
1 Introduction 
 
Hydrocarbon  seepage  is  common  in  marine 

environments  worldwide  (Campbell,  2006;  Judd  and 
Hovland, 2007; Boetius and Wenzhöfer, 2013). Anaerobic 
oxidation of methane (AOM) is a key process that occurs 
at  seeps  and  favors  the  precipitation  of  authigenic 
carbonates (Barnes and Goldberg, 1976; Reeburgh, 1976, 
1996; Boetius et al., 2000; Hinrichs et al., 2000; Feng et 
al.,  2010, 2014; Suess, 2014). AOM at cold seeps is 
performed  by  a  consortium  of  anaerobic  methane-
oxidizing archaea and sulfate-reducing bacteria (Boetius et 
al.,  2000). Usually,  archaeal membrane lipids strongly 
depleted in 13C are prevalent in modern seep carbonates 
from vigorous cold seep sites (Niemann and Elvert, 2008), 
whereas  lipid  biomarkers  for  terrestrial  and  marine 
environments indicate the major organismal inputs for 

seep  carbonates  from  weak  seep  settings  or  ancient 
limestones (Peckmann et al., 2009; Blumenberg et al., 
2015; Guan et al., 2016a). Accordingly, the inherent nature 
of seep is that fluid flow intensity is highly variable both 
spatially and temporally. It was previously suggested that 
carbonate mineralogy and lipid biomarkers can be used to 
reconstruct  seepage  intensity  (Peckmann  et  al.,  2009; 
Birgel et al., 2011; Nöthen and Kasten, 2011; Feng et al., 
2016;  Guan  et  al.,  2016b).  For  example,  abundant 
crocetane  and  a  high  ratio  of  sn2-hydroxyarchaeol/
archaeol have been reported in most ANME-2-dominated 
seep settings and carbonates, representing seep ecosystems 
with high methane intensities (Blumenberg et al., 2004; 
Birgel et al., 2011; Guan et al., 2013; Himmler et al., 
2015). Moreover, the δ13C value of methane can also be 
achieved by compound-specific carbon isotopes based on 
different fractionations between methane and lipids in 
specific microbial communities (cf. Niemann and Elvert, 
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2008). Therefore, lipid contents, distribution patterns and 
compound-specific carbon isotopes are commonly used to 
assess environmental conditions and the sources of carbon 
and organic matter. 

In  recent  years,  modern  methane-seeps,  authigenic 
carbonates (Huang et al., 2006) and mud volcanoes (Chiu 
et al., 2006) were reported to be on the Kaoping Slope of 
southwestern  Taiwan.  Furthermore,  several  fossilized, 
cold-seep  carbonates  are  also  preserved  onshore  in 
southwestern Taiwan (Wang et al., 2006; Chien et al., 
2012). Among those reports, the occurrence of authigenic 
carbonates and their mineralogy, petrography, and stable 
carbon  and  oxygen  isotopic  compositions  have  been 
reported (Chiu et al., 2006; Huang et al., 2006; Wang et 
al., 2006; Chien et al., 2012, 2013; Wang et al., 2018). 
Nonetheless,  the  environmental  conditions  of  the 
carbonates precipitation and the sources of carbon and 
organic matter remained unclear. Here, we investigated 
the lipid biomarker inventories and their δ13C values in 
carbonates  from  the  Chiahsien  area  of  southwestern 
Taiwan  to  identify  the  environments  in  which  the 
carbonates precipitated and the sources of carbon and 
organic matter. 

 
2 Geological Setting and Sample Description 

 
The  orogeny  of  Taiwan  Island  resulted  from  the 

collision between the Eurasian plate and the Philippine 
Sea plate (Suppe, 1984). The Western Foothills of Taiwan, 
consisting of late Oligocene to Pleistocene shallow marine 
strata, deposited on the stable passive continental margin 
(Lin et al., 2003). It is equivalent to the syn-collision 
accretionary prism, the Kaoping Slope, of southwestern 
Taiwan (Huang et al., 2001). There are many cold seep 
sites (Huang et al., 2006), mud volcanoes (Chiu et al., 
2006) and cold seep remnants from the Miocene (Chien et 
al., 2012) to the Pleistocene (Wang et al., 2006) on the 
Kaoping Slope. Several ancient seep carbonates have also 
been found in the Western Foothills (Wang et al., 2006; 
Chien et al., 2013; Wang et al., 2018). The Chiahsien area 
is  located  at  the  foreland  basin  within  the  Western 
Foothills Zone. The strata in the Chiahsien area varies 
from the Late Miocene Tangenshan Fm. to the Ailiaochiao 
Fm. (Chung, 1962). Thrust faults, synclines and anticlines 
are extensively developed in the Chiahsien area. 

Authigenic carbonate samples were collected from the 
Chiahsien area (Fig. 1). The ancient cold seep carbonate is 
within the Yenshuikeng Shale, located between the low-
angled Pinghsi Thrust Fault and the high-angled Chishan 
Thrust  Fault  (Sung et  al.,  2000;  Chien et  al.,  2013). 
Authigenic carbonate from the Pliocene marine mudstone 
succession is exposed near the Chiahsien area (Fig. 2). 
These carbonates were collected from three exposures 
(Exposure  A,  B and  C;  see  Fig.  1).  They  displayed 
different  types  of  morphologies,  including  massive 
brecciated blocks, chimney-like structures, slender pipe 
networks  (Chien  et  al.,  2013),  which  are  usually 
perpendicular to the bedding. They are mainly composed 
of dolomite with minor amounts of calcite. Samples JA-4 
and JA-5 were collected from Exposure A (Fig. 1) and 
characterized  by  chimney-like  structures  (diameters 

usually >15 cm). JX-8 was sampled from Exposure B and 
represented by massive structures (typically 2.0 to 4.0 m 
in length, 1.0 to 2.0 m in width, 3.0 to 5.0 m in height). 
BG-12 was collected from Exposure C (Bai-yun-xian-gu), 
approximately 3 km to the east of the Chiahsien Township 
and  characterized  by  blocks  and  irregular-shaped 
concretions.  In  addition,  chemosymbiotic  lucinids 
plecypods Anodontia goliath were found in exposures A 
and C (Taylor and Glover, 2009; Chien et al., 2013). The 
δ13Ccarb values for JA-4, JA-5 and BG-12 were extremely 
negative, varying from −39‰ to −27‰, while JX-8 was 
enriched in 13C with a δ13Ccarb value of +8‰ (Wang et al., 
2018). The δ18O values ranged from −1‰ to +2‰ in 
samples JA-4, JX-8 and BG-12, whereas sample JA-5 had 
the lowest δ18O value of −9‰ (Wang et al., 2018). 
 
3 Methods 

 
Four authigenic carbonate samples, BG-12, JA-4, JA-5 

and  JX-8,  were  chosen  for  biomarker  analysis.  The 
method for preparation and extraction of lipids has been 
detailed by Guan et al. (2013). An aliquot of total lipid 
extracts (TLE) was saponified (with 6% KOH (w/v) in 
methanol), the neutral lipid fraction was then separated 
from the carboxylic acids by extracting the saponified 
TLE. The neutral lipid fraction was separated by column 
chromatography  into  three  classes:  (1)  aliphatic 
hydrocarbons (n-hexane), (2) aromatic hydrocarbons (n-
hexane/dichloromethane,  6:4;  v:v)  and  (3)  alcohols 
(methanol). The nitrogen-dried alcohols were converted to 
trimethylsiloxyl (TMS) derivatives by bis(trimethylsilyl) 
trifluoroacetamide (BSTFA) at 70°C for 1 hour prior to 
Gas  Chromatography-Mass  Spectrometry  (GC-MS) 
analysis. To obtain the carboxylic acids, the saponified 
residuals were treated with 10% HCl to reach a pH of 2 
and  extracted  by  n-hexane  until  the  solvents  became 
colorless.  Fatty  acids  methyl  esters  (FAMEs)  were 
transformed from free fatty acids by subjecting the dried 
fatty acid fraction to 14% BF3-methanol in a screwcap vial 
(2  hours,  60° C).  All  fractions  were  analyzed  at  the 
Guangzhou  Institute  of  Energy  Conversion,  Chinese 
Academy of  Sciences  (GIEC,  CAS),  using a  Thermo 
Electron Trace GC-MS equipped with a 60 m DB-5 MS, 
fused silica capillary column (0.32 mm i.d., 0.25 μm film 
thickness). Helium was supplied as the carrier gas at a 
flow rate of 1.2 ml/min. The following GC temperature 
programs  were  used:  injection  at  60° C  with  2  min 
isothermal, heating from 60°C to 150°C at 10°C/min, 
heating from 150°C to 320°C at 4°C/min, and isothermal 
holding for 30 min for hydrocarbons and 40 min for 
FAMEs  and  TMS-derivatives.  Likewise,  compound-
specific carbon isotope analysis was performed on a GV 
Isoprime system interfaced to a Hewlett-Packard 6890 gas 
chromatograph  at  the  Guangzhou  Institute  of 
Geochemistry,  Chinese  Academy  of  Sciences  (GIG, 
CAS). The GC conditions were the same to those used in 
the  GC-MS  analysis.  The  stable  carbon  isotopic 
composition is expressed in the standard δ-notation in per 
mil (‰) relative to the Vienna-PeeDee Belemnite (V-
PDB) standard. The FAMEs and TMS-derivatives were 
corrected for the addition of carbon during preparation. 



Acta Geologica Sinica (English Edition), 2019, 93(1): 167–174 169  

Fig. 1. Map of Taiwan showing the locations of the ancient seep carbonates in this study. 

Fig. 2. Field photographs of carbonate samples collected from southwestern Taiwan.  
(a) JA-4 and JA-5, carbonates in gray mounds, surrounded by mudstones within small enticle carbonates. Carbonate chimneys were found in 
the upper regions of the mudstones. (b) JX-8, authigenic carbonate concretions. (c) BG-12, blocks and irregular-shaped concretions. 
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Each sample was analyzed at  least  in  duplicate.  The 
standard deviation of compound-specific carbon isotope 
measurements was <0.9‰. 
 
4 Results and Discussion 
 
4.1 Sources of organic matters 
4.1.1 Based on hydrocarbons 

Hydrocarbons were the most abundant class of organic 
compounds, whereas only a few polar lipid biomarkers 
were preserved in the carboxylic acid and alcohol 
fractions. The predominant hydrocarbons were n-alkanes 
with chain lengths from C14 to C36, peaking at n-C17 and n-
C27, with bimodal distributions in sample BG-12 (Fig. 3).  
By contrast, the n-alkanes in the total ion chromatograms 
(TIC) of carbonate samples JA-4, JA-5 and JX-8 were 
characterized by unimodal distributions with n-C16/n-C17 
as the most abundant components. In addition to the n-
alkanes, isoprenoids of pristane and phytane were the most 
abundant isoprenoids with δ13C values ranging from 
−30.6‰ to −48.0‰ (Fig. 2; Table 1). 

Lipid  biomarkers  are  compounds  that  characterize 
certain biotic sources and retain their source information 
after burial in sediments, even after alteration (Meyers, 
2003). In sample BG-12, short-chain and long-chain n-
alkanes accounted for 30% and 45% of all hydrocarbons 
(n-C22+/n-C21-=1.5),  respectively  and  have  a  carbon 
preference  index  (CPI)  value  of  1.2  (Table  1).  The 

presence  of  short  odd  alkanes,  particularly  with  a 
maximum at n-C17, is indicative of marine organisms such 
as  algae,  photosynthetic  bacteria  and  marine  animals 
(Blumer et al., 1971; Giger et al., 1980; Cranwell et al., 
1987; Meyers, 2003; Mille et al., 2007). The long-chain n-
alkanes, with C23−C36 maximized at n-C27 and δ13C values 
of around −30‰, suggested that these compounds were 
mainly derived from leaf waxes of higher plants (Eglinton 
et al., 1962; Eglinton and Hamilton, 1963; Simoneit, 1977; 
Naraoka and Ishiwatari, 2000). The ratio of Pr/Ph was 
used as an indicator of the redox environment (Peters et 
al., 2005). The high ratio of Pr/Ph (2.5) found for BG-12 
indicated that this carbonate formed under typical suboxic 
conditions. Based on the lack of isoprenoids diagnostic for 
ANMEs, the biomarker patterns and stable carbon isotopic 
compositions indicated that the carbonate BG-12 probably 
precipitated  in  a  suboxic  marine  environment  with  a 
considerable contribution from terrestrial organisms. 

In samples JA-4, JA-5 and JX-8, the short-chain n-
alkanes  represented  approximately  50%  of  all 
hydrocarbons, and long-chain n-alkanes accounted for on 
average 25% of total hydrocarbons. The predominance of 
short-chain hydrocarbons and the low ratios of n-C22+/n-
C21- (0.5 to 0.9) suggested that the hydrocarbons mainly 
originated from marine organisms (Blumer et al., 1971; 
Giger et al., 1980; Cranwell et al., 1987; Meyers, 2003; 
Mille  et  al.,  2007).  The  Pr/Ph  ratios  were  relatively 
constant among samples and fell within a range of 0.6 to 

 
Table 1 Stable carbon isotopic compositions of hydrocarbons analyzed and their relative percentages 

Sample ID 
JA-4 JA-5 JX-8 BG-12 

Relative 
Percentages 

δ13C (‰) 
V-PDB 

Relative 
Percentages

δ13C (‰) 
V-PDB 

Relative 
Percentages 

δ13C (‰) 
V-PDB 

relative 
percentages 

δ13C (‰) 
V-PDB 

n-C14 1.1 −31.4 n.d. n.d. n.d. n.d. 1.3 −28.4
n-C15 3.7 −31.5 2.5 n.d. 1.0 n.d. 3.4 −30.6
n-C16 11.7 −32.1 10.7 −33.6 8.6 −28.8 5.8 −30.3
n-C17 10.0 −32.1 11.3 −34.3 9.4 −31.1 5.8 −29.9

Pristane 11.1 −32.4 7.8 −34.2 8.2 −32.9 17.2 −30.6
n-C18 10.5 −31.2 11.1 −33. 6 9.2 −29.7 4.5 −29.9
Ph/Cr 12.4 −42.6 13.6 −48.0 8.5 −44.0 7.0 −33.4
n-C19 4.4 −35.1 5.1 −37.6 5.4 −31.4 3.2 −32.7
n-C20 4.2 −31.3 5.9 −33.6 7.4 −29.3 2.9 −30.8
n-C21 2.9 −35.3 3.5 −38.5 5.3 −30.3 3.2 −30.6
n-C22 2.6 −33.3 3.2 −34.9 4.9 −29.3 3.1 −31.4
PMI 2.3 −109.8 3.8 −113.4 1.5 −87.7 0 n.d.
n-C23 4.1 −59.8 4.8 −65.2 5.8 −40.8 3.5 −32.4
n-C24 2.1 −33.0 2.3 −38.8 3.8 −30.6 3.5 −31.8
n-C25 2.5 −35.9 2.2 −42.1 3.7 −30.6 4.2 −31.6
n-C26 2.0 −30.3 1.8 −37.3 2.7 −29.6 4.3 −31.7

Squalane 1.3 −96.4 1.7 −94.2 1.9 −74.4 0.5 n.d.
n-C27 2.1 −32.4 1.8 −34.1 3.0 −33.9 5.2 −32.4
n-C28 1.9 −32.5 1.3 −31.7 2.2 −31.0 4.6 −32.4
n-C29 1.9 −33.2 1.6 −38.0 2.9 −31.7 4.6 −32.3
n-C30 1.0 −31.2 1.1 −29.5 1.8 −3.3 3.2 −31.7
n-C31 1.3 −27.3 1.4 −31.7 2.5 n.d. 3.7 −32.6
n-C32 0.6 −34.0 0.7 n.d. 1.0 n.d. 2.0 −33.7
n-C33 0.9 −41.5 0.8 n.d. 1.3 n.d. 1.9 −32.6
n-C34 0.5 −46.7 n.d. n.d. n.d. n.d. 0.8 −33.7
n-C35 0.5 −53.0 n.d. n.d. n.d. n.d. 0.6 n.d.
n-C36 0.2 n.d. n.d. n.d. n.d. n.d. 0.2 n.d.
δ13Ccarb.  −39‰ −34‰ +8‰  −27‰
δ18Ocarb.  +2‰ −9‰ −1‰  0.9‰

Pristane/n-C17 1.1  0.7 0.9 3.0 
Pr/Ph 0.9  0.6 1.0 2.5 

n-C22+/n-C21- 0.5  0.8 0.9 1.5 
*CPI 1.3  1.3 1.5 1.2 

aC31 αβ 22S/(22S+22R) 0.5  0.5 0.5 0.5 

 

Ph/C, Phtane/Crocetane; aC31αβ 22S/(22S+22R), C31homohopane 22S/(C31homohopane 22S+C31homohopane 22R). n. d.: not detected 
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1.0, which was normally interpreted as anoxic conditions 
(Harris et al., 2004). Further evidence in support of this 
conclusion came from the characteristic lipid biomarkers 
of AOM and their pronounced 13C depletions. 

 
4.1.2 Based on hopanoids 

Hopanoids, mainly biosynthesized by some prokaryotes 
(Rohmer et al., 1984) and used as biomarkers for bacteria 
(Peters and Moldowan, 1991; Peters et al., 2005; Zhang et 
al., 2017; Li et al., 2017), are present ubiquitously in soils 
and  sediments  (Rohmer  et  al.,  1984;  Peters  and 
Moldowan, 1991; Peters et al., 2005; Guan et al., 2014). A 
series of C27−C34 hopanes were detected in all samples 
with  17α(H),21β(H)-hopanes  being  the  most  abundant 
biomarkers (Fig. 4; Table 2). Among these samples, the 
concentrations of extended C31−C34 hopanes decreased 
towards the C34 pseudohomologue (Fig. 4). In addition, 
relatively low contents of moretanes and “biological” 17β
(H),21β(H)-hopanes were also present. 

The numerous organic compounds present in carbonates 
suggested that no heavy alteration occurred compared to 
modern seep carbonates (Birgel et al., 2006). Based on the 
biomarker patterns and compositions, the double bonds 
and unstable structures were destroyed by hydrogenation 
of double bonds substitution of hydrogen for hydroxyl or 
aromatization of rings (Meyers, 2003). As shown in Table 
1, all C31αβ 22S/(22S+22R) ratios were 0.5, suggesting a 
relatively lower thermal maturity (Peters et  al.,  2005; 
Birgel et al., 2006). 

 
4.2 Biomarkers diagnostic for AOM and formation of 
the authigenic carbonates 

Samples JA-4, JA-5 and JX-8 contained typical lipid 
biomarkers diagnostic for methanotrophic archaea. The 
isoprenoid  hydrocarbons  of  2,6,10,15,19-
pentamethylicosane (PMI) and squalane with strong 13C-
depletions in samples JA-4, JA-5 and JX-8 suggested that 
the  primary  carbon  source  was  methane,  which  was 
primarily oxidized in an anaerobic process (Sackett, 1978; 
Whiticar et al., 1986; Elvert et al., 1999, 2000; Hinrichs et 
al., 2000; Boetius et al., 2000; Blumenberg et al., 2004; 
Guan et al.,  2013, 2016b). Among these samples, the 
isoprenoid hydrocarbons PMI and squalane diagnostic for 
methanotrophic archaea were present in low percentages 
less than 6% of all hydrocarbons. Usually, crocetane is 
used as an indicator for ANME-2/DSS consortia since it is 
abundant in ANME-2/DSS-dominated habitats and only 
present  in  trace amounts  or  absent  in  ANME-1/DSS-
dominated ecosystems (Niemann and Elvert, 2008). In 
samples JA-4, JA-5 and JX-8, crocetane co-eluted with 
phytane with minor contributions to the combined peaks, 

which can be indicated by the slightly lower δ13C values 
relative to pristane since δ13C values of pure phytane 
usually falls in the same range as pristane in the same 
sample. The lipid biomarkers from terrestrial and marine 
environments  were  indicated  as  the  major  organismal 

Table 2 Detected hopanoid compounds showed in chromatogram of m/z 191 in authigenic carbonates 
Number Biomarkers Number Biomarkers 

1 18α(H),22,29,30-trisnorneohopane(Ts) 10 17β(H)-21β(H)-hopane 
2 17α(H),22,29,30-trisnorhopane(Tm) 11 22R-17β(H),21α (H)-30-homomoretane 
3 17α (H),21β (H)-30-norhopane 12 22S-17α (H),21β (H)-bihomohopane 
4 17β(H),21α (H)-30-normoretane 13 22R-17α (H),21β (H)-bihomohopane 
5 18α(H)-oleanane 14 22S-17α (H),21β (H)-trihomohopane 
6 17α(H),21β(H)-hopane 15 22R-17α (H),21β (H)-trihomohopane 
7 17β(H),21α (H)-moretane 16 22S-17α(H),21β (H)-tetrahomohopane
8 22S-17α (H),21β (H)-30-homohopane 17 22R-17α(H),21β(H)-tetrahomohopane 
9 22R-17α (H),21β (H)-30-homohopane    

 

 

Fig. 3. Partial gas chromatograms (FID) of hydrocarbon frac-
tions of samples (a) JA-4, (b) JA-5, (c) JX-8, and (d) BG-12.  
Cr: crocetane; PMI: 2,6,10,15,19-pentamethyleicosane; Pr: pristane; Ph: 
phytane; Sq: squalane. Gray dots: n-alkanes.  
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inputs for seep carbonates from weak seep settings or 
ancient limestones (Peckmann et al., 2009; Guan et al., 
2016a).  In  the  present  study,  lipid  biomarkers  from 
terrestrial  and  marine  environments  dominated  over 
hydrocarbons (by more than 70%). This together with the 
low contents of AOM-related biomarkers, as well as the 
lack  of  indicators  for  ANME-2,  suggested  that  the 
carbonates precipitated in weak seep settings. 

Apart  from  the  isoprenoid  hydrocarbons  PMI  and 
squalane, n-tricosane was present in carbonates JA-4, JA-5 
and  JX-8  with  moderate  13C-depletions  ranging  from 
−65.2‰  to  −40.8‰.  n-Tricosane  with  moderate  13C-
depletion has been reported at modern cold seep deposits, 
associated  microbial  mats  and  ancient  methane  seep 
limestones (Thiel et al., 2001; Peckmann et al., 2009; 
Chevalier et al., 2013), which has been suggested to be 
AOM-associated and even maybe produced by archaea 
(Thiel et al.,  2001). However, Chevalier et al. (2013) 
reported a co-occurrence of 13C-depleted 7,14-tricosadiene 

and JS1 bacteria at the AOM interval in a sediment core 
from the sea of Marmara (Turkey). Although no bacterial 
Candidate Division JS1 has been cultivated so far, the 
strongly  13C-depleted  signature  and  structure  of  the 
tricosane and related unsaturated tricosenes make bacterial 
Candidate  Division  JS1  indeed  a  potential  source 
candidate for tricosane (cf., Chevalier et al., 2013). 

In  seep  carbonates  JA-4  and  JA-5,  the  irregular 
isoprenoid  hydrocarbons  PMI  and  squalane  revealed 
strong  13C-depletion  with  δ13C  values  ranging  from 
−113.4‰ to −94.2‰, whereas they showed relatively 
higher  δ13C  values  between  ‒87.7‰  and  ‒74.4‰  in 
carbonate JX-8. Since methanotrophic archaea could have 
a strong fractionation of stable carbon isotopes between 
membrane lipids and the source methane, Δδ13Clipid- methane 
values of  archaea biomarkers compared to the source 
methane often range between ‒30‰ to ‒50‰ on average 
for ANME-1 and ANME-2 (Niemann and Elvert, 2008), 
which has been testified on carbonates from modern seep 
sites (Birgel et al., 2011; Himmler et al., 2015). Based on 
the  δ13C  values  of  PMI  in  samples  JA-4  and  JA-5, 
calculated δ13Cmethane values below ‒60‰ are obtained 
either by ANME-1- or ANME-2-domination, suggesting a 
microbial methane was involved in the precipitation of 
both carbonates (Whiticar, 1999). In terms of JX-8, the 
δ13Cmethane value ranged from ‒39‰ to ‒58‰, indicating a 
thermogenic  origin  was  likely.  However,  the  heavy 
δ13Ccarb value of +8‰ for carbonate JX-8 could be served 
as an evidence for additional carbon sources. In sediments 
below  the  sulfate–methane  transition  zone  (SMTZ), 
continued  CO2-reduction  in  an  almost  closed  system 
drives methanogenesis which results in a 13C-enriched 
CO2 pool (Lapham et al.,  2008). Seep carbonates are 
usually characterized by low δ13C values. However, δ13C 
values higher than +5‰ have been reported for some 
ancient seep carbonates (Budai et al., 2002; Peckmanna 
and Thiel, 2004; Chien et al., 2013; Wang et al., 2018). In 
the present study, the highly positive δ13C value of +8‰ 
together  with the moderate 13C-depletion of  PMI and 
squalane suggested that carbonate JX-8 formed from a 
mixed carbon source of 13C-depleted methane and 13C-
enriched residual CO2 from methanogenesis. A large δ13C 
offset between GDGT-0 (based on acyclic biphytane) and 
other  GDGTs (based  on  cyclic  biphytanes)  has  been 
reported in authigenic carbonates from the Gulf of Mexico 
(GoM), which has been attributed to a contribution from 
methanogenic Euryarchaeota (Feng et al., 2014). Relative 
to the extreme 13C-depletion of archaea biomarkers and 
the  moderately  negative  δ13Ccarb  values  (−29.8‰  to 
−18.1‰) in the carbonates from the GoM, the moderately 
13C-depleted archaea biomarkers and the positive δ13Ccarb 
value preserved in carbonate JX-8 stress the need for 
further investigation on geochemical mechanisms for the 
co-occurrence of methanogenesis and AOM. 

 
5 Conclusions 

 
The  limestones  of  JA-4,  JA-5 and JX-8  from SW 

Taiwan  contained  strongly  13C-depleted  archaea 
isoprenoid hydrocarbons that demonstrated the occurrence 
of  microbial  communities  responsible  for  anaerobic 

 

Fig.  4.  Partial  gas  chromatograms of  hopanoid  com-
pounds (m/z 191) from samples (a) JA-4, (b) JA-5, (c) JX-
8, and (d) BG-12.  
Arabic numbers indicate the corresponding compounds in Table 2.  
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oxidization of methane. Based on the δ13C values of PMI, 
calculated δ13Cmethane values below ‒60‰ are obtained for 
exposure A (JA-4 and JA-5), which suggested that a 
microbial  methane  was  involved  in  AOM during  the 
precipitation of the seep carbonates, whereas a mixture of 
13C-depleted methane and 13C-enriched residual CO2 from 
methanogenesis seem likely for exposure B (JX-8). In 
addition, the predominance of short-chain n-alkanes and 
relatively low ratios of n-C22+/n-C21- (0.5 to 0.9) revealed 
that  hydrocarbons  mainly  originated  from  marine 
organisms. The low contents of AOM-related biomarkers 
as well as the absence of the indicators for ANME-2 
suggested that the seep carbonates formed in weak seep 
settings.  The  presence  of  n-alkanes  with  bimodal 
distribution patterns and particular maxima at n-C17 and n-
C27 suggested that lipid biomarkers of carbonate BG-12 
chiefly derived from marine organisms and leaf waxes 
from higher plants. The C31αβ 22S/(22S+22R) ratio of 0.5 
indicated that the organic matter was of lower thermal 
maturity  and this  sample probably formed at  suboxic 
conditions as revealed by a Pr/Ph index of 2.5. 
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