Research Advances

LA-ICP-MS Zircon U-Pb Age of Longtou Syenite body in South Songxian County, Southern Margin of the North China Craton

LIANG Tao ${ }^{1,2,{ }^{*}}$ and LU Ren ${ }^{1,2}$
1 General Institute of Non-ferrous Metals Geologic Exploration of Henan Province, Zhengzhou 450052, China
2 Key Laboratory of Deep Ore-prospecting Technology Research for Non-ferrous Metals of Henan Province, Zhengzhou 450052, China

Objective

Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The ZhifangHuangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. 1a), which is an important Indosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. 1b). All of them are significant to the Indosinian tectonic evolution of east Qinling Orogen. The Mogou and Wusanggou bodies, however, have become reserach focus (Qiu Jiaxiang et al., 1993; Ren Fugen et al., 2001; Liu Chuxiong et al., 2010; Mao et al., 2010; Lu Ren et al., 2013; Cao Jing et al., 2015; He et al., 2016; Liang Tao and Lu Ren, 2017). In fact, a comprehensive geochronolgy and geochimistry research for syenite bodies and syenitic dykes in ZH area is better to understand their petrogenesis and deep process. Therefore, LA-ICP-MS zircon U-Pb dating of the Longtou body was completed firstly in this study.

Methods

Zircon grains were extracted from about 8.5 kg wholerock syenite sample named LT212 of the Longtou body by standard crushing, sieving, heavy liquid and magnetic separation techniques. The selected zircons were mounted in epoxy and polished to obtain an even surface. Based on transmissive, reflected and cathodoluminescence (CL) images for all zircons, target zircon and site for $\mathrm{U}-\mathrm{Pb}$ analyses has been designed.

LA-ICP-MS zircon U-Pb isotope analyses were carried

[^0]out at the School of Resources and Environmental Engineering, Hefei University of Technology. The instrument configuration consists of an Agilent 7500a ICP -MS instrument equipped with a 193 nm GeoLasPro laser invented by Coherent Inc. Both sample zircons of LT212 and standard samples of NIST SRM610, 91500 and Plesovice were analyzed orderly. The ICPMSDataCal program (Liu et al., 2010) was used for processing the assay data, and data reduction was conducted using Isoplot (Ludwig, 2001).

Results

Most zircons from the syenite sample No. LT212 are colorless and transparent, and fractures and inclusions can be seen in some zircons. About one third of the zircons have shown integrated crystal, and most of them are long column shape ranged from 100 to $150 \mu \mathrm{~m}$ in major axis and $50 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$ in minor axis with length-to-width ratios of $3: 1$ to $2: 1$. Approximate two thirds of the zircons have incompleted crystal, and most of them are sharply angular-subangular shape and allotriomorphic granular. Most of zircons are characteristic of distinct oscillatory zoning and occasionally exhibit sector zoning (Fig. 1c), suggestive of a magmatic origin.

All 30 zircons of sample LT212 were analyzed, and they are in U-Pb concordant (Fig. 1d). The ${ }^{206} \mathrm{~Pb} /^{238} \mathrm{U}$ age of spot LT212-28 is $273.2 \pm 8.1 \mathrm{Ma}$, and the ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages of the rest 29 spots are from 230.6 ± 6.8 Ma to 255.8 ± 7.6 Ma (Appendix 1), which yield a weighted mean ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age of $241.8 \pm 2.6 \mathrm{Ma}$ (Fig. 1d). According to zircon CL image features, the age of $241.8 \pm 2.6 \mathrm{Ma}$ is interpreted as the crystallization age of Longtou syenite body.

Conclusion

The whole rock $\mathrm{K}-\mathrm{Ar}$ age of the Longtou syenite body is 241.6 Ma (Zeng Guangce, 1990), which is nearly

Fig. 1. (a), Simplified tectonic map of Henan Province (after Bureau of Geology and Mineral Resources of Henan Province, 1989); (b), Simplified geologic map of syenite bodies in south Songxian County, western Henan Province (after Bureau of Geology and Mineral Resources of Henan Province, 1990); (c), Cathodoluminescence images of zircons from the Longtou syenite; (d), Concordia diagrams for $\mathrm{U}-\mathrm{Pb}$ age of zircons of the sample LT212 from the Longtou syenite.
identical with zircon LA-ICP-MS age of $241.8 \pm 2.6 \mathrm{Ma}$. It has suggested that the formation age of Longtou syenite body is $241.8 \pm 2.6 \mathrm{Ma}(\mathrm{MSWD}=0.83)$ in the Middle Triassic, and it is the product of the early Indosinian alkaline magmatic activity. Furthermore, the ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age of $273.2 \pm 8.1 \mathrm{Ma}$ from zircon spot LT212-28 indicates the existence of ~ 273 Ma regional magmatic event in the south Songxian area.

Acknowledgments

This work was supported by the National Nature Science Foundation of China (grant No. U1504405).

References

Guo Xianqing, Yan Zhen, Aitchison, J.C., Fu Changlei and Wang Zongqi, 2017. Geochemistry, geochronology and Lu-Hf isotopes of peraluminous granitic porphyry from the Walegen Au deposit, west Qinling Terrane. Acta Geologica Sinica (English Edition), 91(6): 2024-2040.
Lu Ren, Liang Tao, Bai Fengjun and Lu Xinxiang, 2013. LA-ICP-MS U-Pb age and Hf isotope composition of Mogou syenite, western Henan Province. Geological Review, 59(2): 355-368 (in Chinese with English abstract).
Zeng Guangce, 1990. Petrological characteristics and tectonic environment of alkali-syenites in the south of Songxian, Henan. Earth Science-Journal of China University of Geosciences, 15(6): 635-642 (in Chinese with English abstract).
Appendix 1 LA-ICP-MS zircon U-Pb analytical results of sample LT212 from Longtou syenite body in south Songxian County, southern margin of the North China Craton

[^0]: * Corresponding author. E-mail: liang20010212@126.com.

