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Abstract: Based on comprehensive petrological, geochronological, and geochemical studies, this study
analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite
porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite
porphyries (i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between
the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya
deposit. Carbonate rocks (T,b) of the Triassic Beiya Formation in the ore district provide favorable host
space for deposit formation. Fold and fault structures collectively play an important role in ore
formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of
carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore
bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold—iron
(copper) ore, 2) skarn-style gold-iron (copper and lead) ore in the near contact zone, 3) strata-bound,
lense-type lead-silver—gold ore in the outer contact zone, and 4) distal vein-type gold—-lead-silver ore.
Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold—iron
ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore
deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the
shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral
prospecting scenarios.

Key words: porphyry-skarn type, quartz syenite porphyries, ore-controlling factors, Beiya gold-
polymetallic deposit, northwestern Yunnan province

1 Introduction

The Beiya ore deposit is a super large porphyry-skarn
gold polymetallic deposit discovered by Yunnan Gold &
Mining Group Co., Ltd, and has been explored
continuously throughout the past 10 years. Several
previous studies have been conducted in the Beiya deposit,
which privde important data about geological
characteristics, rock types and distribution, rock-forming
and ore-forming ages of porphyries and ores, and deposit
genesis in the Beiya gold field, as well as ore deposit and
prospecting models, prospecting methods and predictions
(Cai Xinping et al., 1991; Cai Xinping, 1993; Chen Aibin
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et al., 2011; Cui Yinliang et al., 2001, 2003; Deng Jun et
al., 2010, 2012; Ge Liangsheng et al., 2002; Li Jinghong et
al.,, 1991; Ma Deyun and Han Runsheng, 2001; Fu
Weimin and Hu Chaoping, 1994; Ren Zhiji et al., 2001;
Song Huanbin and He Mingqin, 1994; Wu Kaixing et al.,
2005; Xiao Qibin et al., 2003; Xiao Xiaoniu et al., 2009a,
2009b, 2011; Xu Shouming et al., 2006; Xu Xingwang et
al., 2006, 2007; Yan Jianguo et al., 2002, 2003; Xue
Chuandong et al., 2008; Yang Shiyu and Wang Rixue,
2002; Ying Hanlong and Cai Xinping, 2004; Zhong
Kunming and Yang Shiyu, 2000; Zou Guangfu et al.,
2013). In recent years, a scientific research team,
organized by Yunnan Gold & Mining Group, has carried
out “Three-in-One” prospecting prediction research in the
Beiya gold-polymetallic ore exploration area (He Wenyan
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et al., 2012, 2013; He Wenyan, 2014; He et al., 2014;
2015; He Zhonghua et al., 2013, 2014, 2016; Jia Ruya et
al., 2016; Jiang Wentao et al., 2015; Deng et al., 2015a; ;
2015b; Fu et al., 2015; 2016; Zhou et al., 2016; Li et al.,
2016; Liu Fei et al., 2016; Mao et al, 2017; Niu Haobin et
al., 2015; Wang Jianhua et al., 2015, 2016; Wang Mingzhi
et al., 2016; Li and Wang, 2014; Li et al., 2016; Yang Jian
et al., 2014, 2015; Zhou Yunman et al., 2013, 2014, 2015,
2016, 2017). Based on previous study results and intensive
geological investigation in this study, this paper analyzed
key metallogenic geological processes and ore-controlling
factors and clarified prospecting directions and target
orebodies in the ore district and its peripheries, by carrying
out geochemical analysis of alkali-rich porphyry intrusive
bodies and zircon dating for quartz syenite and quartz
monzonite porphyry samples from several ore sections.
Therefore, this study is of some significance for better
understanding the ore-controlling factors and ore-forming
mechanism of this deposit.

2 Geological Backgrounds

2.1 Regioal geology

Located on the northeastern side of Jinsha River—
Ailaoshan—Red River strike slip fault, the Beiya
superlarge gold ore deposit is an archetype deposit within
the large Tethys porphyry-skarn-type copper polymetallic
metallogenic belt (Hou et al., 2007; Mao et al., 2014), and
formed by the decomposition of an oblique collision
between the southeastern Indian continental margin and
the Asian continent (Xu Zhiqin, 2011). The deposit
geotectonically belongs to the Heqing terrace (T,;)-
Songgui faulted basin (T3) in the central region of the
Yanyuan-Lijiang passive continental margin rift basin
(Pz,) along the western margin of the Yangtze block.
Structurally controlled by the NNW Jinsha River—Red
River fault, the NE Binchuan-Chenghai fault, as well as
the Lijiang-Muli fault, the Beiya deposit, the Beiya
deposit belongs to intermountane basin adjacent to the
Zhongzan-Zhongdian massif to the northwest and the
Jinsha River—Ailaoshan combined belt to the west (Pan
Guitang, 2009). This region is composed of the upper
Sinian and Cambrian series (e.g., magnesian carbonate
rock and sandy-argillaceous formations) as well as
Ordovician to middle Triassic series (e.g., littoral neritic
carbonate rocks and sandy-argillaceous formations).
Between the Indosinian and Yanshanian periods, the entire
region experienced uplift, causing Minssing the Jurassic-
Cretaceous series. From the Eocene to the beginning of the
Neogene, molasse and coal-bearing formations
accumulated in the mountain basin. The overall regional
structure is characterized by south-to-north trends, with

the Heqing—Songgui—Beiya open compound syncline and
Ma'anshan fault as the main structural components of the
region. The Beiya syncline belongs to the secondary
syncline of the Heqing—Songgui—Beiya compound
syncline. Regional alkali-rich porphyries, Cenozoic in age,
are distributed along both sides of the Ailao Mountain—
Jinsha River tectonic belt, and the ore district is located in
the Heqing—Xiangyun alkali-rich porphyry zone in the
middle of the belt. This zone is a part of the Heqing—Dali
metallogenic subzone within the transition zone between
the southwestern Sanjiang metallogenic belt and the
Yangtze metallogenic belt (Gao Lan et al., 2016).

2.2 Geological characteristics of the deposit

Exposed strata in the region comprise upper Permian
basalt Formations (P,f; intercalated basaltic tuff), the
Lower Triassic Qingtianbao Formation (T,g; sandy
conglomerate and sandstone), the Middle Triassic Beiya
Formation (T,b; argillaceous limestone and dolomite), the
Pliocene Sanying formation (N,s; sandy conglomerate and
claystone), and Holocene clay (Q,). The ore district is
oriented southnorthly (i.e. a wide-flat short axis syncline)
where strata from the T,b'" are exposed in the west limb,
and strata from the T,b", T,g, and P,/ are exposed in the
east limb. The strata at the core are gentle and give the
northsouth-trending intermountain basin its
geomorphological characteristics. Four sets of faults exist
in the orientation of southnorth (SN), eastwest (EW),
northwest (NW), and northeast (NE). Faults oriented in
SN are F1-F6; EW faults mainly have F22, F25, and F26;
NW faults are mainly F21 and F28; and NE faults are
mainly F23 and F27 (Fig. 1). Magmatic rocks are
dominantly Himalayan alkali-rich porphyries. The rock
body is dominated by quartz syenite porphyry, followed
by syenite porphyry, with biotite quartz syenite porphyry
and lamprophyre veins throughout the region.

The ore district contains both hypogene and supergene
mineralization types, with the former being important in
reserves. Hypogene mineralization mainly occurs in the
alkali-rich porphyry and T,b carbonate rocks. The
porphyry-skarn-type ore bodies, in the exocontact zone,
are distributed in a ring pattern around the rock body, and
their occurrences synchronously change with the contact
zone of the rock body. The supergene mineralization
occurs in N,s and weathering-accumulation type ore
bodies along the unconformity above the T,b and the
porphyry body. According to shape and spatial position,
the porphyry-skarn-type ore bodies can be divided into
four sub-types: 1) an Fe—Au (Cu/Mo) ore body hosted in
steep fissures occurring as lenticulars and veins in the
alkali-rich porphyry; 2) an Fe—Au—Cu—Pb or Fe—Cu (Mo)
ore body hosted in skarns occurring as block shape and
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Fig. 1. A simplified Geological map of the Beiya gold-polymetallic deposit (China basemap after China National Bureau of

Surveying and Mapping Geographical Information)

(1), Quaternary elurium; (2), Pliocene Sanying Formation, sandy conglomerate and claystone; (3), Middle Triassic Beiya Formation, argillaceous
limestone and dolomite; (4), Lower Triassic Qingianbao Formation, sandy conglomerate and sandstone; (5), Upper Permian Emeishan basalt Forma-
tion, basalt intercalating tuff; (6), quartz syenite porphyry; (7), lamporphyer vein; (8), cryptoexplosive Breccia; (9), ore-bodies and their serial num-
bers; (10), site of rock body; (11), geological bounday; (12), uncomformable bounday; (13), measured and inferred faults as well as their serial

numbers; (14), exploration lines and their serial numbers.

stratiform in the contact zone; 3) an Fe—Au-Pb-Ag or Fe-
Cu ore body occurring as stratoid and large lenticular
shapes, hosted in the interlayer fracture zone of the T,b
carbonate rocks near the contact zone; and 4) a Pb—Zn-Ag
ore body occurring as small lenticulars and veins, in the
fracture and fissure zone of the T,b carbonate rocks apart
from the contact zone. More than 1,800 polymetallic ore
bodies exist in the ore district, composed of Au, Fe, Cu,
Ag, Pb, and Zn, which includes more than 50 relatively
large ore bodies. The main ore bodies are KT4, KT10,
KT11, KT52, KT54, as well as KT63, and the amount of
gold within a single ore body classifies each as greater
than a medium-sized deposit (YGMGC, 2014). The main
ore body is 400-1,680 m long and 570-1,420 m wide,
with an average thickness of 4.27-13.27 m and an average

grade of 1.65-2.83ppm Au, 25.06-37.55% TFe, 18.47—
28.11% mFe, 0.63-0.65% Cu, 0.91-4.04% Pb, 0.28-1%
Zn, as well as 24.52-67.29ppm Ag. The main
characteristics of a typical ore body are illustrated in Table
1 and Figure 2. The weathering-accumulation type ore
bodies are hosted in Nys, with a length of 1,840 m along
the strike, a width of 0.90-35.32 m and a grade of 0.90-
20.24ppm Au, 25.06-63.63% TFe, 0.10-1.29% Cu, 1.21-
2.04% Pb, 0.23-0.70% Zn, as well as 15.36-23.33ppm
Ag.

Primary ores are composed of a number of metallic
minerals, such as magnetite, pyrite, chalcopyrite, siderite,
hematite, galena, pyrrhotite, and sphalerite. Oxidized ores
contain mainly limonite, malachite, galena, cerussite,
smithsonite, and cerargyrite. Gangue minerals include
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Table 2 Major (wt%o), trace (ppm) and rare earth (ppm) element results for the ore-forming rock bodies related to the Beiya

Au-polymetallic deposit

Chemical composition Wangdongshan rock body Hongnitang rock body Dashadi rock body
(quartz syenite porphyry) (quartz syenite porphyry) (quartz monzonite porphyry)
Min. Max. Mean (pieces) Min. Max. Mean (pieces) Min. Max. Mean (pieces)
SiO, 69.42  72.82 70.67(5) 67.79 71.44 69.92(8) 65.31 69.86 67.95(8)
TiO, 0.15 0.24 0.19(5) 0.19 0.87 0.32(8) 0.17 0.17 0.17(2)
AlLO; 13.45 15.26 14.51(5) 14.76 16.03 15.21(8) 17.43 17.64 17.54(2)
Fe 05 0.55 2.09 1.38(5) 0.20 2.12 0.93(8) 1.19 1.47 1.33(2)
MnO 0.01 0.08 0.03(5) 0.01 0.28 0.08(8) 0.02 0.02 0.02(2)
MgO 0.11 0.32 0.23(5) 0.04 0.35 0.15(8) 0.56 0.57 0.56(2)
CaO 0.21 1.06 0.49(5) 0.02 0.34 0.17(8) 1.05 1.06 1.05(2)
Na,O 1.15 4.09 2.62(5) 0.38 2.66 1.23(8) 3.39 4.93 4.16(2)
K,O 6.16 9.09 7.36(5) 8.50 12.15 10.41(8) 5.57 6.93 6.25(2)
P,0s 0.07 0.12 0.09(5) 0.02 0.16 0.06(8) 0.11 0.12 0.11(2)
LOI 1.29 1.79 1.53(5) 0.52 1.65 1.01(8) 1.33 1.35 1.34(2)
TOTAL 97.55 100.5 99.12(5) 98.61 99.83 99.43(8) 99.63 99.72 99.68(2)
K,0 + Na,0 9.30 10.25 9.99(5) 10.75 12.53 11.649(8) 10.32 10.50 10.41(2)
K,0/Na,O 1.51 7.90 3.53(5) 3.48 31.97 14.41(8) 1.13 2.04 1.59(2)
A/CNK 0.99 1.25 1.11(5) 0.98 1.27 1.13(8) 1.10 1.16 1.13(2)
Rb 177 262 201.2(5) 169 502 428.87(8) 196.88 243.37 220.13(2)
Ba 1894 3437 2389(5) 2008 2784 2380(8) 22404 22514 2245.9(2)
Th 10.07 13.86 11.57(5) 7.72 14.20 11.87(8) 13.73 15.17 14.45(2)
U 2.79 10.24 5.27(5) 2.89 7.03 4.31(8) 2.98 3.59 3.29(2)
Nb 8.69 11.75 9.62(5) 8.10 10.59 9.34(8) 10.02 10.99 10.60(2)
Ta 0.60 0.85 0.75(5) 0.51 1.09 0.73(8) 0.62 0.65 0.63(2)
La 5.81 19.50 13.10(5) 16.24 28.40 23.09(8) 17.88 26.36 22.09(2)
Ce 14.80  34.20 25.45(5) 27.82 54.80 43.72(8) 37.19 46.51 41.85(2)
Pb 15.60  51.86 28.02(5) 43.44 756.13 320.83(8) 26.94 28.57 27.76(2)
Sr 365 788 584.8(5) 320 1240 572(8) 84334  981.98 912.66(2)
Nd 7.01 12.80 10.45 9.82 24.0 15.61(8) 16.36 16.59 16.48(2)
Zr 141 171 153.6(5) 139 198 166.87(8) 53.80 68.07 60.94(2)
Hf 4.28 4.96 4.52(5) 4.39 5.94 5.01(8) 2.49 2.79 2.64(2)
Sm 1.56 2.46 2.06(5) 1.77 6.20 3.12(8) 3.77 3.79 3.78(2)
Gd 1.41 2.11 1.81(5) 1.63 5.60 2.72(8) 2.70 2.80 2.75(2)
Ho 0.24 0.30 0.27(5) 0.24 0.88 0.40(8) 0.32 0.34 0.33(2)
Y 6.45 8.50 7.50(5) 2.70 9.43 6.78(8) 9.42 10.24 9.83(2)
Yb 0.62 0.81 0.72(5) 0.63 1.80 0.96(8) 0.79 0.86 0.83(2)
Lu 0.09 0.12 0.11(5) 0.10 0.25 0.13(8) 0.12 0.13 0.12(2)
Pr 1.57 3.62 2.73(5) 2.82 7.60 4.65(8) 4.58 5.01 4.82(2)
Sm 1.56 2.46 2.06(5) 1.77 6.20 3.12(8) 3.77 3.79 3.78(2)
Eu 0.30 0.72 0.51(5) 0.33 1.80 0.99(8) 1.17 1.20 1.19Q2)
Gd 1.41 2.11 1.81(5) 1.63 5.60 2.72(8) 2.70 2.80 2.75(2)
Tb 0.21 0.29 0.25(5) 0.21 0.76 0.35(8) 0.34 0.36 0.35(2)
Dy 1.18 1.55 1.41(5) 1.19 4.20 1.99(8) 1.71 1.86 1.76
Er 0.62 0.81 0.71 0.65 2.20 1.06(8) 0.88 0.94 091
Tm 0.10 0.12 0.11(5) 0.10 0.33 0.15(8) 0.12 0.13 0.13

Note: The data listed in the table are statistics based on the analytical results of a single sample. Samples were analyzed in the Key Laboratory of Orogenic
Belts and Crustal Evolution, Peking University.Major elements were determinedby X-ray fluorescene (XRF). The instrument used is ARLADVANTXP+

(Thermo Electron Company of the United States), and the precision is better than 1%.

Trace elements and REE were analyzed by inductively coupled plasma

mass spectrometry (ICP-MS), using Agilent ICPMS7500ce mode instrument (American Agilent Technologies). The analytical precision is higher than 5%.

quartz, calcite, garnet, diopside, wollastonite, scapolite,
chlorite, epidote, dolomite, and kaolinite. The primary
ores have poikilitic, xenomorphic granular, euhedral, as
well as metasomatic relict textures, with massive and
disseminated structures. Oxidized ores have
pseudomorphic, colloform, honeycomb, earthy, and
powder structures.
2.3 Metallogenic geological characteristics of the
deposit
2.3.1 Distribution
porphyry intrusions
There are eight Himalayan alkali-rich porphyries
exposed throughout the ore district (Fig. 1), located near
the core of the Beiya syncline, where the distribution is

characteristics of alkali-rich

mainly controlled by the four sets of faults. In addition to
the buried Dashadi rock body, there are seven other rock
bodies exposed at the surface, with a total area of 0.34
km?. The semi-buried Wandongshan rock body, the buried
Dashadi rock body, and the semi-buried Hongnitang rock
body are the main metallogenic rock bodies, of a relatively
large scale, and occur as a stock, whereas the remaining
ones occur as veins, dikes, and sills.

The semi-buried Wandongshan stock is distributed
throughout the Wandongshan ore section in the northern
part of the ore district, with a nearly SN strike, generally
dipping to the west, decreasing in elevation from north to
south, and pitching to the southwestern side. The length in
the SN direction is 1,300 m, the width in the EW direction
is between 100 and 500 m, and the extended depth
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between exploration lines 60 and 80 is between 500 and
600 m (not a closed boundary). The rock body is exposed
intermittently on the surface, between exploration lines 68
and 96, has a length of 470 m in the SN direction, and a
width between 30 and 65 m in the EW direction. Between
exploration lines 48 and 100, the rock body extends in
depth below 1,700 m in elevation, with a length of 1,100
m in the SN direction and a width of 600 m in the EW
direction. Between exploration lines 56 and 72, the
maximum width of the rock body is approximately 600 m,
and the lowest controlled elevation is 1,352 m. The
hanging wall contains more regular occurrences of the
contact zone, whereas the presence of the contact zone is
more complex in the footwall, with a general dip angle of
43-85° (Fig. 2a). Well-developed rock body structures at
the contact zone contain the majority of the skarn zone and
the main ore body deposits. Steep, hydrothermal, vein-
shaped ore bodies occur along well-developed fissures in

0:

the rock body interior.

The semi-buried Hongnitang rock body appears in
regions with steep slopes in the western margin of the
basin, in the west side of the Hongnitang ore section and
the southern part of the ore district. It is exposed between
exploration lines 43 and 71, with a length of 480 m in the
SN direction and a width of approximately 160-190 m in
the EW direction. Shattered and crypto-explosive breccia
exists on the eastern surface. The exposed surface
elevation is between 2,100 and 1,950 m, and the depth is
controlled by drill holes along exploration line 55, with a
minimum controlled elevation of 1,378 m. The rock body
(stock) strikes toward the SN and dips westward with a
gentle dip angle of less than 10° above 1,900 m and a
relatively steep dip angle of 20-30° below 1,900 m. The
hanging wall has a contact with the fourth section of the
Beiya formation, and there is a constant contact zone
occurrence, with a dip angle between 10° and 20°. The
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Fig. 2. Geological section along No. 56 and No. 63 exploration lines in the Beiya gold—polymetallic deposit.

(1), Quaternary elurium; (2), Pliocene Sanying Formation, sandy conglomerate and sand-gravel-bearing claystone; (3), Middle Triassic Beiya Formation,
carbonete rock; (4), Lower Triassic Qingianbao Formation, sandstone; (5), quartz syenite porphyry; (6), lamporphyer vein; (7), ore-bodies and their serial
numbers; (8), geological bounday; (9), uncomformable bounday; (10), measureed and inferred faults as well as their serial numbers; (11), drill hole.
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occurrence of the contact zone in the footwall is more
complex, with an overall dip angle of 35-40°. Well-
developed rock body structures at the contact zone contain
the majority of the skarn zone and the main ore body
deposits (Fig. 2b).

The buried Dashadi rock body is located in the central
zone of the Beiya basin, between exploration lines 47 and
71 in the middle of the Hongnitang ore section, in the
southern part of the ore district. It is to the east side of the
Hongnitang rock body, where the horizontal distance
between the two is generally 400-700 m, with a slightly
lower elevation than that of the Hongnitang rock body (42
—300 m lower). The rock body occurs in the form of a
stock (spindle), with a southward pitch, dipping to the
west at an angle of 40-88°, and has an extended depth
from 240-320 m along its dip. The length along the SN
strike is 720 m; the width along the EW dip is 100-750 m;
and the distribution height is between 1,818 and 1,220 m
(Fig. 2b). The contact interface between the Dashadi rock
body and the Beiya wall rock is irregularly concave and
convex. There are well-developed skarn zones in both the
east and west contact zones of the rock body, mainly Fe
and Cu (Mo) deposits (mineralization). At the edge of the
rock body, there are areas of chloritization and partial
silicification, accompanied by limonitization, pyritization,
chalcopyritization, molybdenitization, lead and zinc
mineralization, as well as magnetitization. The interior of
the rock body is strongly altered by pyritization,
chalcopyritization, and molybdenitization.

In the eastern part of the ore district, the Bijiashan and
Weiganpo dyke occur intermittently along the F1, F2, and
F3 faults, with lengths of 460, 400, and 1,700 m as well as
widths of 5-11, 3—13, and 50-120 m, respectively. They
strike in the SN direction and dip westward at a dip angle
of 20-40°, 60-78°, and 30-40°, respectively. Vein-shaped
as well as lenticular Fe—Au and Pb—Ag mineralization is
present in veins in the contact zone near the F, and F;
faults and at the interlaminar fracture zone.

In the ore district, the lamprophyre and late biotite
syenite porphyry veins are common along secondary faults
and cut the quartz syenite porphyry and ore bodies. They
formed later, with little to no association with
mineralization.

2.3.2 Petrological characteristics of the alkali-rich
porphyry intrusive body

The lithologies of the Wandongshan and Hongnitang
rock bodies are quartz syenite porphyry, with a gray—white
color, whose surface has been altered by limonitization,
with some instances of chloritization. These rocks have a
porphyritic texture and contain phenocrysts of orthoclase
and quartz (50-60%). The orthoclase phenocrysts have

euhedral-subhedral tabular textures (35-45%). Carlsbad
twinning is visible with a hexagonal shape, and granularity
of 0.5-4.0 mm. Occasionally, crystals exhibit alteration
patterns that formed metasomatic relict textures (Fig. 3a
and b). The surface of the quartz is clean, and the grain
size is between 0.1 and 3.0 mm (5-10%). The crystals are
irregular, mostly with a round and embayed shape,
because of corrosion. Plagioclase phenocrysts occasionally
short column subhedrons, with obvious
polysynthetic twinning, which is often replaced and
intercalated with late-stage potassium feldspar. The matrix
is cryptocrystalline and composed of feldspar as well as
quartz. Accessory minerals include apatite, zircon, and
titanite. Mineralization of magnetite, pyrite, galena,
sphalerite, and chalcopyrite has been identified locally.
The quartz syenite porphyry is strongly altered by
potassium. Plagioclase crystals, in which sericitization is
common, have potassium feldspar free rims. Quartz
phenocrysts have dissolved into an embayed shape, and
the matrix has also been altered. Additionally, fresh
potassium feldspar phenocrysts are visible.

The Dashadi rock body contains quartz monzonite
porphyry, with a gray-off-white color, a porphyritic
texture, and a massive structure. Phenocrysts are mainly
potash feldspar (40%), with a subhedral shape, and
particle sizes ranging from 2 to 6 mm. Carlsbad twinning,
as well as potash feldspar sericitization, is visible under
cross-polarized light (Fig. 3c). Plagioclase (25%) is
hypautomorphic, with a particle size of 2-4 mm.
Polysynthetic twinning and plagioclase sericitization are
both visible under microscope. Quartz (25%) occurs as
xenomorphic grains, with a grain diameter of
approximately 3 mm. Matrix components are
predominantly quartz and feldspar, as well as accessory
minerals, such as zircon and sphene, with minor amounts
of pyrite.

Lithologies in the Bijiashan and Weiganpo bodies, in
the eastern region, are all quartz monzonite porphyry, with
a grayish brown color, a porphyritic texture, and a massive
structure. The phenocrysts are orthoclase and plagioclase
(Fig. 3d-f), with contents between 50% and 65%.
Orthoclase (30-40%) has a euhedral-subhedral texture,
mostly altered to relict textures, and the crystal grain size
is between 2 and 5 mm. Plagioclase (15-20%) is
transparent, white, and subhedral. Quartz (<5%) contains
minor amounts of biotite, plagioclase, and hornblende.
The matrix (30-40%) is mainly composed of plagioclase
and potash feldspar, with signs of weak sericitization.

occur as

3 Method and Results

3.1 Geochemical analysis of alkali-rich porphyry
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Fig. 3. Microscopic characteristics of the porphyries in the Beiya ore district.

(a), potash feldspar phenocryst, dissolution into an embayed shape at the edge of the quartz phenocryst, with pyritization in the Wandongshan quartz
syenite porphyry; (b), potash feldspar phenocryst, dissolution into an embayed shape at the edge of the quartz phenocryst in the Hongnitang quartz syenite
porphyry; (c), potash feldspar phenocryst with sericitization, dissolution into an embayed shape at the edge of the quartz phenocryst in the Dashadi quartz
monzonite porphyry; (d), albite ring formed by Na-replacement at the edge of the potash feldspar in the quartz monzonite porphyry, with sericitization;
(e), albite ring formed by Na-replacement at the edge of the potash feldspar in the quartz monzonite porphyry, with plagioclase polysynthetic twins and
biotite phenocrysts; (f), plagioclase polysynthetic twins in the quartz monzonite porphyry; Qtz - quartz, Kf - potash feldspar, Py - pyrite, Bt - biotite, P1 -

plagioclase.

intrusive body

Fresh samples were collected from the semi-buried
Wandongshan, the buried Dashadi, and the semi-buried
Hongnitang rock bodies from drill cores and open mining
pits. The major, trace, and rare earth elements were
analyzed at the Key Laboratory of Orogenic Belts and
Crustal Evolution, Peking University. Geochemical results
are presented in Table 2.

(1) Major elemental characteristics

The quartz syenite and quartz monzonite porphyries, in
the ore district, were classified as acidic rocks (the content
of Si0; is between 65.31% and 72.82%) with a relatively
high total alkali content (the content of K,O + Na,O is
between 9.30% and 12.53%). On a TAS diagram, most
samples were plotted in the quartz monzonite and alkaline
series field (Fig. 4a). On a SiO,-K,0O diagram, samples
were plotted in the shoshonite series field (Fig. 4b). The
A/CNK values (Al,O3/(CaO+K,0+Na,0O) mole ratio) are
between 0.91 and 1.65, which belong to the metaluminous
—peraluminous series (Fig. 4c). The Al,O; and Na,O
contents of most samples decrease with increasing SiO,
content. Compared with the quartz monzonite porphyry,
the quartz syenite porphyry is more acidic (SiO, content of
67.79-72.82%), with a higher K,O content (6.16—-12.15%)
and K,O/Na,O ratio (1.51-31.97) as well as decreased
ALO; (13.45-16.03%), CaO (0.45-1.06%), and Na,O
(0.38-4.09%) contents. The TiO, varies between the

different quartz monzonite porphyries (0.15-0.87%). Due
to strong potassic alteration, the quartz syenite porphyry,
at Hongnitang, has a higher K,O content (8.50-12.15%)
and K,O/Na,O ratio (3.48-31.97) as well as decreased
CaO (0.02-0.34%) and Na,O (0.38-2.66%) contents
compared with the quartz syenite porphyry at
Wandongshan.

(2) Trace elemental characteristics

The primitive mantle-normalized diagram (Fig. 5a)
indicates that the trace element distribution curve is
inclined to the right. The quartz syenite and quartz
monzonite porphyry have similar trace elemental
compositions, i.e. they are rich in the large ion lithophile
element (LILE; e.g., Rb, K, Sr, and Pb) and are depleted in
the high field strength elements (HFSE; e.g., Ta, Nb, P, Ti,
and HREE); this is evidence of comagmatic evolution.
Compared with the quartz monzonite porphyry, the quartz
syenite porphyry has increased Rb (168-538 ppm), Ba
(1,160-5,547 ppm), and Pb (15.60—756.13 ppm) contents
as well as decreased Nb (7.01-24 ppm), La (5.81-28.4
ppm), Ce (14.8-54.8 ppm), and Y (2.7-12.25 ppm)
contents. The quartz syenite porphyry, at Hongnitang,
relative to other rock bodies, has the highest Rb, Ce, La,
and Pb contents.

(3) Rare earth element characteristics

The chondrite-normalized spidergram (Fig. 5b)
indicates that the rare earth element (REE) distribution
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Fig. 4. Classification diagrams for the geochemistry of the

ore-forming porphyries in the Beiya ore district.
(a), TAS diagram (after Middlemost, 1994 as well as Irvine and Baragar,
1971); (b), K0 vs. SiO, diagram (after Peccerillo and Taylor, 1976 as
well as Middlemost, 1985); (c), A/NK vs. A/CNK diagram (after Chap-
pal and White, 1974 as well as Maniar and Piccoli, 1989).

curve is inclined to the right. The quartz syenite and quartz
monzonite porphyry have similar REE distribution

rock bodies related to the Beiya deposit were analyzed by
LA-MC-ICP-MS zircon U-Pb geochronology at the
Institute of Mineral Resources, Chinese Academy of
Geological Sciences. The analytical results indicate that
the rock-forming ages of the semi-buried Wandongshan,
the buried Dashadi, and the semi-buried Hongnitang rock
bodies are 35.00+0.17 Ma, 35.06+£0.16 Ma, and
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36.72+0.25 Ma, respectively. Combined with previous
geochronological studies, the quartz syenite and quartz
monzonite porphyry (Table 3) intruded between 34.62 and
36.72 Ma, with a younger emplacement age of 35.56 Ma
for the biotite quartz syenite porphyry. These ages agree
with the formation ages of the alkali-rich porphyries
throughout the region (Yan et al., 2017; Cui et al., 2017,
Zhu et al., 2013).

4 Discussion

4.1 Alkali-rich porphyry
4.1.1 Source and genesis of the alkali-rich porphyries

In the ore district, the quartz syenite porphyry,
compared with the quartz monzonite porphyry, has higher
contents of Si0,, K,O, Rb, Ba, and Pb, larger K,0/Na,O
ratios, as well as lower contents of Al,O3, CaO, Na,O, Nb,
La, and Ce, which are possible due to the insignificant
amount of plagioclase and the presence of strong, potassic
alteration in the quartz syenite porphyry. The high Fe,O;
content, in the quartz syenite, is possibly a result of
limonitization, and the high MgO content may derive from
the large amount of hornblende. Although there are some
differences between the quartz syenite and quartz
monzonite porphyry, they have similar textures, SiO,
content, trace element compositions and REE distribution
patterns, indicating that they have similar sources.

The porphyries in the ore district have a relatively
elevated Sr content and Sr/Y ratio, a decreased amount of
Y and Yb, enrichment in the LILEs, and depletions in the
HFSEs, which are similar to the characteristics of the
adakitic rocks formed by the partial melting of a
subducting slab (Richards and Kerrich, 2007; Jia Tuya et
al., 2016). However, the porphyries differ from the
adakitic rocks because they have a higher K,O content and

lower MgO, Cr, and Ni contents, indicating that the
alkaline rock bodies of the Beiya ore district and adakitic
rocks both formed by partial melting of a subducting slab
but from different source areas in different geodynamic
settings.

The rock bodies have a high K,O content, which may
be caused by a potassium-enriched source and/or the upper
crust. Electron probe results indicate that potash feldspars
have high K,0/Na,O ratios and that the potash feldspar
formed by potassic alteration has a higher K,O content
and K,0/Na,O ratios than those formed by fractional
crystallization. The developed melts and fluids are both
rich in K, suggesting that the magma source is also rich in
K. Additionally, zircons have high 4O'® values (Lu et al.,
2013), and the rock body contains dark microgranular
enclaves. The higher K,O content may be related to an
upper crustal mixture. However, Hf isotopic results for
zircon (ey(1)=—06.82—4.9) indicate that mixing of the upper
crust is limited. Only crustal contamination can cause such
a high K,O content (higher than the upper crustal
average). Therefore, this suggests that the high K,O
content of the rock body originates from a combination of
a high K source area and a certain degree of upper crustal
material mixture.

The rock bodies have a higher SiO, content and (La/Yb)
x ratios as well as lower MgO, Cr, Ni, Co, and V contents,
indicating that they formed by partial melting of the crust
rather than that of the mantle (Wyllie, 1977). Weak—very
weak negative Eu anomalies imply that the rock bodies
formed in the thickened lower crust (Deng Wanming et
al., 1998). Hf isotopic zircon values vary widely, thus
indicating the diversity of zircon sources. Positive eydt)
values reflect zircons that formed in the juvenile lower
crust, whereas negative eydt) values indicate that zircons
formed in the ancient metamorphic basement(Lai et al.,

Table 3 Geochronological data for the main ore-forming rock bodies in the Beiya Au—polymetallic deposit

Rock body Rock type Testing mineral Testing method Age (Ma) Reference
Wangdongshan Monzogranite porphyry Zircon LA-MC-ICP-MS U-Pb 36.34-36.79 He 2014
rock body Biotite monzogranite porphyry Zircon LA-MC-ICP-MS U-Pb 35.56+0.20 He 2014

Quartz syenite porphyry Zircon SHRIMP U-Pb 33.3+1.50 Xu et al., 2007
Altered quartz syenite porphyry Muscovite Ar-Ar 32.540.09 Ying et al., 2004
Quartz syenite porphyry K-feldspar Ar-Ar 25.5340.25 Ying et al., 2004
Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 36.07+£0.43 Fuetal, 2015
Porphyritic granite Zircon LA-MC-ICP-MS U-Pb 34.95-37.03 Deng et al, 2015
Porphyritic monzonitic granite Zircon LA-MC-ICP-MS U-Pb 34.68-36.64 Deng et al, 2015
Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 34.9240.66 Heetal., 2012
Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 35.00+0.17 This study
Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 36.50£1.10 Jiang et al., 2014

Hongnitang Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 36.24+0.63 Heetal., 2012

rock body Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 36.48+0.26 He etal., 2013
Quartz syenite porphyry K-feldspar Ar-Ar 25.89+0.13 Xu et al., 2006
Quartz syenite porphyry (surface) K- feldspar Ar-Ar 25.89+0.13 Ying et al., 2004
Quartz porphyry Plagioclase Ar-Ar 24.56+0.06 Wang et al., 2001
Quartz syenite porphyry Zircon LA-MC-ICP-MS U-Pb 35.06£0.16 This study

Dashadi Quartz monzonite porphyry Zircon LA-MC-ICP-MS U-Pb 36.72+0.25 This study
rock body Monzogranite porphyry Zircon SHRIMP U-Pb 35.40 + 0.50 Wang et al., 2016
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2016). The two-stage Hf zircon model age is
approximately 1.0 Ga (He, 2014), which is consistent with
the age of the new crust of the Neo-proterozoic Yangtze
craton (Wang et al, 2012), indicating that the new
component is probably the basic component of Neo-
proterozoic.

Lead isotope variations in the porphyry are relatively
small. Values of ***Pb/***Pb, *’’Pb/***Pb, and ***Pb/***Pb
are 18.691-18.931, 15.664-15.703, and 38.898-39.124,
respectively. The (*¥’Sr/*Sr); composition is 0.70753—
0.70862, and the eng(f) composition varies from —6.87 to
—8.60. The two-stage depleted-mantle Nd model age
(tomp) is from 1.4 to 1.5 Ga, indicating that diagenetic
materials were derived from the lower crust (Wang et al.,
2016).

The rock body has low (Dd/Lu)y ratios as well as high
Sr/Y, (La/Yb)y, and (Dy/Yb)y ratios, indicating that the
rock body originated from the partial melting of a
hornblende—garnet source region. The quartz syenite and
quartz monzonite porphyry also have similar Sr, Nd, and
Pb isotopic compositions with amphibolite xenoliths in
Eocene acidic rocks from the western Yunnan province.
Sulfur isotopic compositions of the alkali-rich porphyry
bodies (1.0-2.5%0) are similar to deep mantle sulfur
compositions (0+3%o; Hoefs, 1997), indicating that the
rock body is partially derived from a deep mantle magma.
Therefore, the rock bodies likely originated from the
thickening of the lower crust with a hornblende-garnet
facies and may have been affected by the upwelling of the
lithospheric mantle.

Rock bodies were emplaced between 34.62+0.25 and
36.72+0.25 Ma, a period of dynamic tectonic transition
after the collision of the India and Eurasian blocks (Zhang
Hongrui and Hou Zenqian, 2015). The ore district is part
of the Jinsha River—Ailao Mountain alkali-rich porphyry
belt (40-35 Ma) that formed via strong crust-mantle

interaction. The alkali-rich porphyry metallogenic belt is
located in the back arc extension zone of the Myitkyina
collision zone (the southern extension of the Gangdese
collision zone). During the collision process, alkali-rich
porphyry magma, formed by the partial melting of
metasomatized mantle along the Jinsha River—Red River
strike slip fault zone, locally intruded upward and
differentiated to form the Beiya-bearing Cu—Au-Mo
porphyry-type metallogenic belt (Mao et al., 2017).

4.1.2 Relationship between alkali-rich porphyry and
mineralization

There is a close spatial relationship between the Au—
polymetallic deposits and the rock bodies, in which the ore
bodies, with different types of mineralization, occur as
rings around the rock bodies. The contents of Au, Fe, Ag,
Cu, Pb, Zn, and other elements in the rock body are
generally several times higher than the average values of
syenite and granite in China (Tables 4-5). Compared with
the Wangdongshan and Hongnitang rock bodies, the
Dashadi rock body, a major source of ore-forming
elements, is characterized by relatively well-developed Cu
(Mo) mineralization, a lack of Au mineralization and
enrichments in Cu (3.6-2254 ppm), Mo (2.91-24 ppm),
and other trace elements related to metallogeny. The rock-
forming age of the porphyries is between 34.62 and 36.72
Ma, which agrees with the ore-forming age ranging from
36.46 to 39.44 Ma.

The genesis of the deposit is closely related to the
alkaline intrusive rocks, because the alkali-rich porphyry
is the source of ore-forming materials and fluids, which is
supported by the following evidence:

(1) REE distribution patterns for many types of gold ore
samples, from the deposits, are consistent with the quartz
monzonite and quartz syenite porphyries. On REE pattern
diagrams, the REE distribution curves for all samples are

Table 4 Trace elemental results related to mineralization in the main ore-forming rocks in the Beiya Au—polymetallic deposit

Ore-forming Wangdongshan rock body Hongnitang rock body Dashadi rock body Syenite in China
element (Quartz syenite porphyry) (Quartz syenite porphyry) (Quartz monzonite porphyry)

Min. Max. Mean (piece) Min.  Max.  Mean (piece) Min. Max. Mean (piece) Mean
Au (ppb) 0.80 1070 167.20(20) 025 323 7.04(15) 6900 21200 9430(6) 0.53
Ag (ppb) 236 8830 1844(20) 1420 11700 3513(15) 30 2310 630(6) 0.057
Cu (ppm) 44.1 390 147.91(13) 526 184.49 63.94(5) 3.60 2254 411.48(9) 15
Pb (ppm) 15.60 650 116.65(18) 43.44 756.13 320.83(8) 2694  28.57 27.76(2) 31
Zn (ppm) 30.8 143 59.26(13) 11.36  57.55 34.76(5) 14.1 184 97.22(09) 76
Mo (ppm) 0832 154 14.30(13) 0.05 12.6 5.88(15) 291 24.0 10.52(9) 0.9
Sb (ppm) 0278 1.84 1.06(13) 232 30.00 14.56(15) 0.22
Bi (ppm) 0.105 245 0.759(13) 0.15 173 18.37(15) 0.17
As (ppm) 2.31 269 37.98(20) 32 1800 512.6(15) 1.2
Cd (ppm) 0.08 1.38 0.42(20) 0.52  1.90 1.01(15) 0.09

Data source

Data of Au, Ag, As and Cd from
Yang et al., 2015; data of Cu, Zn,
Mo, Sb and Bi from Deng et al.,
2015a and Liu et al., 2015; data of
Pb from this paper and Deng et al.,
2015a

Data of Au, Ag, Mo, Sb, Bi, As
and Cd from Yang et al., 2015;
data of Cu and Zn from Deng et
al.,, 2015a and Liu et al., 2015;
data of Pb from this paper and
Deng et al., 2015a

Data of Au and Ag from Wang et al.,
2016; Data of Cu, Zn and Mo from
Wang et al., 2016 and He, 2014
Data of Pb from this paper

Yan et al., 1996
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consistent, with LREE-enriched and HREE-depleted right-
inclined smooth curves indicating that the genesis of the
Au—polymetallic deposit is closely related to the two types
of intrusive bodies. The PGE characteristics of the
samples from the skarn-type Au and hydrothermal Au
deposit, in the outer zone, indicate that the alkali-rich
porphyry supplies the Au (Jiang et al., 2015).

(2) The 6*'S sulfide values for ore deposits range from
=3 to +1%o and are mostly between —1 and 0%, with
tower distribution characteristics, indicating that the sulfur
source is highly homogeneous (Zhou et al., 2016). Sulfur
isotopic data for hydrothermal Pb—Zn—Ag and Au deposits
in stratoid and vein form, from the Qin River ore section
in the remote zone, vary from —2.4 to +2.8%o, indicating
that the source is uniform and that its range is narrow. The
sulfur isotopic composition of the alkali-rich porphyry
body (1.0-2.5%o) is basically the same. The sulfur isotopic
composition of sulfide in this deposit is similar to that of
the deep source sulfur (0+3%o; Hoefs, 1997), indicating
that the deposit has the same sulfur source (magmatic
sulfur) as the alkali-rich porphyry and that mineralization
is closely associated with magmatic hydrothermal fluids.

(3) The **Pb/**Pb ore values are 18.626-18.699, with
an average of 18.653207; the *“Pb/**'Pb values are
between 15.642 and 15.725, with an average of 15.682;
and the **Pb/*Pb values are 38.892-39.180, with an
average of 39.029 (Wu Song and Li Wenchang, 2015).
Porphyry Pb isotopes in the ore district are nearly
identical. On the Pb isotopic composition diagram, both
Pb from ores throughout the different deposits and
sections and Pb from the alkali-rich porphyry are very
similar indicating that their initial source is similar and
that the formation of ore-forming fluids may be related to
fractional crystallization in the alkali-rich porphyry.

The above results indicate that the S and Pb isotopic
compositions of the ores are in good agreement with the
alkali-rich porphyry in the ore district. This reveals that
the source of ore-forming materials is related to deep
magma. Previous studies using Pb isotopes found that
almost all ore-forming materials are associated with fluids
separated by alkali-rich magma, and most of them are
directly derived from the source area of the alkali-rich
magma.

4.1.3 Comparison of various rock bodies

Results on the Himalayan alkali-rich porphyry bodies or
lamprophyry in the ore district and the surrounding area
indicate that the petrological characteristics of the
mineralized and non-mineralized rock bodies are basically
the same, especially for the quartz syenite and quartz
monzonite porphyry (monzogranite porphyry), and their
constituent minerals, texture, structure, as well as major,

trace, and rare earth eclement contents exhibit obvious
consistency (Zhou et al., 2016).

Compared with the other five small rock bodies without
mineralization in the ore district, potassium silicate
alteration is strong with certain instances of pyritization in
the interior of the Wangdongshan, Hongnitang and
Dashadi rock bodies. The contents of Au, Fe, Cu, Pb, Zn,
and Ag are higher in the mineralized intrusions, which
also display lower Al, Fe and Mg contents. This is a
possible cause for insignificant strong mineralization in
the five small rock bodies.

4.2 Ore-forming wall rocks (Middle Triassic Beiya Fm.
(T,b) carbonate rocks)

Impure carbonate rocks (T,b) from the Middle Triassic
Beiya Formation provide favorable surrounding conditions
and hosting space for the formation of deposits, i.e. the
strata necessary for skarn formation.

According to lithological associations, the Middle
Triassic Beiya formation (T,b) can be divided into five
lithologic members from the bottom to up: 1) Tob' is a
light gray, middle-layered reticulate, banded argillaceous
fine-grained limestone and breccioid-like limestone,
occasionally intercalating thin middle-layered arkosic
sandstone, with a thickness of 33—112 m; 2) T,h% is a gray
—dark gray, middle thick-bedded breccioid-like
argillaceous fine-grained limestone, with a thickness of 30
~156 m; 3) T,b’ is a light gray, middle thick-bedded
argillaceous limestone, locally intercalating banded
limestone, with a thickness of 25-165 m; 4) T,b" is a
middle thick-layered, rhythmic interlayer of gray breccioid
dolomite and banded dolomite, locally intercalating gray
irony calcarenite, containing dolomitic calcarenite and
lump limonite (an important ore-bearing horizon), with a
thickness of 30-156 m, and 5) T,b’ is a gray-off-white,
middle thick-bedded dolomitic calcarenite and dolomite,
with strong, broken alteration and weathering, typically
occurring as brown sucrosic, with a thickness of 45-107
m.

The Beiya formation is a suite of impure carbonate
rocks, especially vermicular argillaceous limestone and
bioclastic limestone (T,b%), irony limestone (T.b%), and
dolomitic ~calcarenite (T.b"), with active chemical
properties, developed karst structures, as well as rigid
mechanical properties and performance. Under stress, it is
not easily deformed and forms, instead, structural fissures
and interlayer fracture zones that are favorable for
mineralization, acting as channels for an ore-forming fluid
or space for mineral precipitation. In the porphyry contact
zone, ore-bearing hydrothermal fluids replaced carbonate
rocks to form skarn type Au—Fe ore bodies. Away from
the porphyry, the ore-bearing hydrothermal fluid
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penetrated along the structural fissures and interlayer
fracture zones to form stratoid and vein Au—Fe ore bodies.

4.3 Metallogenic structures

The SN Beiya syncline, fracture, and interlayer fracture
formed during the early Yanshan—Himalayan period as
well as the contact zone formed by the emplacement of
alkali-rich porphyries in the middle Himalayan period
comprise the important metallogenic structures. The Beiya
syncline, the secondary structure of the west limb of the
SN Heqing—Songgui wide and gentle compound syncline,
SN faults (F1, F2, F3, F4, F5, and F6), EW faults (F22,
F25, and F26), NE fault (F27), and NW faults (F21 and
F28) (Fig. 1) belong to the pre-metallogenic and
metallogenic structures. The NNW shear fault and the SN
low-angle overthrust fault, developed in N,s strata since
the Quaternary period, are the post-metallogenic
structures.

The main fold structure in the ore district is the SN
Beiya syncline, located on the southern tilting end of the
Songgui compound which belongs to a
secondary structure of the Heqing—Songgui compound
syncline. The Beiya syncline is closed north of the
Shuijing and south of the Jimingsi—Guanyinjing areas,
with an axial length of nearly 12 km and a width between
two limbs of 1.2—1.8 km. The Beiya syncline is a wide and
slow brachy syncline with an axial direction of NNE. The
outcropped stratum in the west limb is T»b'>, inclined to
the east at a dip angle of 30-60°. The east limb contains
T,b"73, Tiq, and P,p, inclined to the west at a dip angle of
10—40°. Local sections in the two limbs were influenced
by faults and a magmatic intrusion, developing secondary
folds, faults, joints, and fissures. The occurrence of the
core is flat, formed by the SN Beiya intermontane basin
and covered by the Pliocene Sangying Formation.
Wandongshan was influenced by the emplacement of the
Wandongshan rock body to form a SN secondary anticline
in the upper part and two sides of the rock body, a SN
syncline fold on both sides (Fig. 2a), with an axial length

syncline,

of 800-1,000 m, and a width in the EW direction of 500—
800 m.

There are two main groups of faults in the ore district:
one group of nearly north—south and another group of
nearly EW, as well as minor NE and NW faults in the two
groups, located in the core and both limbs of the Beiya
syncline. The nearly SN fault group is a rock-control and
ore-control fault (pre-metallogenic or metallogenic period)
in the ore district, mainly including the F1, F2, F3, and F4
of the east limb as well as F6 and F5 of the west limb. The
F6 and F5 are thrust faults occurring in the shallow, flat
and deep steep. F2, F3 and F4 are the steep compressive
faults on the hanging side of the F1 fault, and rocks from
the hanging wall and footwall have different degrees of
breakage and alteration. The stratoid, lentoid and vein ore
bodies occur in parallel along the fissure fracture zone,
indicating that the faults are the main ore-control and ore-
host structures in the ore district, with characteristics of
multi-period activities. Near EW faults are transtension
transverse faults such as F22, F25, and F26, whereas NE
and NW faults are transpressional shear lateral faults such
as F21, F27 and F28. Multi-period activities displaced and
destroyed the strata, rock, ore body as well as early faults
and later lamprophyre dikes that were intruded along the
faults.

4.4 Weathering-accumulation-type (paleo-weathering
crust-type) Fe—Au deposit

The weathering-accumulation-type (paleo-weathering
crust-type) Fe—Au deposit occurs in predominantly
polymictic Au-limonite-bearing sand gravel and claystone
from alluvial and lacustrine deposition in the bottom of the
lower Miocene Sanying formation (N,s), where the upper
part is gray limy breccia bodies formed by a gliding
nappe. This suite of strata forms an angular
unconformable contact with the overlying carbonate rocks
of the Beiya formation (T,b), formed during the Middle
Triassic period, whereas the alkali-rich porphyry and skarn
-type Au—Fe ore body formed during the Himalayan

Table 5 Trace element results of other ore-forming rock bodies in the Beiya Au—polymetallic deposit

Ore-forming Matouwan rock body Bailiancun Weiganpo Bijiashan Yanshuijing Putaishan Unknown Syenite
element rock body rock body rock body rock body rock body rock body in China
Min. Max. Mean Mean Mean Mean Mean Mean Mean Mean
(piece) (piece) (piece) (piece) (piece) (piece) (piece)
Au (ppb) 0.025 2.92 0.71(17) 1.56(20) 0.62(7) 0.53
Ag (ppb) 30.0 2460 399.6(17) 107.6(20) 28.10(7) 0.057
Cu (ppm) 5.10 652 176.34(18) 4.12(2) 51.23(1) 7.28(8) 7.98(1) 27.95(20) 6.66(7) 15
Pb (ppm) 25.40 143 56.89(18) 233.51(2) 51.64(1) 37.16(8) 47.93(1) 33.80(20) 14.76(7) 31
Zn (ppm) 17.1 84.5 45.24(18) 64.67(2) 125.29(1) 265.0(8) 44.70(1) 30.64(20) 21.07(7) 76
Mo (ppm) 0.26 435 1.17(17) 2.04(20) 0.35(7) 0.9
Sb (ppm) 0.26 9.12 1.38(17) 5.36(20) 0.23(7) 0.22
Bi (ppm) 0.03 2.23 0.29(17) 3.10(20) 0.12(7) 0.17
As (ppm) 0.40 29.1 5.65(17) 5.62(20) 5.10(7) 12
Cd (ppm) 0.03 0.80 0.26(17) 0.14(20) 0.04(7) 0.09
Data source Yang et al., 2015; added data of Cu, This paper Xuetal., Wu et al., Yang et al., 2015 Yan et
Zn and Pb analyzed in this paper 2007 2005 al., 1996
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period. The ore bodies are distributed in a relatively low-
lying depression near the axis of the Beiya basin, with a
large extension along the SN axis, up to 1,840 m; a
maximum thickness, near the axis, of 10-35.32 m; and a
higher grade (2.00-20.24ppm Au). On both sides of the
EW direction basin, the extension is relatively narrow with
a width of 420-500 m, a small thickness, a reduced grade,
and a rapidly changing local section. The geological
characteristics of the ore bodies are listed in detail in
Tables 1 and 6 as well as Figure 2a. Since the Beiya is cut
by biotite syenite porphyry veins, with an isotopic age of
3836 Ma (Xu et al, 2006), the depression-
sedimentation of the Cenozoic Beiya intermontane basin
occurred during the period from (35-36.72) to 3.8 Ma.

The geological characteristics of the ore bodies indicate
that primary Au ore bodies and Au-bearing altered rocks
experienced hypergenesis and transformation, and then
migrated to the Beiya mountain basin to accumulate and
form the weathering-accumulation-type Au deposit. The
deposits formed over long periods and with diversity,
mostly occurring in the negative terrain near the primary
ore body.

4.5 Ore-controlling factors
4.5.1 Alkali-rich porphyry and wall rock

(1) The alkali-rich porphyry and the wall rock
controlled the spatial distribution of polymetallic deposits.

In the Wandongshan ore section, the mineralized zoning
of the rock body interior, the skarn zone, and the distal
contact zone formed around the Wandongshan rock body.
The small and enriched ore bodies occurred as lenticulars
and veins in the steep fissures in the rock body. Near the
contact zone of the rock body, the contact-zone-type ore
bodies such as KT52 formed along the contact skarn zone
between the rock body and the Middle Triassic Beiya
formation (T,b) carbonate rocks and were then distributed
intermittently around the rock body on the horizontal
section. In the EW exploration line section, the ore body is
tilted to the west with an irregular inverted "U" shape,
whose top part has been eroded. Only the ore body on the
upper and lower contact zones has been preserved. In the
southern turning point for the emplacement of the rock
body (exploration lines 54-50 in the South), the thickness
of the skarn belt around the rock body is large and that of
the ore body is the largest (the maximum vertical
thickness is more than 150 m). In the outer zone, far away
from the rock body-distal zone, stratoid ore body (I, II and
IIT ore bodies from the Qinhe ore section as well as the
KT32 ore body from Weiganpo ore section) in the
interlayer fracture zone as well as vein and lenticular ore
bodies in the faulted fracture zone are developed. The rock
body was emplaced in the 600 m range between

exploration lines 50 and 80. The ore body in the contact
zone is located in the 0—500 m area around the rock body,
and that in the outer belt-distal zone is 1-5 km from the
rock body (Table 6).

The KT10, KT11, and KT12 ore bodies are controlled
by the Hongnitang rock body that occurred in the contact
skarn zone in the upper and lower plates of the rock body,
distributed between exploration lines 31 and 111, whose
controlled length is 1,600 m, width is from 74 to 813 m,
and extension depth is between 80 and 824 m, with a
distributive elevation of 1,781.80-2,116.46 m and a buried
depth of 0—429 m. Between exploration lines 31 and 79 in
the north, the ore body moves towards the SN direction
and generally tilts to the west. Between exploration lines
79 and 111 in the south (Jingouba ore section), the ore
body occurs along the interlayer fracture zone of T,b and
dips to the east.

The KT17 and KT18 ore bodies are controlled by the
Dashadi rock body that occurs along the east contact zone
of the rock body with the presence of steep slopes,
distributed between exploration lines 35 and 69, with a
controlled length of 600 m, a controlled depth from 80 to
824 m, and a distributive elevation between 1,781 and
2,116 m. In the Middle Triassic Beiya formation (T,b)
carbonate rocks between Hongnitang and Dashadi rock
bodies, KT13 and KT15, are ore bodies that occurred
along the interlayer fracture zone.

Currently, the ore bodies discovered in reconnaissance
are distributed mainly in the Middle Triassic Beiya
formation (T,b) carbonate rocks. There are no industrial
ore bodies in the underlying upper Permian basalt
formation (P,f) basalt intercalating tuff, the contact zone
between the rock body and lower Triassic Qingtianbao
formation (Tq) sandy conglomerate and sandstone or
strata. The alkali-rich porphyry intrusive bodies and
Middle Triassic Beiya formation (T,b) carbonate rocks
control the range of distribution of the polymetallic
deposits spatially.

(2) The alkali-rich porphyry bodies control the spatial
zonation of the mineralization type of the porphyry
hydrothermal metallogenic system.

The ore-controlling regularity of the Wandongshan rock
body is represented by ore zonation from the hydrothermal
Cu—Au ore body to the skarn-type Au—Cu—Fe ore body to
the skarn-type Au—Fe ore body to the hydrothermal Au—Fe
—Pb ore body to the hydrothermal Pb—Ag ore body with
the location from the rock body to the contact zone to
carbonate formation (outer zone to distal). The ore-
controlling regularity of the Hongnitang rock body is
represented by ore zonation from the skarn-type Au—Fe—
Cu ore body to the skarn-type Au—Fe—Pb ore body to the
hydrothermal Au—Pb—Ag ore body with the location from
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the contact zone of the rock body to carbonate formation
(outer zone to distal). That of the Dashadi rock body is
represented by ore zonation from the porphyry-type Cu—
Au to skarn-type Cu (Mo)—Fe to hydrothermal Au and Pb—
Ag in turn with the location from the rock body to
peripheral strata. The skarn Fe—Cu ore bodies formed in
the interlayer fracture zone of carbonate rocks (T,b)
between Dashadi and Hongnitang rock bodies.

(3) The alkali-rich porphyry bodies control the spatial
zonation of the alteration type of the deposit.

Alteration occurs in the contact zone between the rock
body and the surrounding rock, the interlayer fracture zone
of carbonate formation (T,b), or the faulted fracture zone
in the strata, including two alteration-mineralized zones
that are the inner and outer contact zones. From the rock
body to the contact zone to the carbonate formation (the
outer zone to the distal), alteration types include self-
metamorphic potassic alteration of the rock body,
silicification to epidotization and diopsidization in the
internal  contact zone, then garnetization and
diopsidization of the surrounding rock occurs in the outer
contact zone, and later chloritization and carbonatization.

(4) The contact modes and forms of the alkali-rich rock
bodies and the surrounding rock control the occurrence,
form and scale of the main ore bodies.

For the intrusion contact mode of the rock body gently
inclined to the strata, the heat and ore fluid are not easily
lost; this is beneficial to contact metasomatism. The
mineralization scale of the contact zone of the
Wandongshan rock body is larger than that of other skarn-
type ore zones near the contact zone, which may be related
to the contact mode. The position where contact
relationship between intruisons and strata becomes gentle
and the depressions formed by contact of the rock body
are the most favorable parts for forming thick and large
ore bodies. For example, KT52 Au-Fe polymetallic ore
bodies discovered in exploration lines 50, 54, and 56, in
the Wandongshan ore section, have a relatively large
thickness, and between exploration lines 69 and 70, of the
Hongnitang rock body, KT10 and KT11 ore bodies have
the maximum thickness in the position where the contact
zone changes from sharp to gentle. This is mainly due to
contact mode increases in the contact area and the fact that
the stress in the depression is small and the ore fluid is
easily gatherable. The ore body becomes thinner in areas
where the contact zone is sharp (Fig. 2).

The above-mentioned results indicate that the alkali-rich
porphyries control the internal and external zoning
structure of four mineralization styles, i.e. from vein Au—
Fe (Cu) ore bodies in the interior of the rock body to the
skarn-type Au-Fe (Pb-Cu) massive ore body in the contact
zone to the stratoid and lenticular Pb—Ag—Au ore body in

interlayer fracture zone of the outer zone to vein Au-Pb-
Ag ore body in the distal zone. The deposit belongs to the
porphyry—skarn-type Au—Fe—Cu—Pb—Zn (Ag) polymetallic
metallogenic system formed by the gradual evolution of
magmatic differentiated hydrothermal solutions.

4.5.2 Structures on mineralization

The structures in the ore district and geological
characteristics of the deposit indicate that Au—polymetallic
ore bodies in the ore district occur in both limbs of the
Beiya syncline, the contact fracture zone between the rock
body and the wall rock, the axial part of the syncline
where joints and fissures are well developed or interlayer
fracture zone in the limb. This indicates that folds control
the distribution of the rock (ore) bodies. The near SN
faults in both limbs of the syncline control the distribution
of porphyry (veins) bodies, and related Au—polymetallic
ore bodies are the main rock-control and ore-control
structures, the channels for magma intrusion and
migration of the ore-forming fluid, as well as the main
metallogenic structures and ore-hosted structures. The
faults also control the scale, mineralization direction, and
spatial distribution of the ore bodies. The matched
secondary fractures and fissures directly control the form,
occurrence, scale, and enrichment of the gold-bearing ore
bodies. In the ore district, the contact fracture zone
between the rock body and carbonate rocks, the tectonic
fracture zone in the interlayer of carbonate layers as well
as between carbonate and clastic rocks, and the section
where fissures are well developed are the main hosts for
ore bodies. The form and occurrence of the ore bodies
agree with the contact of the rock body, the structural belt,
the interlayer structural fracture zone, and the fissure zone.

4.5.3 Weathering-accumulation-type Fe-Au deposit
formed by supergenesis

The porphyry—skarn-type ore bodies in the contact zone,
interlayer fracture-zone-type ore bodies, vein-shaped ore
bodies in secondary fracture fissures related to the alkali-
rich porphyries formed in the Himalayan period, and the
form of the basement depression of the basin are the main
ore-controlling factors for the weathering-accumulation-
type (paleo weathering crust type) Fe—Au deposit formed
by supergenesis.

After the formation of porphyry—skarn-type deposits,
the Beiya area subsided and eroded throughout the
Neogene to form the SN, narrow, small intermontane
eroded depression basins at the center of Beiya, with a
length, in SN direction, of 4-5 km and a width, in the EW
direction, of 1-2 km. The wall rocks on the surface, in the
shallow part of the basement of the basin, and the ore
bodies experienced long-term weathering and denudation
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to form uneven paleo-geomorphological features and
developed Pliocene lacustrine deposition (N,s). In the
depressed section above the unconformity, Fe—Au deposits
accumulated and were preserved by the cover of lacustrine
sediments.

5 Conclusions

(1) The emplacement of three alkali-rich intrusive
bodies (the semi-buried Wangdongshan rock body, the
buried Dashadi rock body, and the semi-buried
Hongnitang rock body) formed between the late Eocene
and the early Oligocene, resulting in the formation of the
Beiya porphyry—skarn-type Au—polymetallic deposit.

(2) Alkali-rich porphyries consisting of quartz syenite
and quartz monzonite porphyry belong to the alkaline
metaluminous—peraluminous series (shoshonitic Series)
formed during the Himalayan period. The porphyries have
high SiO, content, high (La/Yb)N and (Dy/Yb)N ratios,
relatively low contents of MgO, Cr, Ni, Co, and V,
relatively high Sr content and Sr/Y ratios, as well as a low
(Dd/Lu)N ratio and contents of Y and Yb, enriched in the
LILEs and depleted in the HFSEs.

(3) The rock-forming ages of the main ore-forming
porphyries are 34.62-36.72 Ma and are nearly identical to
the ore-forming ages 36.46-39.44 Ma. The metallogenic
rock body may originate from partial melting of the lower
crustal material. The ascent and emplacement of magmas
along the Jinsha River—Red River large strike-slip deep
fracture zone and the secondary Ma'anshan fracture zone,
formed by the oblique collision along Indian plate to
Eurasian plate, led to the formation of the alkali-rich
porphyries.

(4) Vein-shaped Au—Fe (Cu) ore body in the core of
alkali-rich porphyry, skarn type Au—Fe (Cu—Pb) massive
ore body in the contact zone, stratoid and lenticular Pb—Ag
—Au ore body in interlayer fracture zone of the outer zone,
and vein-shaped Au-Pb-Ag ore body in distal zone
constitute the porphyry-skarn type Au—Fe—Cu-Pb—Zn
(Ag)—polymetallic metallogenic system.

(5) Impure carbonate rocks from the Middle Triassic
Beiya Fm. (T,b) provide favorable surrounding conditions
and hosting space for the formation of deposits.The
contact fracture zone between the rock body and carbonate
rocks, tectonic fracture zone in the interlayer of carbonate
layers and between carbonate and clastic rocks and the
section where fissures are well developed are the main
hosting positions for ore bodies.

(6) The metallogenic parent ores of weathering-
accumulation-type (paleo weathering crust-type) Fe—Au
deposits formed by supergene processes are the porphyry—
skarn-type ore body and the interlayer fracture-zone-type

ore body, which is the vein-shaped ore body in secondary
fracture and fissures formed early. The small intermontane
eroded basin in the core of the Beiya syncline controlled
the spatial distribution of ore bodies.
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