
1 Introduction 
 

Gas hydrate, also known as flammable ice or methane 
hydrate,  refers  to  ice-like  crystalline  compounds 
consisting of water and gas molecules, which are formed 
under  low temperature,  moderate  pressure  and proper 
methane concentration (Thakur et al., 2011; Merey et al., 
2016). In nature, gas hydrate mainly exists on continental 
margins or in the permafrost of polar regions (Sloan, 
1998; Majorowicz et al., 2000; Makogon et al., 2007; 
Makogon, 2010). Gas hydrate has attracted great interest 
from scientists  in  many  disciplines,  due  to  its  great 
importance in energy resources, geohazards, and climate 
change (Kvenvolden, 1988a, 1988b; Macdonald, 1990; 
Milkov et al., 1990; Nisbet, 1990; Paull et al.,  1991; 
Maslin et al., 1998; Bouriak et al., 2000; Kennedy et al., 
2001; Collett, 2002; Collett et al., 2009). 

In  both  continental  margins  and  permafrost, 

hydrocarbon gas, in particular methane, is not only the 
main component of gas hydrate, which is the prime factor 
controlling the formation and stability of gas hydrate, and 
is also the goal of gas hydrate exploration and study. In 
terms of gas origin, the gas hydrates found on the Earth 
include microbial, thermogenic and mixed gases (Collect, 
2002; Dallimore and Collect, 2002; Collect, 2008; Collect 
et al., 2011; Cheng et al., 2016; Jiang et al., 2016; Tan 
Furong  et  al.,  2017).  As  for  gas  hydrate  found  in 
permafrost, the gas may be of a thermogenic origin, for 
example in the Qilian Mountains of China (Lu Zhenquan 
et al., 2010; Huang Xia et al., 2011; Lorenson et al., 
2011), or of a mixed origin of microbial and thermogenic 
gases, such as on the North Slope of Alaska and the in 
Mackenzie  Delta  of  Canada  (Lorenson  et  al.,  1999; 
Lorenson et al., 2005; Lorenson et al., 2011). That is to 
say, microbial gas has a significant contribution to gas 
hydrate formation in permafrost, and is likely to attract 
attention among researchers and explorers of gas hydrate. 

According to previous reports, the Mohe permafrost of 
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northeast China contains thermogenic gas required for gas 
hydrate accumulation (Zhao et al., 2012). Microbial gas, 
however,  remains  relatively  scarce.  Consequently,  the 
topic of the present work aims to search for microbial gas, 
as  well  as  its  potential  contribution  to  gas  hydrate 
accumulation in the Mohe permafrost. 
 
2 Requisites for Gas Hydrate Formation 
 
2.1 Geological setting 

The Mohe Basin is located north of 52°20′, is situated in 
the northernmost area of the Greater Khingan Mountains 
in China, across from Heilongjiang Province and Inner 
Mongolia Autonomous Region, extending northward to 
the Heilongjiang River and southward to Mohe and Tahe 
County Towns (Fig. 1). The basin covers around 21, 300 
km2 and has the highest latitude, with a lower elevation of 
about 400 to 600 m, and the lowest level of oil and gas 
exploration in China. 

The  Mohe  Basin  is  a  Mesozoic  continental  basin. 
Approximately 6000 m or more of strata fill the basin, 
consisting largely of clastic and volcanic rocks from the 
Middle Jurassic (with minor Cenozoic sediments), lying 
upon a Devonian basement. The Middle Jurassic includes 
the  Xiufeng,  Ershierzhan,  Mohe  and  Kaikukang 
Formations, which consist mainly of fluvial and lacustrine 
clastic rocks. The Ershierzhan and Mohe Formations occur 
widely throughout the basin, and contain potential source 
and reservoir rocks for promising gas hydrate. The dark 
mudstones of the only Mohe Fm. average more than 200 
m thick. The Xiufeng Fm. is also widely present in the 
Mohe Basin, and primarily includes reservoir rocks. The 
Kaikukang Fm. is restricted to the northeast part of the 
basin (Fig. 1). At present, four exploration wells were 
drilled at depths of around 500 to 2300 m. The Mk-2 well 
had the greatest depth, and drilled through approximately 
2300 m of the Mohe Fm. (Fig. 2), but its base was not 
penetrated. 
 
2.2 Requisites for gas hydrate formation in permafrost 

Requisites for gas hydrate formation and stability in 
permafrost  include  thickness  of  permafrost,  sufficient 
hydrocarbon gas, and underground water and its salinity. 
The  thickness  of  permafrost  creates  the  pressure-
temperature regime required for gas hydrate formation and 
its existence in permafrost zone, which, combined with the 
salinity of the underground water, governs the gas hydrate 
formation  and  its  stability.  Hydrocarbon  gas,  special 
methane and water are major constituents of gas hydrate. 
Aside from sufficient hydrocarbon gas, the Mohe Basin 
has the following characteristics. 

There is wide and continuous permafrost in the Mohe 

Basin (Zhou Youwu et al., 2000; Jin Huijun et al., 2009), 
which thickens to the northwest (Jin Huijun et al., 2009). 
According to the geophysical  data collected in recent 
years, the thickness of permafrost is usually 60 to 80 m, 
with the greatest local thickness reaching up to 120 m 
(Fig. 3). The thicknesses are comparable to the gas hydrate
-bearing Qilian mountains region in China (Zhu Youhai et 
al., 2009) and the Yamal Peninsula in Siberia, which show 
similar  gas  hydrate-speculated  occurrences  (Chuvilin, 
1998; Yakushev, 2000).  

Temperature is an important parameter in characterizing 
the pressure-temperature regime of gas hydrate formation. 
Here we include the surface temperature and geothermal 
gradient. The Mohe area has a surface temperature of 
about −0.5 to −3.0°C, and a geothermal gradient of 1.7 to 
2.7°C/100 m.  This  is  similar  to  the areas where gas 
hydrates  are  found,  for  example,  −8  to  −12° C 
(Romanovsky et al., 2007) and 1.0 to 3.0°C/100 m (Collett 
et al., 2008) in Messoyakha, Siberia; −4.6°C to −12.2°C 
(Kamath et al., 1987) and 1.5°C to 5.2°C/100 m (Collett et 
al., 2011) in Prudhoe Bay on the Alaskan North Slope; 
and −1.5°C to −2.4°C and 2.2°C/100 m (Zhu Youhai et 
al., 2009) in the Qilian Mountains of China. 

The Mohe area has lower salinity of underground water. 
Analyses of three spring water samples from the Mohe 
region show groundwater salinity (Cl-ion concentration) 
of ~2.94 ppm to 17.6 ppm, which is higher than Prudhoe 
Bay on the North Slope of Alaska (＜1.0–19 ppb) (Collett 
et  al.,  2011),  but  lower  than  Messoyakha,  Siberia 
(≤1.5wt%) (Makogon, 2010). Salinity throughout Mohe 
area thus has little effect on gas hydrate formation, and 
can be ignored. 

For hydrocarbon gas, there is still lack of its occurrence 
evidence, due to the fact that no gas fields have been 
discovered in the Mohe Basin. However, below we show 
abundant evidence of existing microbial gas which can 
actually act as a potential gas source for gas hydrate 
formation in the Mohe permafrost. 
 
3  Favorable  Conditions  of  Microbial  Gas 
Formation 
 
3.1 Moderate environmental temperature 

Environmental  temperature  is  an  important  factor 
affecting microbial activity and biogenic gas formation. In 
general, around 30 to 50°C of background temperature is 
favorable for methanobacteria growth and microbial gas 
formation (Wilhelms et al., 2001; Kang Yan et al., 2004; 
Wei Shuijian et  al.,  2009).  According to the data of 
temperature  log of  the  Mohe Basin,  the  depth  range 
corresponding  to  30  to  50° C  of  temperature  is 
approximately 1200 to 1900 m of the shallow subsurface 
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Fig. 2. Generalized geological section of Mk-2 well in the Mohe Basin, northeast China. 
1, Loose bed; 2, calcareous mudstone; 3, marl; 4, silty mudstone; 5, muddy siltstone; 6, calcareous sandstone; 7, siltstone; 8, fine-
grained- to siltstone; 9, fine-grained- to siltstone with sporadic coarse gravel; 10, quartz sandstone; 11, lithic sandstone; 12, lithic 
quartz sandstone; 13, conglomerate; 14, muddy slate; 15, muddy slate with carbon; 16, muddy slate with silt; 17, meta-muddy 
siltstone; 18, meta-calcareous fined-grained sandstone; 19, meta-calcareous fine-grained- to silt lithic sandstone; 20, meta-lithic 
sandstone; 21, meta-quartz sandstone; 22, meta-lithic quartz sandstone; 23, meta-sandstone; 24, meta-lithic sandstone with spo-
radic gravel; 25, andesite; 26, mylonite; 27, fracture zone; BG, biogenic gas; DCG, dry cofficient of gas; MG, mixed gas; TG, 
thermogenic gas.  
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part below the Mohe permafrost, which is suitable for the 
growth and activities of methanogens and thus microbial 
gas formation. 
 
3.2 Lower salinity of underground water 

The impact of salinity on microbial gas formation is 
also enormous (Martini et al., 1998, 2003, 2008; Kang 
Yan et al., 2004; Strapoc et al., 2010; Schlegel et al., 2011; 
Su Xianbo et al., 2011). According to previous research, 
methanogens cannot survive in environments of which the 
salinity levels are higher than 4 mol/L (Martini et al., 
1998).  For example,  the salinities of the underground 
water from the microbial shale gas plays of the Antrim 
shale and New Albany shale in the US are respectively 
lower than 4 mol/L (Martini et al., 2003) and 2 mol/L 
(Strapoc et al., 2010). 

In the northern portion of Heilongjiang Province, i.e., 
the Mohe region, previous data show that the salinity of 
underground water is usually smaller than 0.05 mol/L 
(Wang Baolai et al., 1987). Our analysis shows that the 
Mohe area has salinity, i.e., concentration of chlorine ions, 
of around 0.05×10−3 to 0.3×10−3 mol/L, which is far less 
than the underground water from the microbial shale gas 
plays of the Antrim and New Albany shales in the US 
(Martini et al., 2003; Strapoc et al., 2010). Therefore, the 
salinity of underground water from the Mohe Basin is 
favorable for microbial gas formation. 
 
3.3 Appropriate Eh and pH levels of underground 
water 

The redox quality of underground water also has an 
important impact on microbial gas formation (Bryant et 
al., 1976; Wang Yuewen, 2005). In general, the exclusive 
microbes which form microbial gas can only survive in 
anoxic conditions, i.e., reduction environments of which 
the Eh level is lower than −300 to −340 mV (Bryant et al., 
1976; Wang Yuewen, 2005). At present, no Eh data for 
the underground water from the Mohe Basin are available; 
however,  based  on  the  fact  that  a  large  number  of 
authigenic minerals, such as pyrite, calcite, quartz etc., fill 
the rock fissures from the Mohe area (Figs. 4 and 5), it is 
speculated that the Eh level of the underground water in 
this basin is within the range of approximately −200 to 
−400 mV (Liu Baojun, 1980), which is conducive to the 
growth of methanogens and formation of microbial gas. 

pH levels also have an importance to microbial gas 
formation.  In  general,  it  is  believed  that  the  neutral 
condition, pH levels of either 6.4 to 7.5 (Rudd and Taylor, 
1980) or 6.8 to 7.8 (Zehnder and Wuhrmann, 1977), is 
conducive to the growth of methanogens. Although no pH 
data from the Mohe Basin are available, it is concluded 
that, due to the calcite and quartz veins alternately filling 

in the rock fissures from the Mohe area (Fig. 4), the pH 
level of the underground water in this region is roughly 
between 6.5 and 9.0 (Liu Baojun, 1980), paralleling the 
pH levels of around 6.1 to 9.34 from the surrounding areas 
(Wang Chunhe et al., 1996; Zhao Qin et al., 2001), and 
supports the growth and formation of microbial gas. 
 
3.4  Rich parent matters for gas sources 

Microbial gas is a hydrocarbon gas composed mainly of 
methane, which is generated by the microbial metabolism 
of both modern matter derived from sediments and ancient 
organic  matter,  i.e.,  kerogen,  bitumen,  oil,  gas  etc. 
(Brown, 2011) in anoxic circumstances. Hydrocarbons of 
thermal origin, such as oil, gas and bitumen, can produce 
microbial gas (James and Burns,1984; Jones et al., 2008; 
Lorenson et al., 2011), as can organic-rich rocks including 
ancient organic matter, such as coals and dark mudstones 
(Nobel and Henk Jr., 1998; Ahmed and Smith, 2001; 
Curtis, 2002; Tao Mingxin et al., 2005; Flores et al., 2008; 
Warwick, 2008; Liu Honglin et al., 2010; McIntosh et al., 
2010;Park et al. ,2016). Within the Mohe Basin, only dark 
mudstones are present, and are rich as well, with the Mohe 
Formation alone having at least a 200 m thickness of dark 
mudstone,  with  no  coal  or  petroleum  having  been 
discovered. 

The abundance of organic matter in the Mohe Basin is 
able to support the formation of microbial gas. According 
to analyses of almost 300 mudstone samples from drilled 
cores, the Mohe Basin has a total organic carbon level of 
0.06  to  9.46% ,  with  an  average  of  1.46% ,  in  the 
Ershierzhan Formation,  and 0.19 to  17.73%, with  an 
average of 1.55%, in the Mohe Formation (Table 1), which 
are slightly lower than the Antrim Shale level of 0.5 to 24% 
(Martini et al., 2008) and New Albany Shale level of 1.0% 
to 20% (Mastalerz et al., 2013). In general, a minimum of 
approximately  0.5%  metabolizable  organic  carbon  is 
required  to  support  microbial  methane  production  in 
marine sediments (Rice and Claypool, 1981). Based on this, 
almost 80% of the dark mudstone from the Ershierzhan 
Formation, and nearly 90% of the dark mudstone from the 
Mohe Formation, can act as source rock for microbial gas. 

The type of organic matter from the Mohe Basin is able 
to sustain methanogens. Like the Quaternary system of the 
Qaidam Basin and many coals which produce microbial 
gas around the world (Table 1), the Mohe Basin possesses 
type-Ⅱ and type-III kerogens for microbial gas formation, 
being poorer than the Antrim Shale and New Albany 
Shale,  producing a large of  microbial  gas,  which are 
dominated by type-I and type-II kerogens. However, just 
like the Qaidam Basin, where a great amount of microbial 
gas  was  discovered,  the  kerogen  types  may  be 
compensated by the great volume of gas source rock 
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(Guan Zhiqiang et al., 2008).  
Thermal maturity of organic matter is not the key to 

controlling the generation of microbial gas. The fact that 
immature  or  lower-mature  source  rocks  with  vitrinite 
reflectance lower than 0.4%, not higher than 0.7% at most 
(Shuai Yanhua et al., 2006; Hui Rongyue et al., 2009), are 
conducive to forming microbial gas, is widely accepted. 

However, it is important to note that some exploration and 
research results indicate that both mature and post-mature 
source  rocks  can  generate  microbial  gas  (Table  1). 
According to previous reports, in the circumstances of 
methanogen  activities,  medium-  and  high-rank  coals 
(Johnson et al., 1994; Li Mingzhai et al., 2009) and the 
black mudstones of the metagenesis stage (Shi Zhanzheng 

 

Fig. 4. Minerals filled in fissures of Mk-2 well drilled cores of the Mohe Basin, northeast China. 
(a), Calcite filled in approximately vertical crevices (38.65–40.15 m); (b), little quartz existing in vertical fissures (77.05
–95.75 m); (c), quartz with little calcite filled in approximately horizontal and vertical crevices (151.4–151.62 m); (d), 
calcite and quartz exiting in approximately horizontal and vertical fissures(151.62–151.85 m); (e), calcite with a little of 
quartz filled in vertical crevices (156.13–156.35m); (f), quartz with little calcite filled in approximately vertical fissures 
(229.2–229.4 m).  
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et al., 2002) corresponding to vitrinite reflectance of 2.0% 
are  able  to  form microbial  gas.  The  analyses  of  32 
mudstone samples indicate that the vitrinite reflectance 
(Ro) of the Mohe Basin ranges from 0.8 to 3.54%, among 
which only approximately 20% of higher than 2.0% of the 
vitrinite  reflectance  is  frequently  distributed  in  the 
immediate  vicinity  of  the  fault  zones.  Based  on  the 
discussion in this paper, the organic matter from the Mohe 
area can completely support the generation of microbial 
gas. 

3.5 Intense and wide microbe activities 
Microbe  activities  resulting  in  the  formation  of 

microbial gas occur widely throughout the Mohe Basin, 
which is marked by extensive existence of 25-norhopane 
series  compounds  (Blanc  and  Connan,  1992;  Bao 
Jianping, 1996; Du Hongyu et al., 2004; Bennett et al., 
2006;  Wang  Zuodong  et  al.,  2009).  The  biomarker 
analyses of 48 core and 24 outcrop mudstone samples in 
the Mohe Basin show that all of them contained 25-
norhopane series compounds (Fig. 6), as first discovered 

 

Fig. 5. Pyrite on fissured surfaces of Mk-2 well drilled cores of the Mohe Basin, northeast China. 
(a), Film-shape pyrite on the crevice surface (36.5–38.65 m); (b), film-shape pyrite on the bedding surfaces (53.4–56.05 m); (c), film-
shape pyrite on the fracture surface (62.6–67.53 m); (d), film-shape pyrite on the bedding surface (149.85–150.05 m); (e), film-shape 
pyrite on the bedding surface (151.2–151.4 m); (f), grain-shape pyrite on the fracture surface (229.5–241.45 m).  

Fig. 6. Mass chromatogram maps (m/z191 and m/z191) of saturated fraction from dark mudstones in 
the Mohe Basin, northeast China (Well LH-1S1).  
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in the Mohe permafrost, thus confirming the microbial 
activities exiting broadly throughout the Mohe area. 

 
4 Proof of Microbial Gas Occurrence 
 
4.1 Gas components 

Microbial gas is marked by methane-dominated gas, 
i.e., the ratio of C1 to C1–5 higher than 98% (Rice and 
Claypool, 1981). In the shallow section of the Mohe Basin 
there is a great quantity of methane-dominated gas. In 
effect, the Mohe Basin has highly variable hydrocarbon 
gas  constituents.  According to  the  gas chromatograph 
analyses of 88 core gas samples from the Mk-2 well in the 
Mohe Basin (Table 2), the methane content ranges from 
84 to 100%, with the ratio of C1 to C1–5 being greater than 
98% in the shallow subsurface of 870 m (Fig. 2), in the 
range of 91 to 98% from 870 to 1300 m, and from 84 to 
97% deeper than 1300 m. It then displays characteristics 
of microbial gas at the shallower section of the Mohe 
Basin (Fig. 2). 
 
4.2 Hydrocarbon gas isotopes  

Compared  with  thermogenic  gas,  the  methane  of 
microbial origin is generally enriched with C12 and H1, 

i.e., characterized by very low isotopic ratios of δ13CCH4 

and δDCH4, with the δ13CCH4 being less than −55‰ and 
δDCH4 less than −150‰ (Rice and Claypool, 1981; Rice, 
1993). It was reported that the Mohe area has relatively 
lighter methane carbon isotopes (Zhao et al., 2012), which 
is confirmed in the present study. The mass spectrometric 
analyses of almost 90 core gas samples from the Mk-2 
well drilled in the Mohe Basin indicate that the methane 
carbon isotope δ13CCH4 values are in the range of −82.9‰ 
to −39.7‰ (Table 3), among which 71.6% of the δ13CCH4 
values are less than −55‰ (in the upper subsurface of 
1940  m),  20.5%  are  between  −55‰  and  −50‰ 
(approximately 1940 to 2200 m below the surface), and 
7.9% are more than −50‰ (below 2200 m). In addition, 
the methane hydrogen isotope δDCH4 values of the core gas 
range from −450‰ to −243‰, which are all significantly 
lower than these of microbial gas from the modern 
Yangtze River estuary (Zhang et al, 2017), and almost all 
are  lighter  than  −250‰  (Table  3).  These  isotope 
characteristics show a microbial gas occurrence in the 
upper subsurface of the Mohe permafrost. 

In the interpretive diagram of the gas origin, through the 
combination of the δ13CCH4 and δDCH4 information, all of 
the 89 pairs of methane isotopic ratios of δ13CCH4 and 

 Table 1 Comparison of main characteristics of gas source rocks from representative areas abroad and the Mohe Basin, 
northeast China 

Area strata Lithology TOC (%) Type of kerogen 
Maturity of 

organic matter 
(Ro, %)

Origin of gas Isotopes of methane(‰) 

Mohe Basin Mohe Fm. Mudstone 0.19–17.73/ 
1.55 (256)* type-Ⅱ, Ⅲ 0.8–3.54/ 

2.05(32) Biogenic gas, thermogenic gas δ
13CC1: −82.9–−39.7; 
δD C1: −450–−243 

Qaidam Basin 
(Wei Guoqi et 
al., 2005) 

Quaternary Muddy 
sediment 0.15–0.46 Majority of type-Ⅲ, 

a little of type-Ⅱ 0.22–0.47 Biogenic gas δ13CC1: −69.9–−65 

Tuha Basin 
(Zhang Jinchuan 
et al., 2009) 

Lower 
Jurassic Shale 1.3–20 Majority of typeⅡ1, 

Ⅱ2 

0.6–1.3(Chen 
Jianping et 
al.,1999) 

Biogenic gas,thermogenic gas δ13CC1: −65–−45(Liu et 
al ,2010) 

Michigan Basin 
(Martini et al., 
2003) 

Devonian Antrim 
Shale 0.5–24 Majority of type-Ⅰ

0.4–0.6 Biogenic gas(northern margin) δ13CC1: −55–−48.3; 
δD C1: −258–−207(Martini et 
al.,1998) 1.0 thermogenic gas(central basin) 

Illinois Basin Devonian 
New 
Albany 
Shale 

1.2–20 (Martini et 
al., 2008, 
Mastalerz et al 
2013) 

Majority of 
type-Ⅱ(Johnson et 
al., 1994) 

0.4–0.6 
(Mastalerz et al., 
2013) 

Biogenic gas(northern margin) 
(Zehnder et al.,1977) δ13CC1: −56.3–−48.4; 

δD C1: −156–−254(Martini et 
al.,2008; Strapoc et al ,2010)1.0 (Martini et 

al., 2008) 

thermogenic gas(southern 
margin) (Martini et al., 2008; 
Strapoc et al., 2010) 

Huainan, Anhui 
province Permain Coal  

Majority of type-Ⅲ 
(Zhang Hong et al., 
2005) 

0.72–1.48 
(Qin Guojian, 
2010) 

Biogenic gas, thermogenic gas 
(Tao Mingxin et al., 2005; 
Zhang Hong et al., 2005; Zhang 
Xiaojun et al., 2007)

δ13CC1: −72.3–−49.2(Zhang 
et al ,2005);δD C1: 
−243–−219( Tao et al.,2005)

Hongen, Yunnan 
Province (Tao 
Mingxin et al., 
2005) 

Permain Coal  type-Ⅲ 1.24–1.43 Biogenic gas, thermogenic gas δ
13CC1: −54.5–−49.8; 
δD C1: −206–−196 

East Australia 
(Ahmed et al., 
2001) 

Permain Coal  type-Ⅲ 0.72–1.48 Biogenic gas 
(Sydney Basin etc.) 

δ13CC1: −55±10; 
δD C1: −217±17 

Mexico Gulf 
(Warwick et al., 
2008) 

Paleogene Coal  type-Ⅲ 0.5–1.2 Biogenic gas (north part) δ13CC1: −65.6–−56.8; 
δD C1: −220.7–−181.6 

Note: * minimum-maximum/mean value (sample number). 
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δDCH4 of the core gas from the Mk-2 well in the Mohe 
Basin fall within the scope of the microbial origin gas 
(Fig. 7), displaying the presence of microbial gas in the 
Mohe permafrost. 

The carbon isotope δ13CC2H6 ratio of ethane also exhibits 
the characteristics of the microbial gas of the Mohe Basin. 
According  to  some  scholars,  the  carbon  isotopes  of 
coalbed ethane of thermal origin δ13CC2H6 are higher than 
−33‰ (Rice and Claypool,  1981).  Through the mass 
spectrometric analyses of 74 core gas samples from the 
Mk-2 well, the carbon isotopes of the ethane are in the 
range  of  −54.3  to  −41.7‰ (Table  3),  suggesting  the 
existence of microbial gas in the Mohe permafrost. 

As shown above, the fact that the Mohe Basin has an 
occurrence of microbial gas is proven to be true and 
credible, and the microbial gas primarily exists in the 
shallower section of the Mohe permafrost (Fig. 2). 
 

Table 2 Main components of the core hydrocarbon gas from Mk-2 well of the Mohe Basin, northeast China 

No. Well depth 
(m) 

CH4 
(μL/L) 

C2H6 
(μL/L) 

C3H8 
(μL/L) C1/∑Ci No. Well depth

(m)
CH4 

(μL/L)
C2H6 

(μL/L) 
C3H8 

(μL/L) C1/∑Ci 

1 675 22301.17 0.00 81.41 1.00 45 1595 180669.22 7538.39 4857.43 0.93 
2 735 223481.63 0.00 11.64 1.00 46 1608 134739.04 6486.93 4181.51 0.92 
3 754 28709.34 115.37 54.82 0.99 47 1619 536681.07 46384.98 24515.14 0.88 
4 804 4843.80 11.22 10.67 0.99 48 1646 438871.49 20076.10 10050.97 0.93 
5 813 58927.12 63.82 43.63 1.00 49 1653 320134.29 6992.91 2080.57 0.97 
6 833 167347.74 72.23 0.00 1.00 50 1666 99846.95 2333.69 961.10 0.96 
7 842 275592.47 17.54 7.33 1.00 51 1674 176714.34 7524.91 4303.13 0.93 
8 856 73776.22 0.00 9.04 1.00 52 1700 482594.54 10844.14 2273.60 0.97 
9 877 107189.57 736.49 562.07 0.98 53 1732 10125.74 368.73 214.29 0.94

10 889 305871.42 7242.38 5218.86 0.95 54 1745 154549.05 5897.62 1833.56 0.95 
11 899 69275.53 1671.03 242.61 0.97 55 1759 25684.32 1050.88 535.17 0.94 
12 908 80518.56 1070.63 235.60 0.98 56 1798 249305.87 13545.57 2267.03 0.94
13 922 74283.78 1964.53 0.00 0.94 57 1810 371596.67 29267.74 9524.86 0.90 
14 929 235035.20 5213.97 1213.48 0.97 58 1823 25778.35 785.18 239.21 0.96 
15 945 156604.23 2946.42 938.23 0.97 59 1846 262181.73 17975.99 6995.79 0.91
16 981 196350.98 3659.22 2762.62 0.96 60 1863 494597.06 26836.44 8916.29 0.93 
17 988 64611.15 1428.55 1447.89 0.93 61 1879 45217.77 1218.75 323.46 0.96 
18 1054 57932.23 1259.04 1863.75 0.92 62 1897 255282.94 10035.27 4101.57 0.94 
19 1067 193792.85 3139.73 1357.96 0.98 63 1908 22548.11 799.46 222.51 0.95 
20 1081 104081.56 2469.86 977.38 0.96 64 1916 226556.59 11267.43 2207.41 0.94 
21 1094 295853.35 15261.24 12667.97 0.90 65 1934 192515.76 10771.78 2550.83 0.93 
22 1126 381178.24 0.00 2970.05 0.99 66 1941 262404.62 13135.50 1896.80 0.95 
23 1134 426214.08 11516.53 2921.45 0.96 67 1975 493719.14 13574.37 2818.60 0.97 
24 1142 319912.70 8487.01 2145.90 0.96 68 1995 362323.93 9855.23 2463.95 0.97 
25 1149 415161.99 15225.93 6591.21 0.94 69 2004 308473.34 18627.51 4845.28 0.93 
26 1156 520134.36 16093.71 3674.08 0.96 70 2014 446849.95 25107.68 8297.20 0.93 
27 1163 344191.89 17970.26 8041.57 0.92 71 2025 309596.02 17311.22 4924.99 0.93 
28 1173 252131.40 10468.79 4398.91 0.94 72 2037 375953.83 22535.83 6787.21 0.93 
29 1182 126302.05 4259.11 1334.27 0.95 73 2045 3205.62 90.41 55.72 0.95 
30 1194 514210.26 18952.43 10434.36 0.93 74 2054 528920.06 28505.85 4187.70 0.94 
31 1204 417314.13 18541.73 12691.45 0.92 75 2075 191224.75 5605.01 4018.96 0.94 
32 1213 303627.90 9558.78 4821.89 0.95 76 2121 106001.12 3396.51 1755.20 0.94 
33 1217 521075.53 10185.59 3568.57 0.97 77 2135 254980.76 4934.36 826.50 0.98 
34 1227 430863.86 10748.26 4640.66 0.96 78 2148 497658.97 23656.42 10112.91 0.93 
35 1235 377362.54 6696.65 1655.03 0.98 79 2171 422868.98 36727.07 11387.63 0.90 
36 1294 437919.49 15298.27 5577.10 0.95 80 2178 112232.02 4224.36 1748.44 0.94 
37 1300 384542.07 11101.69 3375.96 0.96 81 2195 606032.38 50001.59 12023.68 0.91 
38 1421 18194.04 1277.16 850.23 0.88 82 2212 207213.85 7850.24 1137.14 0.96 
39 1444 487928.11 57934.22 27202.19 0.84 83 2235 571491.40 50801.41 6994.31 0.91
40 1478 414491.33 31582.20 10037.01 0.90 84 2241 22696.85 994.30 388.93 0.94 
41 1494 427387.34 36565.75 9182.43 0.89 85 2259 106032.38 6834.26 4483.49 0.88
42 1500 503094.23 38232.11 12105.81 0.90 86 2272 115446.51 3192.65 1103.26 0.96 
43 1511 156318.01 6469.55 1648.79 0.95 87 2281 352145.99 35481.06 20658.92 0.84 
44 1575 417983.83 12129.10 6136.83 0.95 88 2302 228310.36 12195.01 2538.94 0.94  

 

 

Fig. 7. Interpretive diagram of carbon and hydrogen isotopes 
of the core gas from the Mk-2 well of the Mohe Basin, 
northeast China (after Whiticar, 1999).  
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4.3 Gas composition and isotopes 
The origin of hydrocarbon gas in the Mohe Basin is also 

discussed from the perspective of the Bernard plot relating 
the C1/(C2+ C3) ratio (Bernard et al., 1978) to the carbon 
isotopic δ13CCH4 value of methane. The study of the testing 
data of 84 core gas samples reveals that 67 gas samples 
fall  within  the  scope of  mixed gas of  microbial  and 
thermogenic origin, 11 samples of microbial gas, and only 
six samples of thermal origin (Fig. 8), suggesting that 
microbial gas exists in the Mohe permafrost.  
 
5 Discussions 
 

Microbial  activities  spreading  throughout  the  Mohe 
permafrost provide agents for the formation of microbial 
gas  in  the  region.  As  discussed  above,  almost  all 
mudstones from the outcrop and downhole in the Mohe 
Basin  bear  variable  amounts  of  25-norhopane  series 

compounds, which are considered to be indicators for, or 
products of, the microbial alteration of organic matter 
(Blanc  and  Connan,  1992;  Bao  Jianping,  1996;  Du 

 Table 3 Distribution of carbon and hydrogen isotopes f hydrocarbon gas from Mk-2 well in the Mohe Basin 

No. Depth 
(m) 

δ13C1-PDB 
(‰) 

δ13C2-PDB 
(‰) 

δDc1-SMOW 
(‰) No. Depth 

(m)
δ13C1-PDB 

(‰)
δ13C2-PDB 

(‰) 
δDc1-SMOW 

(‰)
1 594 −82.9 n.d. n.d. 46 1595 −63.4 −51.2 −322 
2 675 −79.0 n.d. n.d. 47 1608 −51.5 n.d. n.d. 
3 735 −78.4 n.d. −293 48 1619 −62.7 −52.5 −422 
4 754 −77.8 n.d. −243 49 1646 −62.2 −50.6 −428 
5 804 −74.3 n.d. −344 50 1653 −59.6 −48.2 −415 
6 813 −73.2 n.d. −301 51 1666 −63.4 −47.3 −423 
7 833 −75.9 n.d. −298 52 1674 −65.1 −50.0 −389 
8 842 −73.8 n.d. −272 53 1700 −62.3 −50.3 −418 
9 856 −72.3 n.d. −297 54 1732 −60.1 n.d. −383.1 
10 877 −67.7 n.d. −300 55 1745 −59.7 −47.3 −416.5 
11 889 −66.2 −50.5 −334 56 1759 −59.6 −49.8 −390.4 
12 899 −65.2 −48.3 −346 57 1798 −59.5 −46.4 −413.5 
13 908 −64.7 −54.1 −356 58 1810 −58.7 −48.4 −394.3 
14 922 −64.5 −49.3 −366 59 1823 −60.1 n.d. n.d. 
15 929 −64.4 −50.5 −358 60 1846 −58.9 −47.5 −398.8 
16 945 −65.5 −47.6 −339 61 1863 −57.8 −47.5 −402.5 
17 981 −66.3 −54.3 −318 62 1879 −58.7 n.d. −401.6
18 988 −66.7 n.d. −251 63 1897 −58.3 −46.5 −408.7 
19 1054 −70.9 −52.6 −263 64 1908 −55.7 −46.8 −418.7 
20 1067 −69.1 −45.8 −303 65 1916 −53.4 −51.2 −428.0
21 1081 −64.7 −49.0 −366 66 1934 −55.4 −43.6 −437.7 
22 1094 −66.5 −50.2 −343 67 1941 −55.4 −43.1 −446.5 
23 1126 −63.1 −50.1 −378 68 1975 −54.0 −43.7 −445.4 
24 1134 −62.7 −49.6 −383 69 1995 −53.9 −42.8 −427.5 
25 1142 −63.0 −43.1 −388 70 2004 −54.5 −44.0 −432.0
26 1149 −62.9 −47.6 −390 71 2014 −53.8 −43.4 −426.4 
27 1156 −62.3 −48.0 n.d. 72 2025 −54.3 −44.0 −431.7 
28 1163 −63.9 −50.6 n.d. 73 2037 −53.3 −43.4 −428.9
29 1173 −63.9 −49.5 −399 74 2045 −52.8 −45.5 −371.9 
30 1182 −61.5 −48.3 −403 75 2054 −51.6 −42.3 −435.4 
31 1194 −63.2 −49.5 −388 76 2075 −52.0 −44.3 −419.0
32 1204 −63.2 −51.6 −388 77 2121 −53.3 −46.1 −339.3 
33 1213 −63.1 −47.9 −390 78 2135 −53.3 −43.6 −359.8 
34 1217 −64.2 −51.2 −385 79 2148 −52.5 −44.8 −363.6 
35 1227 −57.8 −48.4 −392 80 2171 −49.7 −41.7 −428.0 
36 1235 −53.5 −44.6 −450 81 2178 −50.5 −44.3 −429.7 
37 1294 −61.5 −48.3 −414 82 2195 −51.4 −43.8 −438.3 
38 1300 −61.2 −45.0 −414 83 2212 −45.9 −43.0 −432.5 
39 1421 −61.4 n.d. −415 84 2235 −47.8 −43.6 −437.5 
40 1444 −59.1 −51.4 −405 85 2241 −48.5 −45.9 −377.2 
41 1478 −48.6 −44.5 −434 86 2259 −49.2 −45.6 −363.0 
42 1494 −53.8 −50.8 −444 87 2272 −39.7 −45.8 −307.5 
43 1500 −55.5 −49.7 −432 88 2281 −56.7 −53.1 −396.3 
44 1511 −65.5 −50.0 n.d. 89 2302 −58.8 −49.1 −385.6 
45 1575 −62.4 −50.5 −391       

 

Fig. 8. Interpretive diagram of components and carbon iso-
topes of the core gas from Mk-2 well of the Mohe Basin, 
northeast China (modified from Whiticar, 1999).  
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Fig. 9. All kinds of hydrocarbon inclusions in the Mohe Basin. 
(a), dark brown bitumen-rich oil inclusions in the fissures of quartz veins (mk-2, 513.82–514.07 m, polarized light); (b), dark brown bitumen-rich oil 
and brownish to grey gaseous hydrocarbon-salt water inclusions in the fissures in quartz veins (mk-2, 576.2–576.4 m, polarized light); (c), dark 
brown bitumen-rich oil and brownish to grey gaseous hydrocarbon inclusions in the fissures in quartz veins (mk-2,738.00-738.20m,polarized light); 
(d), dark brown bitumen-rich oil and grey gaseous hydrocarbon-salt water inclusions in the fissures in quartz veins(mk-2, 763.57–763.67m, polar-
ized light); (e), dark brown bitumen-rich oil inclusions in quartz cements in the coarse grained sandstones(mk-2,973.84–773.98m,polarized light); 
(f), dark brown bitumen-rich oil and brownish gaseous hydrocarbon inclusions in quartz cements in the fine grained sandstones(mk-2, 1012.15–
1012.14m, polarized light); (g), dark brown bitumen-rich oil and brownish gaseous hydrocarbon-bearing salt water inclusions in quartz veins in the 
fine grained sandstones (mk-2, 1620.30–1620.40m, polarized light).  
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Hongyu et al., 2004; Bennett et al., 2006; Wang Zuodong 
et  al.,  2009),  showing  the  active  microbial  activities 
throughout the Mohe permafrost that drive the formation 
of microbial gas in this region.  

The Mohe permafrost displays a marked microbial origin 
of hydrocarbon gas. First, the Mohe Basin has relatively 
lighter  hydrocarbon  gas  components  in  the  shallower 
section,  with  a  C1  to  C1–5  ratio  of  greater  than 98% 
(shallower than 870 m, Fig. 2). Second, there are relatively 
lighter carbon and hydrogen isotopic ratios for methane 
(δ13CCH4, δDCH4) in the upper section of the Mohe Basin, i.e., 
δ13CCH4  of  lighter  than  −55‰  in  the  shallower  part 
(shallower than 1940 m, Fig. 2) and almost all the δDCH4 

values are lower than −250‰. Third, the low carbon 
isotope values of ethane from the Mohe Basin are lighter 
than −40‰. All of these factors confirm a microbial gas 
occurrence in the upper section of the Mohe permafrost 
(Fig. 2). 

It was demonstrated that the microbial gas in the Mohe 
Basin  were  of  secondary  origin  (Schoell,  1980;  Tao 
Mingxin et al., 2005). First, the formation in the basin is of 
the  Mesozoic  age,  and  the  primary  microbial  gas 
generated  in  the  stage  of  diagenesis  was  possibly 
disappeared. The majority of the present microbial gas 
should be produced by the dark mudstones with matured 
organic matter which had 0.8% to 3.54% of the vitrinite 
reflectance (Ro). Second, it was also discovered that the 
gaseous, liquid and solid hydrocarbons of thermogenic 
origin were widely distributed throughout the basin (Fig. 
9), which were probably the precursor to the secondary 
microbial  gas,  the  latter  two  of  which  could  greatly 
increase gas production in the Mohe Basin. 

The existence of microbial gas, confirmed for the first 
time in the Mohe permafrost, and even among all the 
permafrost  throughout  China,  largely  extends  the  gas 
source of gas hydrate accumulation in the Mohe area, 
northeast  China,  due  to  microbial  gas  in  addition  to 
thermogenic  gas  (Zhao  et  al.,  2012),  thus  likely 
contributing to gas hydrate formation, which enhances the 
accumulation and exploration potential  for gas or gas 
hydrate in the area. 
 
6 Conclusions 
 

The Mohe permafrost  in  northeast  China  possesses 
several  advantageous  conditions  for  microbial  gas 
formation. In the Mohe permafrost, all of the requisites for 
microbial gas formation, such as the abundance of total 
organic carbon, type of kerogen, subsurface temperature, 
salinity, pH levels and redox of the underground water, 
and the presence of microbial activities exist,  thereby 
favoring the formation of microbial gas. 

The presence of microbial gas in the shallower section 
of  the  Mohe  permafrost  (shallower  than  870  m)  is 
affirmative,  and  confirmed  not  only  by  the  gas 
composition, methane carbon and hydrogen and ethane 
carbon isotopes, etc., but also by the microbial activity 
widely occurring in the Mohe area. 

The existence of the microbial gas affirmed in the Mohe 
area is the first case in the permafrost across China, and 
has  guiding  implications  for  the  accumulation  of  gas 
hydrate in permafrost across China. The microbial gas in 
the Mohe permafrost, together with the thermogenic gas, 
greatly  enhance  the  accumulation  and  exploration 
potentials of gas hydrate in the permafrost of Mohe and 
even all of China, thereby improving the accumulation 
model of gas hydrate and guiding the exploration thereof 
in the permafrost of China. 
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