
1 Introduction 
 

As a window of insight into the lower crust, high grade 
metamorphic  granulite  has  received  more  and  more 
attention  since  it  was  first  proposed  by  Green  and 
Ringwood (1967) (Carswell and O'Brien, 1993; Smithies 
and Bagas, 1997; Appel et al., 1998; Wei Chunjing et al., 
2001; O'Brien and Rötzler, 2003; Wei Chunjing, 2012). 
The geothermal gradient of the high pressure granulite is 
18–22 °C/km, which belongs to medium-pressure facies 
series  and represents  the  normal  to  a  little  thickened 

middle or lower crust setting (Zhai Mingguo, 2009; Wei 
Chunjing, 2012). The sequential sequence of metamorphic 
stages defining the P-T paths in such granulites can place 
strong constraints on possible tectonic models (Harley, 
1989; Guo et al., 2002). 

Yushugou  high  pressure  granulite  unit  lies  in  the 
northeastern  margin  of  South  Tianshan  block  and 
accompanied by peridotite unit (Fig. 1). Because of their 
unique contact relationship, their origin has been debated 
for a long time. Previous studies show that the peridotite 
unit in Yushugou, combined with the ultramafic rocks in 
Tonghuashan and Liuhuangshan, represents an ophiolite 
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belt (Wu Wenkui et al., 1992; Wang Runsan et al., 1999a; 
Wang Juli et al., 1999; Xu Xiangzhen et al., 2011; Yang 
Jingsui et al., 2011). However, the petrogenesis of the 
granulite unit is still in debate (Shu Liangshu et al., 1996; 
Wang Runsan et al., 1999a; Yang Jingsui et al., 2011; Ji 
Shaocheng  et  al.,  2014;  Zhang  et  al.,  2016).  Three 
different ideas of the tectonic setting of the co-existence 
HP granulite and peridotite have be raised: (1) They may 
represent a complete ophiolite suite (Wang Juli et al., 
1999; Wang Runsan et al., 1999a; Wang Yan et al., 1999; 

Zhou et al., 2004); (2) they were tectonic mélange (Shu 
Liangshu et al., 1996; Li Tianfu et al., 2011; Yang Jingsui 
et al., 2011); (3) they were formed at continental curst-
mantle transition zone, then exhumated to the surface 
together through sheering action (Ji  Shaocheng et al., 
2014; Zhang et al., 2016). Compared to the well studied 
mafic granulite, the metamorphic conditions and tectonic 
mechanism of the felsic granulites are poorly explored 
because  of  lacking  appropriate  thermobarometry.  In 
previous studies, the calculated peak P-T conditions of the 

 

Fig. 1. Simplified geological map of the eastern part of Chinese South Tianshan. 
(a) Geological map of Chinese South Tianshan, Xinjiang Uygur Autonomous Region (modified from Lü et al., 2012; XBGMR, 1959, 1960). The Yushugou 
granulite-peridotite complex is composed by granulite unit and peridotite unit. The ultramafites are distributed in three adjacent places: Yushugou, 
Tonghuashan and Liuhuangshan. (b) The red solid line (from A to B) represents the cross section in Yushugou show in Fig.2.  
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mafic granulite from Yushugou are 800–870°C and 8.8–
11.3 kbar (Shu Liangshu et  al.,  2004);  the peak P-T 
conditions of the high pressure granulite facies (Grt-Di-Pl 
± Qz assemblage)  and the medium pressure granulite 
facies (Grt-Opx-Di-Pl-Qz assemblage) are 795–964°C, 9.7
–14.2 kbar (Wang et al., 1999b) and 724–826°C, 6.4–8.8 
kbar (Li Tianfu et al., 2011) respectively. Zhang et al. 
(2016) proposed that the felsic granulite underwent UHT 
(T > 930°C) and HP (10.5–14.5 kbar) metamorphism, 
which  may  record  a  possible  prograde  process 
characterized by heating and burial. The granulite-facies 
metamorphic age are Sm-Nd isochron age of 315 ± 3.62 
Ma (Wang et al., 1999b), zircon SHRIMP U-Pb ages of 
392 ± 7 Ma and 390 ± 11 Ma (Zhou et al., 2004), zircon 
SHRIMP U-Pb ages of 390–401 Ma (for the medium 
pressure granulite facies) (Li Tianfu et al., 2011), 40Ar-
39Ar isochron ages of 368.2 ± 4.8 Ma and 360 ± 10 Ma 
(for  the  high  pressure  granulite  facies)  and  Sm-Nd 
isochron age of 310 ± 5 Ma (for the medium pressure 
granulite facies) (Wang Runsan et al., 2003). The Previous 
studies  show  that  the  calculated  P-T  conditions  of 
Yushugou  granulite  indicated  granulite  facies 
metamorphism, but had a relatively large range. Moreover, 
many researchers used different methods to study the age 
of granulite facies metamorphism and the results range 
from 310–390 Ma. These arguments indicate that the P-T 
conditions and metamorphic age of the granulites are still 
in controversial. 

In this study, we use petrological study, thermodynamic 
modeling and LA-ICP-MS zircon U-Pb dating to reveal 
the metamorphic evolution of two types felsic granulites 
from the Yushugou granulite-peridotite complex. 
 

2 Geological Setting 
 

The Chinese Tianshan orogenic belt is situated between 
the Junggar plate and the Tarim plate. It extends westward 
to Tajikistan, Kyrgyzstan, Kazakhstan and Uzbekistan for 
more than 2500 km long in central Asia (Fig. 1a). It was 
formed by the collision of the Tarim plate and the Junggar 
plate in the Late Palaeozoic (Coleman, 1989; Gao et al., 
1998).  There  are  two  shear  zones  that  have  been 
recognized  in  Chinese  Tianshan:  the  South  Central 
Tianshan fault, a significant shear zone separating the 
Tarim and Yili-central Tianshan plates, which formed in 
the  Late  Devonian-Early  Carboniferous;  and  the  Late 
Carboniferous-Early Permian North Tianshan fault which 
separates the Yili-Central Tianshan plate from the North 
Tianshan island arc (Windley et al., 1990; Allen et al., 
1992). The South Tianshan orogen lies between the Tarim 
craton to the south and the Kazakhstan-Yili terrane to the 
north. It was formed by the northward subduction of the 

Tarim plate underneath the Yili-Central Tianshan plate 
during the closure of the Paleo-Tianshan ocean at the Late 
Paleozoic (Gao et al., 1999; Zhang et al., 2001; Zhang et 
al., 2005; Lü et al., 2008; Han et al., 2011; Huang He et 
al., 2015). 

The  Yushugou  HP  granulite-peridotite  complex  is 
located at the east of northern margin of South Tianshan, 
China,  which  consists  mainly  of  granulite  unit  and 
peridotite unit (Fig. 1). The granulite unit consists mainly 
of mafic granulite and felsic granulite interbedded with 
layers and lenses of amphibolite and marble (Fig. 2). 
There are two type granulites in the granulite unit: the 
mafic  granulite  and  the  felsic  granulite.  The  mafic 
granulite can be subdivided into three types according to 
the petrographic characteristics: Type I is orthopyroxene-
free granulite  with garnet-bearing mineral  assemblage, 
Type II is orthopyroxene and garnet-bearing granulite, 
Type III is two-pyroxene granulite without garnet (with or 
without spinel). The felsic granulite was subdivided into 
two types as Type I is opx-bearing granulite with garnet 
and Type II is opx-free granulite with garnet. The felsic 
granulites in this unit are generally massive foliated. 

Four felsic granulite samples were selected from the 
granulite unit for petrological studying, phase equilibrium 
modelling and zircon U-Pb dating. The locations of these 
samples are illustrated by the filled red star on the cross-
section (Fig. 2). 
 
3 Methods 
 
3.1 Electron-microprobe analyses 

Electron-microprobe  analyses  of  minerals  were 
performed with a Jeol JXA-8100 super-probe at the MOE 
Key Laboratory of Orogenic Belts and Crustal Evolution, 
Peking University. It was operated at 15 kV acceleration 
voltage, 10 nA beam current and 2 μm beam size. For 
calibration, natural and synthetic mineral standards were 
used. Final results were reduced by the PRZ correction 
program  supplied  by  the  manufacturer.  For  major 
elements, the relative analytical uncertainties are <2%. 
Representative  mineral  compositions  are  presented  in 
Table 1. 

 
3.2 XRF analyses 

Whole-rock compositions of the samples were obtained 
using  an  RIX-2100  X-ray  fluorescence  (XRF) 
spectrometer on fused glass discs made of whole-rock 
powder (<200 mesh) and lithium metaborate at the MOE 
Key Laboratory of Orogenic Belts and Crustal Evolution, 
School of Earth and Space Sciences, Peking University. 
Standard andesite GSR2 was used for calibration. Whole-
rock compositions are presented in Table 2. 
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3.3 LA-ICP-MS dating 
Zircons were prepared by conventional heavy liquid and 

magnetic techniques and handpicked under a binocular 
microscope, mounted onto epoxy resin disks and polished 
to expose the train centers. The choice of analytical sites 
bases on transmitted and reflected light microscopy to 
avoid  cracks  and  inclusions  and  cathodoluminescence 
(CL) imaging to examine internal structures prior to U-Pb 
isotopic  analysis.  CL  images  were  obtained  using  a 
Quanta  200F  ESEM  with  a  2-min  scanning  time  at 
conditions of 15 kV and 120 μA at Peking University. 
Laser  ablation-inductively  coupled  plasma-mass 
spectrometry (LA-ICP-MS) U-Pb zircon dating was made 
by an Agilent 7500ce ICP-MS equipped with an 193 nm 
excimer laser ablation system (COMPexPro102) at the 

MOE Key Laboratory  of  Orogenic  Belts  and  Crustal 
Evolution, School of Earth and Space Sciences, Peking 
University.  Instrumental  conditions  and  measurement 
procedures are similar to those described by Yuan et al. 
(2004). The diameter of the laser spot size was 32 μm. 
Considering the correction of isotope fractionation effects, 
zircon Plesovice (337.3 ± 0.4 Ma; Sláma et al., 2008) was 
used as an external standard and 91500 (1064.1 ± 3.2 Ma; 
Wiedenbeck et  al.,  1995)  was a  monitoring standard. 
GLITTER 4.4.2 was used to calculate the U-Pb isotopic 
compositions. Common lead was corrected following the 
procedure of Andersen (2002). Data processing was done 
with the ISOPOLT 4.15 (Ludwig, 2003). The results of 
zircon U-Pb dating are shown in Table 3 and presented on 
U-Pb concordia plots with 1σ uncertainties in Fig. 9. 

 

Fig. 2. A cross-section was investigated along the profile A-B in Fig.1b. 
The granulite unit consists mainly of mafic granulite and felsic granulite interbedding with layers and lenses of amphibolite and marble. The red stars repre-
sent the locations of the four selected samples. Among which, Y15-3 and Y15-8 are Type I felsic granulite, Y15-16 and Y18-4 are Type II felsic granulite. 
Mineral abbreviations: grt, garnet; cpx, clinopyroxene; pl, plagioclase; opx, orthopyroxene; kfs, K-feldspar.  

Table 1 Whole-rock compositions of the granulites Y15-3 and Y15-16 from Yushugou
Samples SiO2 Al2O3 TiO2 Fe2O3 CaO MgO K2O Na2O MnO P2O5 LOI Total
XRF analyses (wt%)           
Y15-3 61.03 16.04 1.16 10.23 3.09 4.43 1.88 1.91 0.16 0.06 0.53 100.52
Y15-16 77.27 8.52 0.56 7.13 1.64 2.77 0.41 0.73 0.22 0.02 0.57 99.84 
Samples SiO2 Al2O3 TiO2 FeO CaO MgO K2O Na2O O H2O Total  
Stage I bulk-rock compositions (calculated by deducting the calcite composition from the XRF analyses, mol.%)
Y15-3 65.27 10.11 0.94 8.24 3.45 7.05 1.28 1.98 0.40 1.28 100.00  
Y15-16 80.87 5.26 0.45 5.61 1.81 4.32 0.27 0.74 0.20 0.47 100.00 
Stage II bulk-rock compositions (calculated from mineral modes and microprobe analyses , mol.%)    
Y15-3 67.24 9.93 0.98 6.42 4.11 5.27 1.34 2.47 0.58 1.66 100.00 
Y15-16 81.95 4.99 0.85 4.53 1.97 3.66 0.32 1.12 0.10 0.51 100.00  

LOI, loss on ignition. 
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4 Petrography and Sample Description 
 

The layered HP felsic granulites from Yushugou are 
interbedded  with  mafic  granulite  and  show  distinct 
mylonitic foliation (Fig. 3e). Based on their petrologic 
characteristics, the felsic granulites can be divided into 
two  types.  Type  I  is  opx-bearing  felsic  granulite 
(represented by sample Y15-3), which consists mainly of 
garnet  (20–26  vol % ),  orthopyroxene  (1–3  vol % ), 
plagioclase (30–33 vol%), quartz (25–27 vol%) and K-
feldspar  (7–10  vol% ),  with  minor  biotite,  rutile  and 
ilmenite  (Fig.  3a–b).  The  garnet  can  be  divided  into 
porphyroblastic garnet (GrtA, 0.5–1 mm in diameter) and 
matrix garnet (GrtB, 50-100 µm in diameter) according to 
their grain sizes (Fig. 3a–b). The porphyroblastic garnet 
contains inclusions of orthopyroxene, quartz, plagioclase, 
biotite,  rutile  and  ilmenite,  while  the  matrix  garnet 
contains  quartz,  biotite,  rutile  and  ilmenite.  The 
orthopyroxene can also be divided into porphyroblastic 
orthopyroxene (OpxA, 0.5–1 mm in diameter) and matrix 
orthopyroxene (OpxB, 50–100 µm in diameter) based on 
their grain sizes (Fig. 3a–b). Small grained garnet were 
found  around  the  OpxA  (Fig.  3c–d),  indicating 
orthopyroxene being replaced by garnet with the reaction 
opx + pl = grt + qz. There still exits the intergrowth of 

garnet and quartz which is probably pseudomorphs after 
orthopyroxene  (Fig.  3f).  All  these  petrographic 
characteristics  described  above  illustrate  two-stage 
granulite  facies  metamorphic  events.  Stage  I 
metamorphism is recorded by the mineral assemblages of 
GrtA core + OpxA + pl + bt + ilm + qz (± kfs ± rt), while 
Stage  II  metamorphism  is  recorded  by  mineral 
assemblages: GrtA rim/GrtB ± OpxB + kfs + pl + bt + rt + 
ilm + qz. 

Type II  is  opx-free felsic  granulite  (represented by 
sample Y15-16), which consists mainly of garnet (12–
16%), quartz (60–63%) and plagioclase (14–16%), with 
minor biotite, rutile, ilmenite (Fig. 3g–h). The garnet can 
be divided into porphyroblastic garnet (GrtA, 0.5–1 mm in 
diameter)  and  matrix  garnet  (GrtB,  50–100  µm  in 
diameter) according to their grain sizes (Fig. 3g–h). The 
porphyroblastic  garnet  contains  inclusions  of  quartz, 
plagioclase, biotite, rutile and ilmenite, while the matrix 
garnet contains quartz and rutile. All these petrographic 
characteristics described above illustrate that there exist 
two-stage  metamorphic  events.  These  two  stages  of 
metamorphism are recorded by mineral assemblages of 
GrtA core + pl + bt + ilm + qz (± opx ± rt) and GrtA rim/
GrtB + pl + bt + rt + ilm + qz, respectively. 
 

 Table 2 Representative microprobe analyses of minerals from Y15-3 and Y15-16(unit for oxide is wt%) 
 Y15-3 Y15-16 

Mineral GrtA-c GrtA-r GrtB-c GrtB-r OpxA-c OpxA-r OpxB Pl Kfs Bt GrtA-c GrtA-r GrtB-c GrtB-r Pl Bt 
SiO2 38.86 39.25 39.21 39.25 51.34 53.14 52.99 58.70 63.85 38.70 39.06 38.49 38.55 38.81 58.82 37.92
TiO2 0.01 0.10 0.01 0.00 0.16 0.10 0.07 0.02 0.04 7.65 0.04 0.01 0.09 0.10 0.02 6.10
Al2O3 21.84 21.99 21.78 22.80 5.12 2.22 1.76 25.64 18.71 13.44 22.09 21.71 22.24 22.16 25.68 15.12
Cr2O3 0.00 0.01 0.08 0.01 0.08 0.10 0.11 0.02 0.00 0.17 0.02 0.02 0.06 0.05 0.00 0.00
Fe2O3 2.84 0.17 1.91 0.18 0.00 0.00 0.19 0.07 0.41 0.00 2.39 2.71 1.76 0.54 0.09 0.00
FeO 24.10 25.35 24.76 24.83 20.26 21.50 21.83 0.00 0.00 8.80 23.07 21.82 23.45 23.22 0.00 10.86
MnO 0.69 0.57 0.66 0.61 0.14 0.22 0.17 0.00 0.00 0.04 1.40 1.29 1.24 1.30 0.00 0.04
MgO 10.60 8.76 10.21 9.13 22.45 23.10 23.05 0.03 0.00 17.32 10.76 9.33 10.08 8.83 0.00 15.74
CaO 1.86 4.27 2.55 3.94 0.19 0.24 0.25 7.89 0.30 0.09 2.34 4.79 2.69 4.68 7.81 0.00
Na2O 0.07 0.00 0.00 0.03 0.05 0.00 0.00 7.46 0.94 0.32 0.01 0.03 0.00 0.05 7.76 0.30
K2O 0.04 0.00 0.00 0.01 0.01 0.02 0.01 0.38 15.33 9.88 0.01 0.00 0.02 0.00 0.36 9.88
Total 100.61 100.47 100.98 100.77 99.80 100.64 100.41 100.20 99.60 96.42 100.94 99.93 100.00 99.68 100.54 95.97
Oxygen 12.00 12.00 12.00 12.00 6.00 6.00 6.00 8.00 8.00 11.00 12.00 12.00 12.00 12.00 8.00 11.00
Si 2.95 3.00 2.97 2.98 1.89 1.95 1.96 2.63 2.96 2.79 2.95 2.94 2.94 2.98 2.62 2.76
Ti 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.01 0.01 0.00 0.33
Al 1.95 1.98 1.95 2.04 0.22 0.10 0.08 1.35 1.02 1.14 1.97 1.96 2.00 2.01 1.35 1.30
Cr 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Fe3+ 0.16 0.01 0.11 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.14 0.16 0.10 0.03 0.00 0.00
Fe2+ 1.53 1.62 1.57 1.58 0.62 0.66 0.67 0.00 0.00 0.53 1.46 1.40 1.50 1.49 0.00 0.66
Mn 0.04 0.04 0.04 0.04 0.00 0.01 0.01 0.00 0.00 0.00 0.09 0.08 0.08 0.09 0.00 0.00
Mg 1.20 1.00 1.15 1.03 1.23 1.27 1.27 0.00 0.00 1.86 1.21 1.06 1.15 1.01 0.00 1.71
Ca 0.15 0.35 0.21 0.32 0.01 0.01 0.01 0.38 0.02 0.01 0.19 0.39 0.22 0.39 0.37 0.00
Na 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.09 0.04 0.00 0.00 0.00 0.01 0.67 0.04
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.91 0.91 0.00 0.00 0.00 0.00 0.02 0.92
Sum 8.00 8.00 8.00 8.00 3.99 4.00 4.00 5.03 5.01 7.70 8.00 8.00 8.00 8.00 5.04 7.73
Xgrs 0.05 0.12 0.07 0.11       0.06 0.13 0.07 0.13   
Xprp 0.41 0.33 0.39 0.35  0.41 0.36 0.39 0.34 
Xalm 0.52 0.54 0.53 0.53       0.49 0.48 0.51 0.50   
Xsps 0.02 0.01 0.01 0.01  0.03 0.03 0.03 0.03 
Xan        0.37       0.36  
XMg     0.66 0.66 0.65 0.78   0.72
Xgrs = Ca/(Ca + Mg + Fe2+ + Mn), Xprp = Mg/(Ca + Mg + Fe2+ + Mn), Xalm = Fe2+/(Ca + Mg + Fe2+ + Mn), Xsps = Mn/(Ca + Mg + Fe2+ + Mn), Xan = Ca/(Ca + 
Na), XMg = Mg/(Mg + Fe2+). C, core; r, rim. The mineral formulae ferric iron were calculated with the program AX (Holland; 
http://www.esc.cam.ac.uk/research/research-groups/holland/ax).
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Table 3 LA-ICP-MS U-Pb analyses of zircons from the granulites and amphibolite in Yushugou 
Spot Position Th(ppm) U(ppm) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ ρ 207Pb/235U 1σ 206Pb/238U 1σ
Granulite Y15-3 
Y15-3-01 meta 39.5 48.8 0.81 0.05281 0.02979 0.44517 0.25010 0.06112 0.00346 0.9 374 176 382 21
Y15-3-02 meta 63.3 63.3 1.00 0.05577 0.02050 0.48325 0.17686 0.06282 0.00263 0.9 400 121 393 16
Y15-3-03 core 28.8 72.0 0.40 0.05407 0.01591 0.51549 0.15062 0.06913 0.00303 0.9 422 101 431 18
Y15-3-04 meta 48.5 58.6 0.83 0.05533 0.01657 0.46802 0.13918 0.06133 0.00259 0.9 390 96 384 16
Y15-3-05 meta 9.7 715.6 0.01 0.05393 0.00269 0.47140 0.02292 0.06337 0.00101 0.9 392 16 396 6
Y15-3-06 meta 108.8 92.1 1.18 0.05564 0.01169 0.48098 0.10025 0.06267 0.00207 0.9 399 69 392 13
Y15-3-07 meta 86.9 85.2 1.02 0.05586 0.01277 0.48098 0.10899 0.06243 0.00230 0.9 399 75 390 14
Y15-3-08 meta 57.5 57.4 1.00 0.05345 0.02651 0.46408 0.22937 0.06295 0.00298 0.9 387 159 394 18
Y15-3-09 meta 42.9 50.3 0.85 0.05551 0.01555 0.47810 0.13301 0.06244 0.00246 0.9 397 91 390 15
Y15-3-10 meta (rim) 49.0 52.2 0.94 0.05365 0.01858 0.40959 0.14105 0.05535 0.00237 0.9 349 102 347 14
Y15-3-11 meta (core) 111.7 142.6 0.78 0.05563 0.00922 0.47392 0.07777 0.06177 0.00173 0.9 394 54 386 11
Y15-3-12 meta 45.9 50.1 0.92 0.05326 0.01808 0.46694 0.15752 0.06356 0.00288 0.9 389 109 397 17
Y15-3-13 rim 84.4 81.5 1.03 0.05380 0.01333 0.46604 0.11457 0.06281 0.00235 0.9 388 79 393 14
Y15-3-14 core 51.6 58.6 0.88 0.05618 0.02132 0.54299 0.20491 0.07008 0.00351 0.9 440 135 437 21
Y15-3-15 meta 85.9 120.7 0.71 0.05370 0.00910 0.47001 0.07907 0.06346 0.00166 0.9 391 55 397 10
Y15-3-16 meta 57.2 59.1 0.97 0.05314 0.01721 0.44894 0.14440 0.06125 0.00280 0.9 377 101 383 17
Y15-3-17 meta 285.1 1977.8 0.14 0.05555 0.00268 0.47865 0.02243 0.06248 0.00097 0.9 397 15 391 6
Y15-3-18 meta 80.1 98.0 0.82 0.05377 0.01150 0.46987 0.09975 0.06336 0.00198 0.9 391 69 396 12
Y15-3-19 meta 56.7 67.6 0.84 0.05594 0.01687 0.48387 0.14492 0.06271 0.00261 0.9 401 99 392 16
Y15-3-20 meta 78.7 82.4 0.95 0.05558 0.01189 0.47940 0.10182 0.06254 0.00193 0.9 398 70 391 12
Y15-3-21 core 149.2 315.8 0.47 0.05655 0.00713 0.54244 0.06779 0.06955 0.00160 0.9 440 45 433 10
Y15-3-22 core 91.9 162.4 0.57 0.05627 0.00804 0.53525 0.07534 0.06897 0.00216 0.9 435 50 430 13
Y15-3-23 meta 86.2 88.2 0.98 0.05187 0.01417 0.39857 0.10820 0.05572 0.00198 0.9 341 79 350 12
Y15-3-24 meta 78.5 84.6 0.93 0.05395 0.01159 0.45910 0.09787 0.06170 0.00202 0.9 384 68 386 12
Y15-3-25 meta 58.2 68.7 0.85 0.05426 0.01443 0.46613 0.12323 0.06229 0.00219 0.9 389 85 390 13
Y15-3-26 core 66.6 251.5 0.26 0.05756 0.00485 0.54152 0.04460 0.06822 0.00154 0.9 439 29 425 9
Y15-3-27 meta 55.4 60.7 0.91 0.05289 0.01604 0.46260 0.13946 0.06342 0.00259 0.9 386 97 396 16
Y15-3-28 rim 100.5 87.8 1.15 0.05305 0.01369 0.46001 0.11801 0.06287 0.00209 0.9 384 82 393 13
Y15-3-29 core 123.3 335.5 0.37 0.05697 0.00692 0.54749 0.06573 0.06968 0.00160 0.9 443 43 434 10
Y15-3-30 meta 57.9 51.1 1.13 0.05572 0.02028 0.47217 0.17075 0.06144 0.00297 0.9 393 118 384 18
Y15-3-31 meta (rim) 104.6 85.5 1.22 0.05487 0.00985 0.42304 0.07497 0.05591 0.00198 0.9 358 53 351 12
Y15-3-32 meta (core) 32.1 41.8 0.77 0.05547 0.01839 0.47531 0.15675 0.06213 0.00254 0.9 395 108 389 15
Y15-3-33 meta (core) 44.2 43.0 1.03 0.05549 0.02119 0.46971 0.17849 0.06137 0.00269 0.9 391 123 384 16
Y15-3-34 meta (rim) 111.9 103.2 1.08 0.05243 0.00988 0.40692 0.07565 0.05628 0.00211 0.9 347 55 353 13
Y15-3-35 meta 56.0 50.6 1.11 0.05455 0.01625 0.46042 0.13607 0.06120 0.00276 0.9 385 95 383 17
Y15-3-36 meta 45.2 57.3 0.79 0.05334 0.01500 0.46027 0.12862 0.06257 0.00230 0.9 384 89 391 14
Y15-3-37 meta 61.9 62.5 0.99 0.05360 0.01173 0.46778 0.10162 0.06328 0.00204 0.9 390 70 396 12
Y15-3-38 meta 75.4 76.1 0.99 0.05550 0.01087 0.47069 0.09130 0.06150 0.00201 0.9 392 63 385 12
Y15-3-39 meta 132.4 327.3 0.40 0.05410 0.00470 0.45779 0.03899 0.06136 0.00127 0.9 383 27 384 8
Y15-3-40 meta 34.3 39.1 0.88 0.05316 0.02082 0.45257 0.17615 0.06173 0.00321 0.9 379 123 386 19
Y15-3-41 meta 66.2 71.4 0.93 0.05536 0.01273 0.47273 0.10773 0.06192 0.00229 0.9 393 74 387 14
Y15-3-42 meta 38.8 49.9 0.78 0.05351 0.01616 0.46815 0.14053 0.06344 0.00244 0.9 390 97 397 15
Y15-3-43 meta 69.5 64.4 1.08 0.05485 0.01394 0.47945 0.12097 0.06339 0.00231 0.9 398 83 396 14
Y15-3-44 meta 79.3 72.4 1.10 0.05347 0.01277 0.46126 0.10911 0.06255 0.00248 0.9 385 76 391 15
Granulite Y15-8 
Y15-8-01 meta 70.9 77.0 0.92 0.05498 0.00258 0.47525 0.02168 0.06268 0.00095 0.9 395 15 392 6
Y15-8-02 meta 36.4 58.4 0.62 0.05358 0.00321 0.46485 0.02735 0.06291 0.00094 0.9 388 19 393 6
Y15-8-03 meta 21.3 31.1 0.69 0.05372 0.00516 0.47145 0.04485 0.06363 0.00113 0.9 392 31 398 7
Y15-8-04 meta 63.8 108.0 0.59 0.05277 0.00200 0.45107 0.01653 0.06198 0.00082 0.9 378 12 388 5
Y15-8-05 meta 69.2 89.0 0.78 0.05535 0.00217 0.47268 0.01798 0.06192 0.00083 0.9 393 12 387 5
Y15-8-06 meta 61.5 65.1 0.94 0.05428 0.00276 0.46666 0.02314 0.06233 0.00095 0.9 389 16 390 6
Y15-8-07 meta 77.9 68.7 1.13 0.05531 0.00304 0.47558 0.02559 0.06235 0.00095 0.9 395 18 390 6
Y15-8-08 meta 22.2 35.0 0.63 0.05500 0.00462 0.47041 0.03898 0.06201 0.00112 0.9 391 27 388 7
Y15-8-09 meta 56.3 65.9 0.85 0.05339 0.00254 0.46092 0.02137 0.06260 0.00092 0.9 385 15 391 6
Y15-8-10 meta 74.0 108.0 0.68 0.05283 0.00197 0.45541 0.01646 0.06251 0.00082 0.9 381 11 391 5
Y15-8-11 meta 33.0 43.8 0.75 0.05318 0.00354 0.45360 0.02966 0.06185 0.00106 0.9 380 21 387 6
Y15-8-12 meta 68.2 130.0 0.52 0.05304 0.00198 0.45033 0.01626 0.06157 0.00082 0.9 378 11 385 5
Y15-8-13 meta 56.0 127.9 0.44 0.05577 0.00212 0.47870 0.01759 0.06224 0.00084 0.9 397 12 389 5
Y15-8-14 meta 58.8 67.8 0.87 0.05548 0.00277 0.47923 0.02338 0.06263 0.00091 0.9 398 16 392 6
Y15-8-15 meta 27.1 39.6 0.68 0.05358 0.00325 0.46779 0.02778 0.06330 0.00109 0.9 390 19 396 7
Y15-8-16 meta 140.2 132.9 1.06 0.05547 0.00230 0.48615 0.01957 0.06356 0.00087 0.9 402 13 397 5
Y15-8-17 meta 287.2 322.7 0.89 0.05479 0.00173 0.47610 0.01446 0.06301 0.00079 0.9 395 10 394 5
Y15-8-18 meta 44.9 44.0 1.02 0.05509 0.00438 0.46896 0.03676 0.06173 0.00107 0.9 390 25 386 6
Y15-8-19 meta 93.0 188.4 0.49 0.05558 0.00231 0.48384 0.01963 0.06312 0.00084 0.9 401 13 395 5
Y15-8-20 meta 46.5 55.1 0.84 0.05522 0.00276 0.48236 0.02357 0.06334 0.00096 0.9 400 16 396 6
Y15-8-21 meta 25.3 71.4 0.35 0.05525 0.00377 0.47731 0.03209 0.06264 0.00098 0.9 396 22 392 6
Y15-8-22 meta 116.4 163.6 0.71 0.05338 0.00187 0.46678 0.01586 0.06340 0.00083 0.9 389 11 396 5
Y15-8-23 meta 23.9 39.7 0.60 0.05535 0.00557 0.47026 0.04679 0.06161 0.00118 0.9 391 32 385 7
Y15-8-24 meta 96.5 85.0 1.14 0.05420 0.00245 0.47698 0.02104 0.06381 0.00093 0.9 396 14 399 6
Y15-8-25 meta 47.8 42.8 1.12 0.05355 0.00325 0.46580 0.02767 0.06307 0.00108 0.9 388 19 394 7
Y15-8-26 meta 51.4 50.2 1.02 0.05560 0.00292 0.48213 0.02477 0.06288 0.00100 0.9 400 17 393 6
Y15-8-27 meta 21.5 37.3 0.58 0.05564 0.00368 0.48056 0.03118 0.06263 0.00107 0.9 398 21 392 6
Y15-8-28 meta 135.9 160.5 0.85 0.05308 0.00190 0.46504 0.01617 0.06352 0.00084 0.9 388 11 397 5
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Table 3 Continued 
Spot Position Th(ppm) U(ppm) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ ρ 207Pb/235U 1σ 206Pb/238U 1σ
Y15-8-29 meta 30.6 44.8 0.68 0.05413 0.00344 0.47343 0.02944 0.06342 0.00114 0.9 394 20 396 7
Y15-8-30 meta 24.5 39.3 0.62 0.05321 0.00378 0.46229 0.03228 0.06300 0.00112 0.9 386 22 394 7
Y15-8-31 meta 54.8 67.2 0.82 0.05393 0.00276 0.47152 0.02360 0.06339 0.00100 0.9 392 16 396 6
Y15-8-32 meta 31.7 87.5 0.36 0.05361 0.00257 0.46843 0.02190 0.06335 0.00094 0.9 390 15 396 6
Y15-8-33 meta 48.2 51.0 0.94 0.05518 0.00404 0.47729 0.03448 0.06272 0.00105 0.9 396 24 392 6
Y15-8-34 meta 26.2 259.3 0.10 0.05560 0.00215 0.47890 0.01799 0.06246 0.00084 0.9 397 12 391 5
Y15-8-35 meta 78.7 86.5 0.91 0.05494 0.00257 0.47753 0.02176 0.06302 0.00099 0.9 396 15 394 6
Y15-8-36 meta 22.7 36.5 0.62 0.05336 0.00498 0.46736 0.04315 0.06351 0.00122 0.9 389 30 397 7
Y15-8-37 meta 56.1 101.5 0.55 0.05388 0.00219 0.46935 0.01853 0.06317 0.00091 0.9 391 13 395 6
Y15-8-38 meta 95.8 160.7 0.60 0.05558 0.00202 0.48218 0.01698 0.06291 0.00087 0.9 400 12 393 5
Y15-8-39 meta 61.1 70.1 0.87 0.05536 0.00255 0.47807 0.02142 0.06261 0.00095 0.9 397 15 391 6
Y15-8-40 meta 191.3 253.8 0.75 0.05535 0.00194 0.47861 0.01627 0.06270 0.00085 0.9 397 11 392 5
Y15-8-41 meta 71.7 125.3 0.57 0.05351 0.00220 0.46624 0.01866 0.06317 0.00092 0.9 389 13 395 6
Y15-8-42 meta 174.5 225.2 0.78 0.05586 0.00197 0.48161 0.01648 0.06252 0.00085 0.9 399 11 391 5
Y15-8-43 meta 25.7 36.6 0.70 0.05475 0.00358 0.46761 0.03002 0.06193 0.00108 0.9 390 21 387 7
Y15-8-44 meta 10.7 19.3 0.56 0.05549 0.00779 0.47062 0.06553 0.06149 0.00138 0.9 392 45 385 8
Y15-8-45 meta 230.2 270.3 0.85 0.05315 0.00197 0.46124 0.01657 0.06292 0.00088 0.9 385 12 393 5
Y15-8-46 meta 295.1 671.2 0.44 0.05542 0.00186 0.48181 0.01567 0.06303 0.00083 0.9 399 11 394 5
Y15-8-47 meta 37.8 66.1 0.57 0.05570 0.00293 0.48017 0.02464 0.06250 0.00102 0.9 398 17 391 6
Y15-8-48 meta 52.7 47.0 1.12 0.05639 0.00325 0.47886 0.02703 0.06157 0.00104 0.9 397 19 385 6
Y15-8-49 meta 16.2 30.5 0.53 0.05499 0.00383 0.47426 0.03241 0.06254 0.00116 0.9 394 22 391 7
Y15-8-50 meta 13.6 23.9 0.57 0.05475 0.00438 0.48953 0.03854 0.06483 0.00127 0.9 405 26 405 8
Granulite Y15-16 
Y15-16-01 meta 38.0 42.6 0.89 0.05477 0.01770 0.48835 0.15679 0.06465 0.00283 0.9 404 107 404 17
Y15-16-02 meta 26.4 31.5 0.84 0.05641 0.02094 0.49455 0.18258 0.06357 0.00292 0.9 408 124 397 18
Y15-16-03 meta 55.2 48.7 1.13 0.05607 0.01936 0.49099 0.16844 0.06350 0.00294 0.9 406 115 397 18
Y15-16-04 meta 22.1 31.0 0.71 0.05412 0.02313 0.46302 0.19672 0.06204 0.00338 0.9 386 137 388 21
Y15-16-05 meta 6.2 365.6 0.02 0.05411 0.00384 0.46018 0.03167 0.06168 0.00125 0.9 384 22 386 8
Y15-16-06 meta 4.0 260.9 0.02 0.05314 0.00487 0.40828 0.03655 0.05572 0.00125 0.9 348 26 350 8
Y15-16-07 meta 32.8 35.7 0.92 0.05362 0.01993 0.45091 0.16676 0.06098 0.00266 0.9 378 117 382 16
Y15-16-08 meta 33.1 188.8 0.18 0.05482 0.00551 0.40612 0.04013 0.05372 0.00120 0.9 346 29 337 7
Y15-16-09 meta 9.7 58.8 0.17 0.04990 0.02549 0.43336 0.22063 0.06297 0.00326 0.9 366 156 394 20
Y15-16-10 meta 5.0 141.2 0.04 0.05458 0.00546 0.46191 0.04555 0.06137 0.00128 0.9 386 32 384 8
Y15-16-11 meta 5.9 136.1 0.04 0.05590 0.00707 0.47373 0.05931 0.06145 0.00135 0.9 394 41 384 8
Y15-16-12 meta 8.3 144.7 0.06 0.05431 0.00569 0.40015 0.04128 0.05343 0.00121 0.9 342 30 336 7
Y15-16-13 meta 30.1 35.5 0.85 0.05340 0.03118 0.40832 0.23755 0.05544 0.00303 0.9 348 171 348 19
Y15-16-14 meta 32.0 33.2 0.96 0.05510 0.02968 0.47415 0.25446 0.06240 0.00332 0.9 394 175 390 20
Y15-16-15 meta 25.0 30.6 0.82 0.05489 0.02719 0.48157 0.23742 0.06362 0.00355 0.9 399 163 398 22
Y15-16-16 meta 27.0 33.7 0.80 0.05520 0.02501 0.48712 0.21951 0.06399 0.00355 0.9 403 150 400 22
Y15-16-17 meta 28.1 39.8 0.70 0.05509 0.01991 0.47665 0.17112 0.06274 0.00306 0.9 396 118 392 19
Y15-16-18 meta 4.5 72.2 0.06 0.05517 0.01547 0.48335 0.13474 0.06354 0.00235 0.9 400 92 397 14
Y15-16-19 meta 4.8 144.6 0.03 0.05528 0.01085 0.48976 0.09539 0.06425 0.00186 0.9 405 65 401 11
Y15-16-20 meta 27.4 37.7 0.73 0.05304 0.01932 0.41105 0.14892 0.05619 0.00247 0.9 350 107 352 15
Y15-16-21 meta 48.9 48.8 1.00 0.05171 0.02002 0.38390 0.14781 0.05383 0.00248 0.9 330 108 338 15
Y15-16-22 meta 11.9 83.9 0.14 0.05381 0.01495 0.40011 0.11051 0.05392 0.00192 0.9 342 80 339 12
Y15-16-23 meta 29.9 36.3 0.82 0.05312 0.01864 0.41106 0.14339 0.05611 0.00248 0.9 350 103 352 15
Y15-16-24 meta 28.0 32.7 0.86 0.05432 0.02047 0.46005 0.17261 0.06141 0.00256 0.9 384 120 384 16
Granulite Y18-4 
Y18-4-01 meta 12.1 23.8 0.51 0.05364 0.00642 0.46630 0.05531 0.06304 0.00130 0.9 389 38 394 8
Y18-4-02 meta 7.8 75.4 0.10 0.05590 0.00206 0.48715 0.01734 0.06319 0.00080 0.9 403 12 395 5
Y18-4-03 meta 18.1 28.5 0.63 0.05411 0.00464 0.47424 0.04018 0.06355 0.00113 0.9 394 28 397 7
Y18-4-04 meta 14.4 26.7 0.54 0.05501 0.00522 0.47126 0.04407 0.06212 0.00128 0.9 392 30 389 8
Y18-4-05 meta 11.1 69.1 0.16 0.05381 0.00212 0.46684 0.01783 0.06291 0.00082 0.9 389 12 393 5
Y18-4-06 meta 28.3 42.5 0.67 0.05382 0.00486 0.45693 0.04067 0.06156 0.00118 0.9 382 28 385 7
Y18-4-07 meta 15.0 28.8 0.52 0.05547 0.00477 0.47313 0.04015 0.06185 0.00111 0.9 393 28 387 7
Y18-4-08 meta 14.4 28.5 0.51 0.05553 0.00459 0.47322 0.03838 0.06179 0.00126 0.9 393 26 387 8
Y18-4-09 meta 16.4 36.4 0.45 0.05281 0.00324 0.44997 0.02708 0.06179 0.00097 0.9 377 19 387 6
Y18-4-10 meta 15.7 27.6 0.57 0.05294 0.00673 0.45307 0.05703 0.06206 0.00137 0.9 379 40 388 8
Y18-4-11 meta 5.7 73.9 0.08 0.05337 0.00266 0.45542 0.02215 0.06187 0.00092 0.9 381 15 387 6
Y18-4-12 meta 14.9 27.2 0.55 0.05527 0.00568 0.48474 0.04929 0.06360 0.00121 0.9 401 34 397 7
Y18-4-13 meta 14.2 27.6 0.51 0.05541 0.00463 0.46861 0.03855 0.06133 0.00115 0.9 390 27 384 7
Y18-4-14 meta 20.1 39.0 0.52 0.05550 0.00383 0.46985 0.03192 0.06139 0.00100 0.9 391 22 384 6
Y18-4-15 meta 11.1 21.3 0.52 0.05341 0.00561 0.45415 0.04707 0.06166 0.00136 0.9 380 33 386 8
Y18-4-16 meta 16.2 27.4 0.59 0.05405 0.01047 0.47234 0.09120 0.06337 0.00131 0.9 393 63 396 8
Y18-4-17 meta 14.4 26.3 0.55 0.05546 0.00594 0.48800 0.05175 0.06380 0.00122 0.9 404 35 399 7
Y18-4-18 meta 15.4 28.8 0.54 0.05527 0.00745 0.47483 0.06346 0.06230 0.00129 0.9 395 44 390 8
Y18-4-19 meta 12.1 114.8 0.11 0.05408 0.00203 0.46392 0.01689 0.06220 0.00081 0.9 387 12 389 5
Y18-4-20 meta 8.7 85.2 0.10 0.05541 0.00226 0.47547 0.01878 0.06223 0.00085 0.9 395 13 389 5
Y18-4-21 meta 18.4 33.5 0.55 0.05437 0.00385 0.47636 0.03318 0.06353 0.00110 0.9 396 23 397 7
Y18-4-22 meta 10.4 21.6 0.48 0.05550 0.00556 0.47396 0.04695 0.06193 0.00119 0.9 394 32 387 7
Y18-4-23 meta 12.0 21.9 0.55 0.05570 0.00472 0.48299 0.04032 0.06287 0.00120 0.9 400 28 393 7
Y18-4-24 meta 22.1 34.1 0.65 0.05352 0.00510 0.46320 0.04364 0.06276 0.00111 0.9 386 30 392 7
Y18-4-25 meta 13.7 26.7 0.51 0.05484 0.00600 0.47106 0.05081 0.06229 0.00148 0.9 392 35 390 9
Note: meta, metamorphic zircon. 
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5 Results 
 
5.1 Mineral chemistry 
5.1.1 Garnet 

Garnet from two representative samples Y15-3 and Y15
-16 generally exhibits compositional zoning. GrtA from 
Type I opx-bearing felsic granulite sample Y15-3 exhibits 
two-stage compositional zoning (Table 2; Fig.4a,c), the 
CaO-poor and MgO-rich cores (Alm50-52Prp40-42Grs5-6Sps1) 
are characterized by almost constant grossular, pyrope, 
almandine and spessartine, while the rims (Alm50-53Prp38-

40Grs6-11Sps1)  show a  subtle  increase  in  the  grossular 
content and decrease in the pyrope content. GrtB (Alm51-

54Prp34-40Grs6-11Sps1)  displays  a  chemical  zonation 
characterized  by  a  CaO-rich  and  MgO-poor  rim, 
comparable to the rims of GrtA (Fig. 4a, d). 

In Type II opx-free felsic granulite Y15-16, GrtA also 
shows a two-stage compositional zoning (Table 2; Fig. 4b, 
e):  the  CaO-poor  and  MgO-rich  cores  (Alm48-50Prp40-

41Grs6-7Sps2-3)  are  characterized  by  almost  constant 
grossular, pyrope, almandine and spessartine, while the 
rims (Alm47-50Prp36-40Grs7-13Sps2-3) show a subtle increase 

 

Fig. 3. Photomicrographs showing textural relationship of the Yushugou felsic granulites.  
(a), Porphyroblastic garnet (GrtA, 0.5-1 mm in diameter) and orthopyroxene (OpxA, 0.5-1 mm in diameter). (b), Matrix minerals which consist 
mainly of fine-grained garnet (GrtB) and orthopyroxene (OpxB), plagioclase, K-feldspar, quartz, rutile and ilmenite; sample Y15-3. (c,d), Small 
grained garnet were found around the OpxA; sample Y15-3. (e), The HP felsic granulites from Yushugou show distinct mylonitic foliation; sample 
Y15-3. (f), The intergrowth of grt and quartz (probably pseudomorphs after orthopyroxene); sample Y15-3. (g,h), Porphyroblastic garnet (1 mm in 
size, denoted as GrtA) is distributed in a matrix which consist mainly of fine-grained garnet (denoted as GrtB), quartz, plagioclase, rutile and ilmenit; 
sample Y15-16. Mineral abbreviations: qz, quartz; rt, rutile; ilm, ilmenite; other abbreviations are the same as in Fig.2. 
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in  the  grossular  content  and  decrease  in  the  pyrope 
content.  GrtB  (Alm48-52Prp34-39Grs7-13Sps2-3)  displays  a 
chemical zonation characterized by a CaO-rich and MgO-
poor rim, comparable to the rims of GrtA (Fig. 4b, f). 
 
5.1.2 Other minerals 

In Type I opx-bearing felsic granulite Y15-3, the Xan 
(=Ca/(Ca + Na)) of plagioclase ranges from 0.36–0.38, 
belongs to andesine. OpxA and OpxB have similar XMg (= 

Mg/(Mg + Fe2+)) between 0.65–0.69, which belongs to 
hypersthene. OpxA shows a subtle decrease in the Al2O3 
content (5.12–2.22 wt%) from core to rim, which may 
indicate temperature decreasing or pressure increasing. 
The Al2O3 content of OpxB (1.76–2.56 wt%) is similar or 
less than OpxA. The XMg and TiO2 contents of biotite range 
from 0.75–0.82 and 4.30–8.06 wt%, respectively. 

In Type II opx-free felsic granulite Y15-16, the Xan of 
plagioclase  ranges  from  0.34–0.38  and  belongs  to 

 

Fig. 4. Mineral chemistry diagrams showing variations of garnet in the felsic granulites from Yushugou. 
(a,b), Xprp-Xgrs diagrams showing core-rim variations (arrows) of garnet in Type I felsic granulite (Y15-3) and Type II felsic granulite (Y15-
16), respectively. (c,d), Compositional profiles of garnet GrtA and GrtB in Y15-3. (e, f), Compositional profiles of garnet GrtA and GrtB in Y15
-16. Xgrs = Ca/(Ca + Mg + Fe2+ + Mn), Xprp = Mg/(Ca + Mg + Fe2+ + Mn), Xalm = Fe2+/(Ca + Mg + Fe2+ + Mn), Xsps = Mn/(Ca + Mg + Fe2+ + 
Mn).  
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andesine. The Xmg and TiO2 contents of biotite range from 
0.67–0.75 and 3.01–6.10 wt% respectively. 

Based  on  the  textural  observations  and  mineral 
compositions,  the  observed  assemblages  in  the  felsic 
granulites Y15-3 and Y15-16 can be related to two stages 
in this metamorphic evolution. A summary of mineral 
parageneses related to different stages of metamorphisms 
is presented in Fig. 5. 
 
5.2 Phase equilibrium modelling 

Phase equilibrium modelling was performed using the 
software  THERMOCALC  3.33  (Powell  et  al.,  1998; 
updated  July  2009)  and  the  November  2003  updated 
version of the Holland and Powell (1998) dataset (file 
tcds55.txt).  P-T  pseudosections  were  constructed  for 
granulites Y15-3 and Y15-16 in the model system Na2O-
CaO-K2O-FeO-MgO-SiO2-H2O-TiO2-O  (NCKFMASHT 
O). Activity–composition relationships are those presented 
for garnet (White et al., 2007), orthopyroxene (White et 
al., 2002), plagioclase (Holland and Powell, 2003), biotite 
(White et al., 2007), muscovite (Coggon and Holland, 
2002),  k-feldspar  (Holland  and  Powell,  2003),  liquid 
(White  et  al.,  2007),  cordierite  (Holland  and  Powell, 
1998), ilmenite (White et al., 2000). Rutile, kyanite, quartz 
and H2O are treated as pure end-member phases. The H2O 
content used in the modelling is adjusted using T-M (H2O) 
diagrams and refers to the normalized molar proportion of 
H2O in a rock (Korhonen et al., 2012). The whole-rock 
chemical  compositions  obtained  by  XRF analysis  for 
calculating the pseudosections were normalized in the 
NCKFMASHTO system,  the bulk Fe2O3 (O) contents 
were estimated by integrating the modal abundances of all 
phases relevant in the model systems with their charge 
balance. For the Stage I granulite facies metamorphism, 
the XRF-based whole-rock compositions were regarded as 

effective bulk compositions during the initial growth of 
garnet cores. However, the bulk-rock composition may 
change  during  its  P-T  evolution  due  to  crystal 
fractionation (such as zoned garnet) (Evans, 2004; Du et 
al., 2014) and occasional presence of mineral enriched and 
mineral  depleted  textural  domains  (Wei  et  al.,  2009; 
Groppo and Castelli, 2010). Therefore, it is critical to 
generate  an  effective  bulk  composition  for  phase 
equilibrium calculations.  For  Stage  II  granulite  facies 
metamorphism, the bulk composition may not necessarily 
involve entire mineral grains (Carson et al., 1999; Wei et 
al.,  2003),  effective  bulk-rock  compositions  were 
generated following the method of Carson et al. (1999) 
and Du et al. (2014) by integrating mineral compositions 
and modal abundance data for the phases present. 

 
5.2.1 P-T pseudosections for the opx-bearing granulite 
Y15-3 

The NCKFMASHTO P-T pseudosection calculated for 
the opx-bearing granulite Y15-3, using XRF-based bulk 
composition (Table 1), which is presented in Fig. 6a. The 
pseudosection is contoured with isopleths of z(g) = Ca/(Ca 
+ Mg + Fe2+) and x(g) = Fe2+/(Fe2+ + Mg) contents in 
garnet.  The  measured  core  compositions  of  GrtA 
correspond to P-T conditions of 9.8–10.2 kbar and 895–
915°C in the stability field of grt + pl + bt + kfs + ilm + qz 
+ liq (± opx), consistent with the Stage I metamorphic 
mineral  assemblages  observed  under  the  microscope 
(details see part 4). 

The NCKFMASHTO P-T pseudosection shown in Fig. 
6b was calculated for Y15-3 with an effective bulk-rock 
composition obtained by subtracting OpxA composition 
and the core of GrtA composition from the XRF-based 
bulk-rock composition (Table 2) and is contoured with 
isopleths of z(g) and x(g). The measured GrtB core-rim 

 

Fig. 5. Distinct mineral assemblages developed during different metamorphic stages in felsic granulites 
Y15-3 and Y15-16. 
The metamorphic stages and the names on top of the lines represent the different stages of the minerals, which can be recog-
nized according to different compositions and textures. Continuous lines represent minerals still present in the sample, whereas 
dashed lines indicate inferred minerals.  
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Fig. 6. P-T pseudosections for the Yushugou HP felsic granulite Y15-3 in the system NCKFMASHTO. 
(a), P-T pseudosection for Stage I of Type I felsic granulite (sample Y15-3) calculated in the system NCKFMASHTO (+ qz + grt + pl) using the bulk-rock 
composition from Table 1, normalized on the basis of mole percent as SiO2 = 65.27, Al2O3 = 10.11, TiO2 = 0.94, CaO = 3.45, MgO = 7.05, FeO = 8.24, K2O 
= 1.28, Na2O = 1.98, H2O = 1.28. (b), P-T pseudosection for Stage II of Type I felsic granulite (sample Y15-3) calculated in the system NCKFMASHTO (+ 
qz + pl) using an effective bulk composition obtained by subtracting OpxA composition and the core of GrtA composition from the XRF-based bulk composi-
tion, normalized on the basis of mole percent as SiO2 = 67.24, Al2O3 = 9.93, TiO2 = 0.98, CaO = 4.11, MgO = 5.27, FeO = 6.42, K2O = 1.34, Na2O = 2.47, 
H2O = 1.66. The pseudosections are contoured with isopleths of z (grt) = Ca/(Ca+Mg+Fe2+) and x (grt) = Fe2+/(Fe2++Mg) contents in garnet. White circles 
represent the core of GrtA. Black circles represent GrtB and the rim of GrtA. Mineral abbreviations: qz, quartz; rt, rutile; ilm, ilmenite; bt, biotite; ms, musco-
vite; ky, kyanite; liq, silicate liquid/melt; crd, cordierite; other abbreviations are the same as in Fig.2.  

Fig. 7. P-T pseudosections for the Yushugou HP felsic granulite Y15-16 in the system NCKFMASHTO. 
(a), P-T pseudosection for Stage I of Type II felsic granulite (sample Y15-16) calculated in the system NCKFMASHTO (+ qz + grt + pl) using the bulk-rock 
composition from Table 1, normalized on the basis of mole percent as SiO2 = 80.87, Al2O3 = 5.26, TiO2 = 0.45, CaO = 1.81, MgO = 4.32, FeO = 5.61, K2O = 
0.27, Na2O = 0.74, H2O = 0.47. (b), P-T pseudosection for Stage II of Type II felsic granulite (sample Y15-16) calculated in the system NCKFMASHTO (+ 
qz + pl) using an effective bulk composition obtained by subtracting the core of GrtA composition from the XRF-based bulk composition, normalized on the 
basis of mole percent as SiO2 = 81.95, Al2O3 = 4.99, TiO2 = 0.85, CaO = 1.97, MgO = 3.66, FeO = 4.53, K2O = 0.32, Na2O = 1.12, H2O = 0.51. White circles 
represent the core of GrtA. Black circles represent GrtB and the rim of GrtA. Other details are the same as in Fig.6.  
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zoning (compositions similar with GrtA rim zoning) is 
modelled to yield a P-T vector from 10.6 kbar, 900°C to 
13.5 kbar, 860°C. Pmax is in mineral assemblage of grt + pl 
+ bt + kfs + rt + ilm + qz + liq. Phase equilibrium 
modelling indicate that sample Y15-3 has experienced an 
anticlockwise P-T path, suggesting a metamorphic process 
characterized  by  temperature  decreasing  and  pressure 
increasing from 9.8–10.2 kbar and 895–915°C to 13.5 
kbar, 860°C. 
 
5.2.2 P-T pseudosections for the opx-free granulite Y15
-16 

The P-T pseudosection calculated for sample Y15-16 
using the analysed bulk-rock composition (XRF method) 
is presented in Fig. 7a, the pseudosection is contoured 
with  isopleths  of  z(g)  and  x(g).  The  measured  core 
compositions of GrtA yield P-T conditions of 10.0–10.4 
kbar and 895–920°C in the stability field of grt + pl + bt + 
ilm + qz + liq (± opx ± kfs), similar with that in Fig. 6a. 

The P-T pseudosection calculated with the effective 
bulk composition of sample Y15-16 is shown in Fig. 7b 
and contoured with isopleths of z(g) and x(g). The weakly 
zoned garnet grain (GrtB) in the matrix is modelled to 
indicate a P-T vector from 10.7 kbar, 910°C to 13.2 kbar, 
845°C, similar to sample Y15-3. The mineral assemblage 
of  Pmax  is  grt  +  pl  +  bt  +  rt  +  ilm  +  qz  +  liq. 
Thermodynamic modelling for sample Y15-16 suggests 
that it also experienced an anticlockwise P-T path from 
10.0–10.4 kbar, 895–920°C to 13.2 kbar, 845°C, similar 
with that of sample Y15-3. 
 
5.3 U-Pb zircon dating 

Zircons from Type I felsic granulite Y15-3 and Y15-8 
are oval in shape with grain sizes ranging from 100 to 200 
μm in diameter and are transparent and colorless under 
transmitted  light  (Fig.  8).  Cathodoluminescence  (CL) 
study shows that zircons from sample Y15-3 posses core-
rim structure, the dark-luminescent core surrounded by a 
narrow bright-luminescent rim (Fig. 8). Some of the cores 
preserve  regular  oscillatory  zoning  indicative  for  an 
igneous origin, while no zoning was observed in the rims 
suggest for a metamorphic origin. For sample Y15-8, no 
oscillatory zoning was founded in the zircons, all of them 
are  featured  by  typical  metamorphic  origin.  A  few 
inclusions of quartz, feldspar, apatite and rutile were found 
in  the  metamorphic  zircons.  Six  analyses  of  zircon 
oscillatory  zoning  cores  from  sample  Y15-3  yield  a 
weighted mean 206Pb/238U age of 430.6 ± 9.4 Ma (MSWD 
= 0.13; Fig. 9), which is interpreted to represent the time 
the zircon cores crystallized from magma chamber. 38 
analyses of metamorphic zircons from Y15-3 yield two 
stage metamorphic ages which are 390.9 ± 4.1 Ma (n=34, 

MSWD = 0.14; Fig. 9) and 350.0 ± 12.0 Ma (n=4, MSWD 
= 0.03; Fig. 9) respectively. 50 analyses of zircons from 
sample Y15-8 yield a weighted mean 206Pb/238U age of 
392.2 ± 1.6 Ma (MSWD = 0.44; Fig. 9). 

The zircons from Type II felsic granulite Y15-16 and 
Y18-4 are also oval and colorless with 100–200 μm in 
major  dimension.  On  CL  images,  most  zircons  are 
featured  by typical  multi-facet  of  metamorphic  origin 
(Vavra  et  al.,  1999;  Wu  and  Zheng,  2004).  A  few 
inclusions of quartz,  apatite  and rutile were found in 
zircons  from sample  Y15-16  and  Y18-4,  while  some 
zircons from Y18-4 also contain feldspar and garnet. 16 
analysis on zircons from sample Y15-16 give a weighted 
mean 206Pb/238U age of 389.6 ± 6.5 Ma (MSWD = 0.29; 
Fig. 9), while eight analysis on zircons yielded a weighted 
mean 206Pb/238U age of 341.6 ± 7.0 Ma (MSWD = 0.48; 
Fig. 9). For sample Y18-4, 25 analysis on zircons yield a 
weighted mean 206Pb/238U age of 390.5 ± 2.6 Ma (MSWD 
= 0.44; Fig. 9). 
 
6 Discussion 
 
6.1 Metamorphic evolution of HP felsic granulite from 
South Tianshan 

Previous research paid much attention to petrological 
investigations on the mafic granulite because of lacking 
appropriate  method  for  felsic  granulite.  They  use 
conventional  geothermobarometry  to  calculate  the 
pressure-temperature  (P-T)  conditions  of  the  mafic 
granulite. The calculated peak P-T conditions of the mafic 
granulite are 800–870°C at 8.8–11.3 kbar (Shu Liangshu 
et al., 2004), 795–964°C at 9.7–14.2 kbar for the high 
pressure granulite  facies (Grt-Di-Pl  ± Qz assemblage) 
(Wang et al., 1999b), and 724–826°C at 6.4–8.8 kbar for 
the medium pressure granulite facies (Grt-Opx-Di-Pl-Qz 
assemblage) (Li Tianfu et al., 2011). More recently, Zhang 
et al. (2016) proposed that the felsic granulite underwent 
UHT (T>930°C) and HP (10.5–14.5 kbar) metamorphism 
by thermodynamic modelling. 

Phase  equilibrium  modelling  and  petrological 
investigations have been carried out on the HP felsic 
granulite in Yushugou granulite-peridotite complex and 
yielded two stages metamorphic evolutionary with Stage I, 
the peak-temperature metamorphic stage and Stage II, 
which reach Pmax after Tmax by cooling processes. 

Peak-temperature metamorphic stage I has been inferred 
on the basis of the GrtA core compositions. The P-T 
conditions at the Tmax stage were modelled to be 9.8-10.2 
kbar at 895–915°C for Type I granulite sample Y15-3 and 
10.0–10.4 kbar at 895–920°C for Type II granulite sample 
Y15-16. The corresponding mineral assemblage is grt + pl 
+ bt + kfs + ilm + qz + liq (± opx) in the system 
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Fig. 8. Representative CL images of zircons from samples from Yushugou felsic 
granulite. Analytical spots, measured ages are marked.  

Fig. 9. Concordia diagrams for the investigated zircons from two types of felsic granulite in Yushugou granulite-peridotite complex.  
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NCKFMASHTO for Y15-3 and grt + pl + bt + ilm + qz + 
liq (± opx ± kfs) for Y15-16. The peak metamorphic 
temperature of the Yushugou granulite acquired in this 
study  is  higher  than  that  calculated  by  traditional 
thermobarometry, but slightly lower than that proposed by 
Zhang et al. (2016). The calculated P-T conditions of the 
Yushugou HP felsic granulite imply a high geothermal 
gradient  of  ~26  ° C/km,  distinct  with  HP/UHP 
metamorphic  rocks  in  subduction  and  collision  zones 
which are characterized by low geothermal gradient (4–15 
°C/km; Chopin, 2003; Zhang et al., 2003; Liou et al., 
2009; Gilotti, 2013). The post-Tmax cooling and pressure 
increasing to the Pmax stage II were constrained by the 
garnet growth zoning with increase in Xgrs and decrease in 
Xpy, which occurs from core to rim for most matrix garnet 
(GrtB) or in rim of porphyroblastic garnet (GrtA) in the two 
representative felsic granulite samples. The P-T conditions 
at the Pmax, estimated using the garnet rim compositions 
with maximum Xgrs and the corresponding Xpy, are 13.5 
kbar at 860°C for Y15-3 and 13.2 kbar at 845°C for Y15-
16. The corresponding mineral assemblage is grt + pl + bt 
+ kfs + rt + ilm + qz + liq for Y15-3 and grt + pl + bt + rt 
+  ilm  +  qz  +  liq  for  Y15-16  in  the  system 
NCKFMASHTO. The changes in mineral mode suggest 
that  orthopyroxene  will  disappear  during  pressure 
increasing through reaction: opx + pl = grt + qz, which is 
consistent  with  the  reaction  texture  observed  under 
microscope (Fig. 3c, d, f). 

 
6.2 Zircon age interpretation 

Different kinds of geochronological approaches have 
been used to constrain the age of the granulite from the 
Yushugou complex. Zhou et al. (2004) and Li Tianfu et al. 
(2011) use  SHRIMP U-Pb method to acquire  similar 
metamorphic ages which are 390–392 Ma and 390–401 
Ma,  respectively.  The  Sm-Nd  isochron  age  of  the 
granulites are 315 ± 3.62 Ma and 310 ± 5 Ma measured by 
Wang Runsan et al. (1999a) and Wang Runsan et al. 
(2003). The 40Ar-39Ar isochron ages of amphibolite from 
the granulite are 368.2 ± 4.8 Ma and 360 ± 10 Ma 
acquired by Wang Runsan et al. (2003). 

In this study, the zircon U-Pb ages for zircons from two 
types of HP felsic granulites described above reveal three 
distinct age groups: Middle Silurian (~430 Ma), Middle 
Devonian (~390 Ma), Early Carboniferous (340–350 Ma). 
The inner cores of some zircons from sample Y15-3 
preserve regular oscillatory zoning (Fig. 8) indicate a 
magmatic origin and give a weighted mean 206Pb/238U age 
of 430.6 ± 9.4 Ma, which is similar to the result of Wang 
et al. (1997). The second group of zircons from Y15-3, 
Y15-8,  Y15-16  and  Y18-4  give  the  weighted  mean 
206Pb/238U age of 390.9 ± 4.1 Ma, 392.2 ± 1.6 Ma, 389.6 ± 

6.5 Ma and 390.5 ± 2.6 Ma, which correspond to peak-
temperature metamorphic stage. This is consistent with the 
previous results that measured by SHRIMP zircon U-Pb 
isotopic dating method (Zhou et al., 2004; Li Tianfu et al., 
2011). The third group of zircons from Y15-3 and Y15-16 
give the weighted mean 206Pb/238U age of 350.0 ± 12 Ma 
and 341.6 ± 7 Ma, which may represent the post-Tmax 
cooling  and  pressure  increasing  to  the  Pmax  stage 
metamorphism. 

 
6.3 Tectonic implications 

Based on the occurrence of HP-UHP belt together with 
discovery of coeval low-P granulite-facies rocks to the 
north,  a  paired  metamorphic  belt  tectonic  model  is 
proposed  for  Chinese  southwestern  Tianshan  and 
supposed to have formed owing to subduction of the South 
Tianshan Paleo-Ocean underneath the Yili and Central 
Tianshan plate (Li Qiang and Zhang Lifei, 2004; Zhang et 
al., 2007; Xia et al., 2014a; Lü and Zhang, 2016). The 
subduction of the South Tianshan Paleo-Ocean underneath 
the Yili and Central Tianshan plate may start at Early 
Silurian and last until Early Carboniferous (Gao et al., 
2008; Han et al., 2011; Xia et al., 2014a; Xia et al., 
2014b), which created a magmatic arc along the South 
margin of the Yili  and Central Tianshan plate (Yang 
Tiannan et al., 2006; Zhu Yongfeng et al., 2006; Zhu 
Zhixin et al., 2006; Yang and Zhou, 2009; Zhu et al., 
2009; Xu Xueyi et al., 2010; Long et al., 2011; Xu et al., 
2013; Ma et al., 2014; Zhou et al., 2016).  

The  Yushugou  HP  granulite  was  traditionally 
considered to be deformed ophiolite slice (Wang Juli et 
al., 1999; Wang Runsan et al., 1999a; Wang et al., 1999b; 
Zhou et al., 2004). Geochemistry studies indicate that the 
protolith of the mafic granulite probably formed in a 
volcanic island arc tectonic setting (Shu Liangshuet al., 
2004).  Yang  Jingsui  et  al.  (2011)  indicated  that  the 
Yushugou and Tonghuashan ophiolitic units originated in 
both MORB and SSZ tectonic settings, but the granulites 
appear  to  have  had  a  complex  protolith  and  a  very 
different  metamorphic  history  from  the  ophiolite.  Ji 
Shaocheng et al. (2014) argued that this HP massif may 
derive  from Moho  transition  zone  and  exhumated  to 
surface  through  shearing  action.  Zhang  et  al.  (2016) 
proposed that the Yushugou granulites probably derived 
from the deep root of a hot continental magmatic arc. 

An  anticlockwise  P-T  path  was  proposed  for  the 
Yushugou  granulites  in  this  study  (Fig.  10).  Stage  I 
represent Tmax granulite facies metamorphism which imply 
a high geothermal gradient of ~26 °C/km. This indicates 
that  the felsic  granulite  can not  be derived from the 
subducting  slab  which  are  characterized  by  low 
geothermal gradient (4–15 °C/km). We proposed that the 
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Stage I granulite facies metamorophism happened at ~390 
Ma that may be related to the Devonian magmatic arc 
(Han  et  al.,  2011).  Stage  II  HP  granulite  facies 
metamorphism took place at 340–350 Ma indicating the 
granulites  have  experienced  a  cooling  and  pressure 
increasing process, which may be related to the subduction 
erosion (Hacker et al., 2011; Gerya and Stöckhert, 2006). 
We propose a model for this process: the granulite was 
derived from the deep root of the hanging wall; Stage I 
granulite  facies metamorphism happened at  ~390 Ma, 
which may be related to the Devonian arc magmatic 
intrusion;  Stage  II  HP granulite  facies  metamorphism 
(happened at 340–350 Ma) may be due to the involvement 
of  granulite  into  the  subducting  slab  and  caused  the 
pressure increasing and temperature decreasing. 
 
7 Conclusions 
 

(1) The studied high-pressure felsic granulites can be 
further grouped into two types: Type I (opx-bearing) and 
Type II (opx-free) granulite.  Petrographic observations 
and  phase  equilibrium modelling  with  pseudosections 
calculated using THERMOCALC in the NCKFMASHTO 
system for two representative samples suggest that the 
granulites have experienced two stages of metamorphism: 
Stage  I  (granulite  facies)  was  recognized  by  the 

porphyroblastic garnet core, and the P-T conditions of this 
stage are 9.8–10.2 kbar at 895–915°C for Type I and 10.0–
10.4  kbar  at  895–920° C  for  Type  II  granulite, 
respectively; Stage II (HP granulite facies) was based on 
the garnet zoning with increasing grossular and decreasing 
pyrope contents, and the P-T conditions of this stage, 
defined using the garnet rim compositions, are 13.5 kbar at 
860°C for Type I and 13.2 kbar at 845°C for Type II 
granulite. Consequently, the Yushugou HP granulite has 
recorded  an  anticlockwise  P-T  path  with  temperature 
decreasing and pressure increasing simultaneously. 

(2) The studies of zircon show that the protolith’s ages 
of HP granlulites are ~430 Ma, the metamorphic rims of 
zircon have two group ages ~390 Ma and 340–350 Ma, 
corresponding  to  Stage  I  and  II  metamorphic  events 
respectively. 

(3) In this study, we propose a hanging wall subduction 
model for the HP graulites metamorphism based on the 
petrological study and U-Pb zircon dating: the granulite 
was derived from the deep root of the hanging wall; Stage 
I granulite facies metamorphism happened at ~390 Ma, 
which may be related to the Devonian arc magmatic 
intrusion;  Stage  II  HP granulite  facies  metamorphism 
(happened at 340–350 Ma) may be due to the involvement 
of  granulite  into  the  subducting  slab  and  caused  the 
pressure increasing and temperature decreasing. 
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