleozoic-Middle Triassic sediments from the southern Ordos Basin 

Sample ID No. of  
grains Ns ρs 

(107 cm2) 
Pooled 238U 

(ppm) 
P(χ2) 
(％)

Dispersion 
(%) 

Mean age 
（Ma ± 1σ） 

Pooled age 
（Ma ± 1σ） 

Central age 
（Ma ± 1σ） 

WB2 17 273 1.61 76 0 55 463.2±30.8 355.3±23.6 391 ± 58
WB3 14 313 2.12 108.6 0 70 539.5±33.9 336.4±21.2 398 ± 78 
WB4 20 387 1.98 96 0 50 485.1±27.1 342.2±20.0 396 ± 49 
WB5 8 134 1.54 79.4 0 43 329.9±30.0 316.4±28.7 307 ± 55 
WB6 14 501 1.85 75.9 0 47 448.9±23.6 347.2±18.2 396 ± 53 
WB7 19 485 1.98 72.3 0 39 511.7±27.2 439.0±23.3 465 ± 48 
WB9 19 364 1.4 68.7 0 38 422.5±25.0 345.1±20.4 381 ± 39 

Note: Ns = number of spontaneous tracks counted; ρs = spontaneous track density.
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the P3 in samples WB5 and WB6 is vague due to partial 
resetting; six samples (WB2, WB3, WB4, WB6, WB7, 
and WB9) contain a Late Neoproterozoic age population 
P4 (813–565 Ma, 22%–57% of dated grains), similarly, 
the P4 in samples WB2 and WB6 is vague because of 
partial resetting; in addition, Sample WB3 generates a 
minor Paleoproterozoic age population P5 (2146 ± 364 
Ma, 7% of dated grains). 

4.2 Combined ZFT-U-Pb analysis 
As mentioned in the methodology, zircon grains, for 

which ZFT ages were analyzed, have been conducted with 
the LA-ICP-MS zircon U-Pb dating. Almost all of the 
dated zircons have high Th/U values (>0.1), interpreted as 
being of magmatic origin (Hoskin and Black, 2000). In 
Fig. 4 it can be observed that most of the dated zircons fall 
close to the concordia line, implying the ages can be 

 

Fig. 3. Radial plots (left) and fission-track versus U-Pb ages for double-dated single zircon grains (right) for each sample in this 
study.  

Table 3 Decomposed peak ages for zircon fission–track data from the southern Ordos Basin 
Sample ID No. of grains Age range (Ma) P1 (Ma) P2 (Ma) P3 (Ma) P4 (Ma) P5 (Ma) 

WB2 17 118.1–1301.9 225±28 (43%) 614±52 (57%) 
WB3 14 156.6–2163.4 263±19 (70%) 813±110 (22%) 2146±364 (7%) 
WB4 20 148.2–1004.2 275±19 (63%) 739±70 (37%) 
WB5 8 125.5–610.4 179±40 (40%) 459±50 (60%) 
WB6 14 157.4–861.5 207±24 (21%) 368±28 (52%) 794±75 (27%) 
WB7 19 158.8–954.7 348±33 (53%) 656±61 (47%) 
WB9 19 203.8–922.0 269±23 (54%) 565±55 (46%)  
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regarded as the age of crystallization of the zircons, which 
could be used to constrain zircon provenance. However, 
some of the zircons slightly deviate from the concordia 
line. In the following part, we do not take into account 
ages that were more than 10% discordant. The peak age 
populations  were  identified  and  calculated  using 
DensityPlotter software (Vermeesch, 2009). 

The U-Pb ages of the dated zircons range widely from 
2721 to 267 Ma, and can be grouped in five peak age 
populations  (Fig.  5):  2532.9±2.6  Ma  (34.2±7% ), 
1997.5±3.8  Ma  (16.4±3.7% ),  1767.9±3.5  Ma 
(32.3±4.6%), 455.3±1.2 Ma (8.6±2.7%), and 290.68±0.78 
Ma  (8.6±2.7% ),  seemingly  reflecting  these  sediments 
derived from multiple provenance areas. Double dating 
plots  (Fig.  5)  reveal  that  most  of  ZFT  ages  are 
significantly younger than their corresponding U-Pb ages 

and thus reveal cooling related to exhumation of source 
terrains.  Moreover,  some  zircons  generate  Permian, 
Silurian-Devonian  and  Paleoproterozoic  ZFT  ages 
overlapping their U-Pb ages within error and hence might 
record rapid cooling from crystallization to exhumation in 
the source areas. 

 
5 Discussions 
 
5.1 Zircon provenance 

Detrital zircon U-Pb analysis is a powerful tool for 
determining  the  provenance  of  clastic  sediments  by 
matching detrital zircon U-Pb ages with the crystallization 
ages of potential source rocks (Thomas, 2011; Gehrels, 
2014). However, the recycling of detrital zircon through 
multi-cycle  sedimentation  may  mask  some  critical 
information and thus lead to an ambiguous interpretation 
of provenance (Thomas, 2011). The U-Pb isotopic system 
closes  at  temperatures  of  >700° C  in  most  zircons 
(Carrapa,  2010),  whereas  the  ZFT  have  a  closure 
temperature of 240±30°C in natural systems (Bernet and 
Garver, 2005). Consequently, combined U-Pb and fission-
track double dating on single detrital zircon grains could 
generate complementary crystallization age and thermal 
evolution information to improve our understanding of the 
evolution of the source terrains (Carter and Moss, 1999; 
Carter and Bristow, 2000; Bernet et al., 2006; Shen et al., 
2012, 2016; Curvo et al., 2013; Cao et al., 2015; Fosdick 
et al., 2015; Dias et al., 2018).  

From the view of detrital zircon U-Pb geochronology, 
the five peak age populations reflect the Permian-Middle 
Triassic sediments in the southern Ordos Basin derived 
from multiple provenance areas. Specifically, the three 
prominent Precambrian U-Pb age populations with peaks 
at  2532.9±2.6  Ma  (34.2±7% ),  1997.5±3.8  Ma 
(16.4±3.7%), 1767.9±3.5 Ma (32.3±4.6%), respectively, 
match  well  with  the  typical  U-Pb  age  peaks  of  the 
basement of the NCC (Zhai and Liu, 2003; Zhao et al., 

 

Fig. 4. Concordia plot for U-Pb ages of zircon that were 
dated with the fission-track-U-Pb double dating method from 
the Permian-Middle Triassic sediments in the southern Or-
dos Basin.  

 

Fig. 5. (a) Fission-track versus U-Pb ages for double-dated zircon grains for the whole data set, and corresponding fission-
track and U-Pb age kernel density estimate (KDE); (b) histograms and kernel density estimates of detrital zircon fission-
track and U-Pb for the whole data set. 
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2012;  Zhai,  2014).  The  Early  Paleozoic  U-Pb  age 
population with the peak at 455.3±1.2 Ma (8.6±2.7%) 
matches the timing of  the Early Paleozoic magmatic-
metamorphic events in Qinling Orogenic Collage (Dong et 
al., 2011; Bader et al., 2013). The Early Permian U-Pb age 
population with the peak at 290.68±0.78 Ma (8.6±2.7%) 
coincides with coeval magmatism in the northern margin 
of the NCC (Wang et al., 2017). To sum up, detrital zircon 
U-Pb data indicate that the crystalline basement of the 
NCC is the primary provenance of the Permian-Middle 
Triassic sediments in the southern Ordos Basin, while the 
Permian magmatites in the northern margin of the NCC 
and Early Paleozoic crystalline rocks in Qinling Orogenic 
Collage act as minor provenance. 

In  general,  detrital  ZFT  age  populations  may  be 
younger, older, or equal to the depositional age of the 
sample within error. Detrital ZFT age populations that are 
younger than the depositional age of the sample indicate 
full or partial FT annealing after deposition, while an 
unreset  sample  is  characterized  by  detrital  ZFT  age 
populations  predating  deposition  (Bernet  and  Garver, 
2005). Therefore, the unreset detrital ZFT age populations 
after deposition could be related to tectonothermal events 
in the source terrains and thus can be used as a tool for 
provenance analysis (Bernet and Garver, 2005; Falkowski 
et al., 2014).  

As stated in Section 4.1, all  samples in this study 
contain  multiple  age  components  and  we  have 
decomposed  the  mix  ages  into  several  distinct  age 
populations (Table 3). Except Samples WB2, WB5, and 
WB6 have a youngest age population P1 younger than 
their corresponding depositional age, other decomposed 
age populations are older or equal to the depositional ages 
of the samples within error and thus recorded exhumation 
history of the source terrains. The Permian detrital ZFT 
age population P2 correlates with the full spectrum of U-
Pb age peaks, suggesting that all of the source terrains 
experienced  a  syn-depositional  exhumation.  The  Late 
Devonian-early  Late  Carboniferous  detrital  ZFT  age 
population P3 correspond to U-Pb age populations with 
peaks at 2532.9±2.6 Ma, 1997.5±3.8 Ma, 1767.9±3.5 Ma, 
and 455.3±1.2 Ma, reflecting that coeval exhumation of 
the crystalline basement of the NCC and coeval volcanism 
or rapid exhumation in Qinling Orogenic Collage. The 
Late  Neoproterozoic  detrital  ZFT  age  population  P4 
correspond  to  U-Pb  age  populations  with  peaks  at 
2532.9±2.6  Ma,  1997.5±3.8  Ma,  and  1767.9±3.5  Ma, 
implying that the coeval exhumation of the crystalline 
basement of the NCC. The Paleoproterozoic detrital ZFT 
age  population  P5  with  a  near  identical  U-Pb  age 
population  suggests  that  coeval  volcanism  or  rapid 
exhumation of the NCC.  

Lag time, defined as the difference between the cooling 
age and the depositional age for a detrital mineral (Garver 
and Brandon, 1994; Bernet and Garver, 2005; Reiners and 
Brandon,  2006),  provides  an  estimate  of  the  lag  or 
difference for the sample between closure in the source 
area and deposition in the adjacent basin (Bernet and 
Garver, 2005). In this study, the prominent unrest detrital 
ZFT age populations have different lag times (Fig. 6) and 
then contain critical information related to the source-to-

sink processes of the Permian-Middle Triassic sediments 
in the southern Ordos Basin. Detailly, the unreset detrital 
ZFT age population P2 shows little variation upsection 
and falls into a lag-time interval ranging from 0 to 50 m.y. 
within error, suggesting that it is a static peak and recorded 
rapid cooling of the source terrains in the past. The detrital 
ZFT age population P3 falls into a lag-time interval at 50 
m.y.  within  error,  implying  that  these  zircons  were 
recycled from earlier sediments or experienced a very 
slow  exhumation-erosion-deposition  processes.  The 
detrital ZFT age population P4 falls into a large and wide 
lag-time interval ranging from 250 to 600 m.y. within 
error. Bernet and Garver (2005) suggested that zircons 
with lag-time interval ranging 10–102 m.y. are typically 
recycled from sedimentary cover units. Thus, we suggest 
that  these  zircons  consisting  of  the  detrital  ZFT age 
population P4 were mostly recycled from pre-Permian 
sediments that were ultimately sourced from the basement 
of the NCC. 

 
5.2 Tectonic significance of the prominent ZFT peak 
age populations 

As mentioned above, the decomposed ZFT ages of the 
Permian-Middle Triassic sediments in the southern Ordos 
Basin show four prominent peak age populations (Table 3) 
and thus record four major tectonothermal events (Fig. 7). 

The Late Triassic-Early Jurassic ZFT age peak (P1) is 
obviously younger than the corresponding depositional 
age,  indicating  that  these  detrital  zircons  seemingly 
experienced  the  partial  annealing  owing  to  the  post-
depositional  tectonothermal  events.  Previous  thermal 
history study (Ren, 1996) suggested that the geothermal 
gradient  of  Ordos  basin  were  relatively  lower  during 
Paleozoic-Early Mesozoic, ranging from 22–30 °C/km; 
while  during  Late  Mesozoic  the  geothermal  gradient 
began  to  increase  and  reached  its  peaks,  and  the 
geothermal  gradient  is  33–45  ° C/km  and  the  Upper 
Paleozoic-Lower Mesozoic rocks experienced a maximum 
paleo-temperature  of  approximately  200° C 
simultaneously. In this study, however, Samples WB2, 

 

Fig. 6. Lag time plot of detrital zircon fission-track age peaks 
from the Permian-Middle Triassic sediments in the southern 
Ordos Basin.  
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WB5,  and  WB6  experienced  a  partial  annealing, 
indicating that it was Late Triassic-Early Jurassic rather 
than  Late  Mesozoic  that  the  southern  Ordos  Basin 
experienced  a  maximum  paleo-temperature  and  the 
maximum paleo-temperature was 210–300°C. Although 
the Late Triassic-Early Jurassic tectonothermal event in 
Ordos Basin has not been reported, it is believed that this 
tectonothermal  event  did  occur  and  might  only  be 
distributed in the southwestern Ordos Basin. The reasons 
for this inference are as follows: 1) the partial annealed 
samples are just distributed in the southwestern Ordos 
Basin; 2) recent drilling discovered Late Triassic igneous 
rocks in the southwestern Ordos Basin; 3) 2D seismic 
interpretation found Late Triassic igneous intrusions; and 
4) geochemical study suggested that the Late Triassic 
Yanchang Formation in the southwestern Ordos Basin 
received significant magmatic-hydrothermal input during 
deposition (He et al., 2016). Putting all these together, it is 
evident that during Late Triassic the southwestern Ordos 
Basin  experienced  a  significant  tectonothermal  event, 

characterized  by  intense  deep  activity  and  thermal 
abnormality.  Moreover,  we  suggest  that  this 
tectonothermal event was closely related to the coeval 
northward  subduction  of  the  Yangze  Block  and  the 
following collision of the Yangze Block and the NCC 
(Meng  and  Zhang,  1999;  Dong  et  al.,  2011),  which 
inducing  the  upwelling  of  deep  material  and  energy 
beneath the southwestern Ordos Basin.  

As mentioned in Section 4.1 and 5.1, the unrest Mid-
Late  Permian  ZFT  age  peak  (P2)  overlaps  the 
corresponding depositional ages for these samples within 
error, or is slightly older, and correlates with the full 
spectrum  of  U-Pb  age  peaks,  suggesting  that  syn-
depositional volcanic input or all of the source terrains 
experienced a rapid exhumation. In fact, the northern part 
of the NCC experienced multiple exhumation episodes 
and magmatic activities during Middle Permian-Triassic, 
which  have  a  close  relationship  with  the  southward 
subduction of the Paleo-Asian Ocean beneath the NCC 
and subsequent collision (Ma et al., 2014; Wang et al., 

 

Fig.7. Schematic illustration of the major tectonothermal events (left) and provenance evolution (right) in the southern Ordos Basin.  
The red star represents zircon grains derived from the basement of the NCC; the blue star represents zircons grains derived from the Early Paleozoic crystal-
line rocks in Qinling Orogenic Collage; the yellow star represents zircons grains derived from the Permian magmatites in the northern margin of NCC.  
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2017).  Moreover,  the  North  Qinling  terrane,  a  major 
tectonic unit of Qinling Orogenic Collage, experienced a 
compression-related  uplift  event  during  Mid-Late 
Permian,  which  probably  a  response  to  northward 
subduction of the Paleo-Tethyan Ocean and South Qinling 
(Yang et  al.,  2017).  Consequently,  we interpreted  the 
unrest Mid-Late Permian ZFT age peak recorded coeval 
denudation in the northern part of the NCC and North 
Qinling terrane. 

The  Late  Devonian-early  Late  Carboniferous 
tectonothermal event was definitely revealed by ZFT age 
peak P3 of the Sample WB7 (348±33 Ma, 53% of dated 
grains). In addition, Samples WB5 and WB6 also contain 
ZFT age peak P3, while the geological meaning is vague 
owing to the partial annealing after deposition. Notably, 
the NCC experienced a long-term denudation during the 
Late Ordovician-Early Carboniferous (Yang et al., 2005). 
Meanwhile, North Qinling terrane and the southern NCC 
experienced a significant tectonothermal event because of 
the northward subduction and closure of the Shangdan 
Ocean along the southern edge of the NCC (Meng and 
Zhang,  2000).  The  northern  NCC also  experienced  a 
coeval tectonothermal event due to the accretion of the 
Bainaimiao arc to the northern NCC during the Late 
Silurian-earliest  Devonian  by  arc-continent  collision 
(Zhang et al., 2014). Therefore, we suggested that the Late 
Devonian-early  Late  Carboniferous  ZFT  age  peak 
recorded  coeval  denudation  in  the  hinterland  and 
periphery of the NCC. 

The Late Neoproterozoic ZFT age peak (P4) is also 
markedly older than the corresponding depositional ages 
and  correlates  with  the  U-Pb  age  spectrum  of  the 
crystalline basement of  the NCC, implying that  these 
zircon grains were probably recycled from pre-Permian 
sediments that were ultimately sourced from the basement 
of the NCC and experienced a long term denudation 
during  Late  Neoproterozoic.  In  fact,  the  Late 
Neoproterozoic denudation has been widely recognized 
worldwide, characterized by the Great Unconformity, a 
global  erosion  surface  separating  Precambrian  and 
Paleozoic rocks, representing ~100–1000 m.y. of missing 
geologic time (Peters and Gaines, 2012; He et al., 2017; 
DeLucia et  al.,  2018).  Erosion that  formed the Great 
Unconformity  has  been  causally  linked  to  Rodinia 
breakup, Snowball Earth, and the Cambrian explosion 
(Peters and Gaines, 2012; Cox et al., 2016; He et al., 2016; 
DeLucia  et  al.,  2018).  Nevertheless,  the  timing  and 
duration of denudation associated with formation of the 
Great Unconformity remain uncertain (He et al., 2017; 
DeLucia et al., 2018). Here, we propose that the ZFT age 
peak P4, ranging from ca. 813 Ma to ca. 565 Ma, provides 
a constraint on the timing of the Late Neoproterozoic 
denudation within the NCC. This inference is supported 
by a chronostratigraphic study based on detrital zircon age 
data (He et al., 2017), which suggested that the NCC 
experienced a depositional hiatus of >150–300 m.y. during 
Tonian  to  Ediacaran.  In  addition,  recent 
palaeogeographical  reconstruction  (Li  et  al.,  2013) 
suggested  that  the  NCC was  situated  in  a  divergent 
tectonic setting during Late Neoproterozoic, which rules 
out mechanism of coeval denudation that result solely 

from  convergent  tectonics.  Instead,  numerous 
Neoproterozoic mafic dykes have been recognized within 
the  NCC,  implying  that  an  upwelling  mantle  plume 
possibly existed during Neoproterozoic (Peng et al., 2011; 
Wang et al., 2016). Moreover, our documented timing of 
the  Late  Neoproterozoic  denudation  within  the  NCC 
overlaps with the timing of Rodinia breakup (Gernon et 
al., 2016). Therefore, we interpret the Late Neoproterozoic 
denudation as a result of a large-scale mantle upwelling 
following Rodinia supercontinent assembly because of a 
large-scale  mantle  upwelling  that  can  simultaneously 
explain uplift in the continental interior and rifting at the 
margins (Zhang et al., 2012; DeLucia et al., 2018). 

 
6 Conclusions 

 
This study presents detrital zircon fission-track and U-

Pb double analyses of the Permian to Middle Triassic 
sediments in the southern Ordos Basin to decipher the 
tectonic  information  archived  in  the  sediments  of 
intracratonic  basins,  and  thus  provides  constraints  on 
provenance evolution and regional tectono-thermal events. 
From our study the following conclusions can be drawn: 

The Permian-Middle Triassic sediments in the southern 
Ordos Basin were sourced from multiple provenance, and 
the  crystalline  basement  of  the  NCC  and  recycled 
materials from pre-Permian sediments that were ultimately 
sourced from the basement of the NCC are the primary 
provenance, while the Permian magmatites in the northern 
margin of NCC and Early Paleozoic crystalline rocks in 
Qinling Orogenic Collage act as minor provenance. 

The Permian-Middle Triassic sediments in the southern 
Ordos Basin recorded four major tectonothermal events, 
including  the  Late  Triassic-Early  Jurassic  post-
depositional  tectonothermal  event  and  three  other 
tectonothermal events associated with source terrains. The 
Late  Triassic-Early  Jurassic  tectonothermal  event  was 
closely related to the upwelling of deep material  and 
energy beneath the southwestern Ordos Basin due to the 
coeval northward subduction of the Yangze Block and the 
following collision of the Yangze Block and the NCC. The 
Mid-Late Permian tectonothermal event was connected 
with coeval denudation in the northern part of the NCC 
and North Qinling terrane, resulting from the subduction 
of the Paleo-Asian Ocean and Tethys Ocean toward the 
NCC,  respectively.  The  Late  Devonian-early  Late 
Carboniferous tectonothermal event corresponded the long
-term denudation in the hinterland and periphery of the 
NCC  because  of  the  arc-continent  collisions  in  the 
northern and southern margins of the NCC. The Late 
Neoproterozoic tectonothermal event was associated with 
formation of the Great Unconformity within the NCC and 
may be causally related to the Rodinia supercontinent 
breakup driven by a large-scale mantle upwelling. 
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