## Lithospheric mapping: a pathfinder for hidden terrane and ore systems in southren Lhasa block <u>Bo Xu<sup>1,2,3</sup>, William L. Griffin<sup>2</sup>, , Zeng-Qian Hou<sup>3</sup>, Suzanne Y. O'Reilly<sup>2</sup>, Qing Xiong<sup>2</sup>, Zhen Guo<sup>2</sup>, Norman J. Pearson<sup>2</sup>, Yoann Gréau<sup>2</sup>, Zhi-Ming Yang<sup>3</sup>, and Yuan-Chuan Zheng<sup>1</sup></u> Widespread Miocene (24-8Ma) mantle-derived ultrapotassic rocks, lamprophyres and their entrained xenoliths<sup>[1]</sup>, provide information on the composition, geometry and thermal state of the sub-continental lithospheric mantle in southern Tibet during the India-Asia continental collision. The geochemical and isotopic characteristics of the ultrapotassic rocks along the Lhasa block delineate two distinct lithospheric source domains that have different histories of depletion and enrichment. The eastern ultrapotassic rocks (89-92 $\pm$ ) reveal a depleted, young and fertile lithospheric mantle ( $^{87}Sr/^{86}Sr_t=0.704$ to 0.707; $\epsilon$ Hf(t) = +7.7 to +0.5; Hf T<sub>DM</sub> =216-499 Ma). The western ultrapotassic rocks (79-89 $\pm$ ) and peridotite xenoliths (81 $\pm$ ) reflect a refractory harzburgitic mantle refertilized by ancient metasomatism (the lavas have: $^{87}Sr/^{86}Sr_t=0.714-0.734$ , $\epsilon$ Hf(t)= +1.1 to -21.2, Hf T<sub>DM</sub> = 1001-2471 Ma; the peridotites have $^{87}Sr/^{86}Sr_t=0.709-0.716$ ). Our geochemical data integrated with existing seismic tomography, suggest that upwelling asthenosphere was diverted away from the ancient continental root in the western Lhasa block, but rose to shallower depths beneath a thinner lithospheric mantle in the eastern part. The thermal interaction between the lithospheric mantle and asthenosphere ultimately generated the ultrapotassic rocks in the western and eastern Lhasa blocks. These two different styles of lithosphere-asthenosphere interaction, in turn, determine the oxidation state and the contents of water and other volatiles, ultimately determining the distribution of mineralization in southern Tibet. ## Refenreces [1]Xu et al., Geology 2017, Ultrapotassic rocks and xenoliths from South Tibet: Contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision. <sup>&</sup>lt;sup>1</sup>State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China, bo.xu@cugb.edu.cn <sup>&</sup>lt;sup>2</sup>ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, Australia <sup>&</sup>lt;sup>3</sup>Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China