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Abstract: This paper reviews the current progress and problems in the study of microbialites and
microbial carbonates. Microbialites and microbial carbonates, formed during growth of microbes by
their calcification and binding of detrital sediment, have recently become one of the most popular
geological topics. They occur throughout the entire geological history, and bear important theoretical
and economic significances due to their complex structures and formative processes. Microbialites are
in place benthic microbial buildups, whereas microbial carbonates can be classified into two
categories: stabilized microbial carbonates (i.e., carbonate microbialites, such as stromatolites and
thrombolites) and mobilized microbial carbonates (i.e., microbial carbonate grains, such as oncoids
and microbial lumps). Various texture, structures, and morphologies of microbialites and microbial
carbonates hamper the systematic description and classification. Moreover, complex calcification
pathways and diagenetic modifications further obscure the origin of some microbialites and microbial
carbonates. Recent findings of abundant sponge spicules in previously identified “microbialites”
challenge the traditional views about the origins of these “microbialites” and their implications to reef
evolution. Microbialites and microbial carbonates did not always flourish in the aftermath of
extinction events, which, together with other evidences, suggests that they are affected not only by
metazoans but also by other geological factors. Their growth, development, and demise are also
closely related to sea-level changes, due to their dependence on water depth, clarity, nutrient, and
sunlight. Detailed studies on microbialites and microbial carbonates throughout geological history
would certainly help understand causes and effects of major geological events as well as the co-
evolution of life and environment.
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1 Introduction

Microbialites and microbial carbonates are produced by
calcification and sediment-trapping/binding of microbes
during their growth and metabolism (Burne and Moore,
1987; Riding, 2000) (Fig. 1). They developed throughout
the entire geological periods: the oldest has been dated
back to 3.45 billion years ago (Hofmann et al., 1999),
whereas the youngest occurs in various modern
environments (e.g., Awramik and Vanyo, 1986; Dill et al.,
1986; Couradeau et al., 2012). Microbialites and microbial
carbonates especially flourished in some critical intervals
including the Meso- to Neoproterozoic, Cambrian—
Ordovician, Late Devonian—Early Carboniferous, and
Early Triassic (e.g., Elicki, 1999; Ezaki et al., 2003;
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Sheehan and Harris, 2004; Adams et al., 2005; Wang et al.,
2005; Jiang et al., 2008; Woo et al., 2008; Shen et al.,
2010; Kershaw et al., 2012). Flourish and decline of
microbialites and microbial carbonates are closely related
to some major geological events, paleoclimate, and
paleoceanographic conditions (Riding, 2006b). Therefore,
studies on these
important with respect to revealing paleoceanographic,
paleoclimatic, and paleoecological conditions. In addition,
microbialites and microbial carbonates can also serve as
reservoirs of minerals and hydrocarbon due to their
complex structures and biogenic origins, which bear
certain economic significances (Dai et al., 1995; Parcell,
2002; Chen et al., 2004; Wang and Tao, 2005; Yang et al.,
2007; Shi et al., 2008; Tian et al., 2011).

Microbialites and microbial carbonates have recently

microbial-induced sediments are
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become a popular topic in the field of sedimentary
geology. Studies
carbonates are thus often reviewed and summarized at
certain stages, which is essential for the development of
sciences (e.g., Burne and Moore, 1987; Dai et al., 1996;
Riding, 2000, 2011; Han et al., 2009a; Wang et al., 2011;
Luo et al., 2013). Many of the previous reviews focused
on the classification of microbialites and microbial
carbonates, with each type (e.g., stromatolite, thrombolite,
dendrolite, leiolite, etc.) described and discussed in details
(Fig. 1). This paper will not reiterate these descriptions,
but will provide a review and present new views on
progress and problems in the study of
microbialites and microbial carbonates, based on
literatures and the authors’ recent studies. However, this
review does not encompass every aspects of microbialites
and microbial carbonates, but only focuses on some of the
important  issues concerning  basic  conceptions,
calcimicrobes, relationship with metazoans, and responses
to major extinction events and sea-level changes.

on microbialites and microbial

current

2 Basic Conceptions

2.1 Differentiation of definitions

The terms “microbialite” and “microbial carbonate” are
similar in definition, but they differ in common usage.
Microbialites are “organosedimentary deposits that have
accreted as a result of a benthic microbial community
trapping and binding detrital sediment and/or forming the
locus of mineral precipitation” (Burne and Moore, 1987),
whereas microbial carbonates are ‘“produced by the
interaction of microbial growth and metabolism, cell
surface properties, and extracellular polymeric substances
with mineral precipitation and grain trapping” (Riding,
2011). By definition, both terms can indicate sediments
that are produced by microbes (Fig. 1). The difference is
that the former is composed of either carbonates (in many
cases) or chemically
precipitated minerals (e.g., Martin et al., 1993; Lee and
Chough, 2011; Johnson et al., 2013) (Fig. 2), whereas the
latter is composed merely of carbonates (e.g., Riding,
2000). Recently, Riding (2011) supplemented that
microbialites are “in place benthic sediments produced by
microbial processes”, which commonly project upward
from the substrate showing domal or
morphology. Thereby, microbialites generally indicate
microbial buildups such as stromatolites and thrombolites,
and do not include microbial grains such as oncoids.

On the contrary, microbial carbonates are used to
indicate all carbonate sediments that are produced by
microbes (Riding, 2000). They can be collectively
classified into stabilized microbial carbonates (i.e.,

siliciclastics, or sometimes

columnar

carbonate microbialites or reefal microbial carbonates) and
mobilized microbial carbonates (microbial grains and
some lime mud) (Fig. 3). Mobilized microbial carbonates
such as oncoids, ooids, and microbial lumps are
commonly bedded, which also show various sedimentary
structures such as ripple, cross-stratification, and grading;
they are basically similar to inorganic carbonate sediment
or siliciclastic sediment with respect to sedimentary
structures. Microbial carbonates and microbialites are not
really equal; neither one includes the other. The
intersection of the two, namely carbonate microbialites (or
reefal microbial carbonates) is the research focus in recent
years (Fig. 3).

In addition, a concept of microbially induced
sedimentary structures (MISS) was recently introduced to
describe non-reefal sedimentary structures which are
formed mostly on siliciclastic substrates (Noftke et al.,
2001). MISS are formed by binding, baffling, and trapping
of detrital grains by cyanobacterial films and mats, which
commonly lack calcite precipitation in extracellular
polymeric substances (Noffke and Awramik, 2013). Five
main categories of MISS have been introduced, containing
seventeen individual types that are produced by
“epibenthic cyanobacteria interacting with the physical
agents of erosion, deposition, transportation, or
deformation” (Noffke et al., 2001). Microbial laminites
were previously regarded as flat and planar stromatolites,
but they are put in the category of MISS (Noffke et al.,
2001) (Figs. le and 2b). However, in the brief summary,
MISS are still being regarded as a specific group of
stromatolites (Noffke, 2009) or as the fifth group of
microbialites (Noffke and Awramik, 2013).

2.2 Classification and nomenclature

Classification on microbialites and microbial carbonates
was made based mainly on their texture (i.e., meso-scale
structures) (Riding, 2000). Four major types of
microbialites (and microbial carbonates) were classified:
stromatolite, thrombolite, dendrolite, and leiolite (Burne
and Moore, 1987; Riding, 2000) (Fig. 1). Stromatolite
(originally  stromatolith) was firstly proposed by
Kalkowsky (1908) to indicate laminated deposits formed
by biologic processes. Later, stromatolite was re-described
as “a laminated benthic microbial deposit” (Riding, 1999).
Thrombolites, coined by Aitken (1967) to differentiate
from stromatolites, are used to describe non-laminated,
“clotted” microbial deposits. Later, Shapiro (2000)
discussed about thrombolites and limited “clots” to mm- to
cm-scale mesostructures (mesoclots); Aitken’s original
clots were re-studied and defined as maze-like maceria
structures, which are included in a macro-scale structure
(Shapiro and Awramik, 2006). Dendrolites are also
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Fig. 1. Representative photographs of various microbialites and microbial carbonates.

(a) Irregular to domal stromatolite, Cambrian Series 2, Laiwu region, Shandong, China. (b) Thrombolite with irregular, dark-gray microbial clots, Cambrian
Series 3, Jinan region, Shandong, China. (c) Dendrolite with bush-like structures, Cambrian Series 3, Jining region, Shandong, China. (d) Leiolite with
aphanitic texture, Cambrian Series 3, Laiwu region, Shandong, China, which was firstly recognized by Woo (2009). (e) Microbial laminites with desiccation

crack, Cambrian Series 3, Linyi region, Shandong, China. (f) Oncoid with spheroidal shapes and crudely-laminated cortex, Cambrian Series 3, Jinan region,
Shandong, China.

Fig. 2. Siliciclastic stromatolites and laminites.

(a) Laterally linked hemispheroidal stromatolites covered by thrombolitic microbialite, Cambrian Series 3, Linyi region, Shandong, China. (b) Microbial
laminites with rolling and convoluting structures, Cambrian Series 3, Jinan region, Shandong, China.

Microbialites Microbial carbonates

&

Mobilized microbial carbonates
(1.e., microbial grains, such as
oncoids, ooids, lumps, etc.)

Fig. 3. Relationship between microbialites and microbial carbonates. The intersection of the two, i.e., stabilized
microbial carbonates or carbonate microbialites, is the focus of studies.
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characterized by dendritic clotted structures that commonly
show upward widening shapes, suggesting their biologic
origin (Riding, 1991b, 2000; Howell et al., 2011). The
transition from irregular clots (thrombolites) to dendritic
clots (dendrolites) is gradational and subtle, which might
bring confusions as to their naming. Leiolites, term
proposed by Braga et al. (1995), are to indicate
microbialites with structureless, relatively homogeneous
(aphanitic) texture. Leiolites are not common in geological
record, but they may be otherwise regarded as small-scale
carbonate mud mounds (cf. Riding, 2002).

Although different types of the microbialites and
microbial carbonates are often reviewed and described
(e.g., Burne and Moore, 1987; Shapiro, 2000; Riding,
2000, 2011; Noftke and Awramik, 2013), many of them
are still hardly classified or named due to the chaotic or
complex texture and structures. As an example, the
microbialites from the Cambrian Series 3 Zhangxia
Formation of the North China Platform consist of

abundant dendritic calcimicrobes, Epiphyton (Zhang et al.,
1985; Gao and Zhu, 1998; Mu et al., 2003; Woo et al.,
2008). It is, however, hard to classify these microbialites
into certain types due to their blur mesostructures. Instead,
Woo and Chough (2010) called them “Epiphyton
framestone” because the main framework of microbialites
was built by Epiphyton. Similarly, Shen et al. (1997, 2008)
also regarded the Devonian microbialites from South
China as “Renalcis framestone”. Another example is the
widely developed microbialites (Favosamaceria cooperi)
in Laurentia, which are classified as thrombolites (Shapiro
and Awramik, 2006) (Fig. 4a, b). They are, however,
different from the typical thrombolites containing cm-
scale clotted texture (Fig. 1b), and show chaotic texture
and branching maze-like structures (maceria). Based on
these features, Lee et al. (2010) regarded the similar
microbialites developed in the coeval succession in the
North China Platform as “maceriate microbialite” (Fig. 4c,
d), and did not classify them into certain types. Recently,

Platform, are characterized by diverging and converging structures in longitudinal sections, and rambling maze-like structures in

horizontal sections.
(a) Longitudinal section of the microbialites in the upper part of the Cambrian in Laurentia (Shapiro and Awramik, 2006). (b) Transverse section of the
microbialites in the upper part of the Cambrian in Laurentia (Shapiro and Awramik, 2006). (c) Longitudinal section of the microbialites in the Furongian
Chaomidian Formation of the North China Platform (Lee et al., 2010). Coin is 19 mm in diameter. (d) Transverse section of the microbialites in the Furongian
Chaomidian Formation of the North China Platform (Lee et al., 2010).
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however, Lee et al. (2014) redefined these microbialites as
“sponge-microbial they discovered
abundant sponge spicules that actively constructed the
reefs together with calcimicrobes (more details in section
4). Thus, these microbialites, which cannot be classified
into the four typical types, need to be described in detail in
order to clarify their formative processes.

Microbes also get involved in formation of carbonate
grains (mobilized microbial carbonates), such as oncoids,
ooids, and microbial lumps (Davaud and Girardclos, 2001;
Li et al., 2010; Liu and Zhang, 2012; Mei and Gao, 2012;
Barale et al.,, 2013; Yang et al, 2013). Laboratory
experiments show that microbial organisms can form
ooids (Brehm et al., 2006). Studies on modern ooids also
suggest that microbial organisms are important for the
formation of coated grains (i.e., ooids and oncoids)
(Davaud and Girardclos, 2001), although other studies
suggest that microbial organisms only alter their texture
after formation (Duguid et al., 2010). Han et al. (2014)
pointed out that ooids could be encrusted by calcimicrobes
(e.g., Girvanella), forming oncoids, whereas oncoids
could also be wrapped by chemically precipitated calcite
or aragonite, forming ooids. The alternative wrapping of
carbonate grains by organic and inorganic encrustations
results in formation of compound grains (e.g., Girvanella
ooids of Liu and Zhang, 2012).

Furthermore, some carbonate grains from the Cambrian
Series 3 in Shandong Province, China show similar
external morphology as oncoids, but have no internal
lamination and nucleus. These grains were firstly regarded
as “thrombolitic oncoids” (Yang et al., 2011) and later
“microbial lumps” (Yang et al., 2013). Based on detailed
field measurement and observations, Han et al. (2014)
found these grains occur in a cross-stratified limestone bed
with a sharp erosional base overlying bioturbated
wackestone (previously identified as thrombolites by Yang
et al., 2013). These grains contain clear calcified microbes
inside, and show sharp edges that cut the incorporated
sediment and calcified microbe inside, indicating that
these grains were most likely derived from microbial
buildups nearby, and transported and reworked by currents
and waves.

In summary, systematic classification and nomenclature
of microbialites and microbial carbonates are still unclear,
mainly because of their complex texture and structures, as
well as formative processes. It is critical to make a clear
description and reasonable classification in order to
understand their formative processes and controlling
factors.

reefs” because

2.3 Scales of microbialite structures and morphology
In order to systematically observe and describe

microbialites, various scales of microbialite structures
should be differentiated, which is important for correctly
understanding  their processes  and
paleoenvironmental implications. Shapiro (2000), after
amending Grey (1989), proposed four scales of
observation for the study of microbialites, including
megastructure (large-scale features of the microbialite bed,
such as biostrome or bioherm), macrostructure (gross form
of the microbialite bodies such as dome or column),
mesostructure  (internal textures of macrostructural
elements such as lamina and clot), and microstructure
(microscopic fabrics such as calcimicrobes, carbonate
particles, and cement) (Fig. 5a). These four scales of
observation and description can be applied to most of
microbialites. All microbialites display certain macro-,
meso- and microstructures. Depending on the lateral and
vertical development, megastructures may be absent (for
example, a cm- to dm-scale, isolated microbialite buildup
in bioclastic wackestone may not display a megastructure).
On the other hand, macrostructures may be various in
scale and grade; they may contain other macrostructures
within them (Fig. 5b). For example, meter-scale domal
structures may contain  decimeter-scale columnar
structures that again consist of centimeter-scale branching
structures (c.f. Howell et al., 2011) (Fig. 5b). All of the
different scales of structures can be described as
‘macrostructure’, but in different order (e.g., first-, second-
, third-, and fourth-order macrostructures) (Fig. 5b).

formative

3 Calcification and Diagenetic Alternation of
Microbes

3.1 Occurrence of calcified microbes in geologic history

Precambrian microbialites are mainly represented by
stromatolites. Many of these stromatolites are often
questioned with respect to their microbial origin due to
absence of recognizable microbes, and instead inorganic
formative models are put forward (Grotzinger and
Rothman, 1996; Pope et al., 2000; Mcloughlin et al.,
2008). In some cases, these stromatolites were even
thought to be formed by escape of fluids during soft-
sediment deformation (Cloud et al., 1974; Hoffman et al.,
1998; Kennedy et al., 2001). Recent detailed micro- to
nano-scale observations under microscopes reveal that
most (if not all) of the Precambrian stromatolites were
formed by microbes although calcified microbes are not
present in many cases (Corsetti and Grotzinger, 2005;
Murphy and Sumner, 2008; Allwood et al., 2009; Tang et
al., 2012). Recognizable calcified cyanobacteria were
rarely reported from
Neoproterozoic stromatolites (Swett and Knoll, 1985;
Knoll et al., 1993; Turner et al., 1993, 2000; Kah and

some of the Meso- and
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Fig. 5. Different scales of microbialite structures and morphology.

(a) The four investigation scales of microbialites (modified after Shapiro, 2000). (b) Amended investigation scales of microbial structures and

morphology.

Riding, 2007).

Together with the Cambrian Explosion, calcified
microbes such as Girvanella, Epiphyton, and Renalcis
occur abundantly within the microbial carbonates (Riding,
1991a, 2000; Elicki, 1999; Pratt, 2001; Rowland and
Shapiro, 2002; Woo et al., 2008). Since the Cambrian,
calcified microbes were found from microbial carbonates
of various ages, although some of them (e.g., those from
the Early Triassic) are not readily identifiable. One of the
most famous examples is from the Late Devonian—Early
Carboniferous, where various calcified microbes occur
within microbial carbonates (Shen and Webb, 2004a,
2008; Feng et al., 2010). Many of these calcified microbes
have their modern analogues of cyanobacteria (e.g.,
Riding, 1977; Laval et al., 2000).

3.2 Calcification of microbes

Calcification of microbes occurs during their growth
(Pratt et al., 2001; Riding, 2006a). Early calcification
results in relatively hard surface of microbial carbonates
and rapid precipitation rate, which lead to formation of
certain synoptic relief, projecting upward from the
substrate.  Photosynthesis of microbes promotes
precipitation of calcium carbonate through absorption of
carbon, which results in calcification of microbial sheaths.
However, calcification patterns of modern lacustrine
microbialites and simulation of photosynthetically induced
rise in supersaturation of calcium carbonate indicate that
this mechanism applies only in settings with low dissolved
inorganic carbon content and high calcium content (Arp et

al., 2001). The discovery of Arp et al. (2001) explains that
lack of calcified microbes in Precambrian stromatolites
was most likely ascribed to high dissolved inorganic
carbon concentration in the Precambrian oceans and
occurrence of various in many
Phanerozoic microbial carbonates resulted from high Ca*
concentration in Phanerozoic oceans.

Riding (2006a) suggested that calcification of microbial
sheaths is promoted by CO, concentrating mechanisms
(CCMs) that “actively transport HCO;
carbon fixation”. During photosynthesis, microbes
consume CO,; and release OH™ by the CCMs, which results
in high extracellular pH and CO;*" concentration. This
process promotes the precipitation of CaCOs;, with
adequate supply of Ca®", in the sheaths of microbes, and
eventually leads to calcification of sheaths (Riding, 2006a).
CCMs are closely related to decrease of atmospheric CO,
concentration and increase of O, concentration during the
geological history. Based on the study of modern
cyanobacteria, CCMs are induced “when the atmospheric
partial pressure of CO, (pCO») falls below ~0.4% (10 times
present atmospheric level)” (Riding, 2006a), which
promotes calcification of microbial sheaths. Crossing of the
threshold of the pCO, is indicated by the occurrence of
Girvanella 750-700 Ma (Swett and Knoll, 1985, Riding,
2006a). Moreover, the inference that pCO, fell below
~0.4% at 750-700 Ma is “consistent with empirical and
modeled paleo-atmosphere estimates” (Riding, 2006a).
Later, Kah and Riding (2007) found filamentous and shrub-
like calcified microbes in stromatolites of ca. 1200 Ma, and

calcified microbes

into cells for
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further proposed that these calcified cyanobacteria imply
pCO; levels of <0.36% at ca. 1200 Ma.

Photosynthesis of microbes (especially cyanobacteria)
and CCMs are critical to calcification of microbes, but the
calcification usually takes place in extracellular sheaths
(Riding, 1991a, 2006a; Planavsky et al., 2009) (Fig. 6a).
Couradeau et al. (2012) studied modern microbialites from
Alchichica Lake, Mexico, and found that these
microbialites were mainly constructed by cyanobacteria
(Candidatus Gloeomargarita lithophora gen. et sp. nov.)
that contain 16~26 particles (~270 nm in diameter) of
benstonite (Mg-Ca-Sr-Br carbonate) within their cells
(Fig. 6b). This discovery proves that calcification of
microbes also occurs inside cells, which may help to
understand the geologic record of cyanobacteria (Riding,
2012). It may be, however, difficult to find out the
evidence of intracellular calcification in ancient microbial
carbonates.

3.3 Diagenetic alternation of calcified microbes
Early diagenetic processes (e.g., cementation) can easily

(a) | Calcification:
Formation of Calcified Microfossils

) Internal and external )
N, crystal growth iy

Internal

External ) ]
impregnation

encrustation

Trichome
Sheath

No calcification
Mo agglutination

Agglutination
of sediment grains

No Calcareous
Fossil Preservation

Agglutinated
Stromatolite Formation

Fig. 6. Extracellular and intracellular calcification of microbes.

alter calcified microbes, forming various characteristics,
which may obscure the original features (Pratt, 1984;
Turner et al., 2000; Woo et al., 2008). Pratt (1984) studied
commonly associated calcified microbes, Epiphyton and
Renalcis, from the Paleozoic succession and proposed that
the calcified microbes with various forms and sizes were
not formed by genetically distinct microbes, but resulted
from calcification of coccoid cyanobacteria, controlled by
size variation of microbial colonies, frequency of
calcification, and intensity of cementation. It is for this
reason that Epiphyton and Renalcis were regarded as
“diagenetic taxa” (Pratt, 1984).

Based on the study of the Cambrian Epiphyton in the
North China Platform, Woo et al. (2008) revealed that
some of the Epiphyton show chambered colonies (Fig. 7a).
Chambered Epiphyton resemble Renalcis (Fig. 7b), but
they are still characterized by dendritic structures typical
of Epiphyton, whereas Renalcis are usually composed of
homogeneous micrite (Zhang et al., 1985; Shen et al.,
1997; Woo et al., 2008; Han et al., 2009b). However,
delicate dendritic structures of the chambered Epiphyton

(a) Extracellular calcification pathways and agglutination of microbes (Riding, 1991a). (b) SEM image showing three cyanobacteria cells that contain
spheroidal benstonite from modern microbialites in Lake Alchichica, Mexico (Couradeau et al., 2012).

¥ e S i

Mode of calcification

g &

= Micritic cement
Sparry cement / Intermediate
conditions

Fig. 7. Chambered Epiphyton and Renalcis from the Cambrian of the North China Platform.
(a) Chambered Epiphyton with internal dendritic structures (Woo et al., 2008). (b) Chambered Renalcis with homogeneous micritic texture (Han et al., 2009b).
(c) Different diagenetic pathways and their resultant calcified microbes of chambered Epiphyton (Woo et al., 2008).
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can be obscured by micritic or microsparitic cementation
during early diagenesis (Woo et al., 2008), in which case,
it would be difficult to differentiate chambered Epiphyton
from Renalcis (Fig. 7¢). Chambered Epiphyton also occur
in the Cambrian Series 2 of South China, suggesting that
they can be a common phenomenon (Adachi et al., 2014).

Furthermore, recrystallization and dolomitization during
diagenesis can obscure or eliminate calcified microbes and
form clotted fabric instead (e.g., Kershaw et al., 1999;
Shapiro and Awramik, 2006). Selective dolomitization and
recrystallization could also result in certain microbialite
structures (e.g., branch-like dendroid and speckled
patches) (Howell et al., 2011; Jiang and Wu, 2013).
Detailed microfacies and cathodoluminescence analysis
may help to reveal the diagenetic history of calcified
microbes and better understand the formative processes of
the microbialite structures.

4 Association with Metazoan Reef-builders

Although calcified microbes are able to construct reefs
by themselves, they build reefs together with metazoan
reef builders in many cases during the Phanerozoic (e.g.,
sponges, corals, stromatoporoids, and bryozoans) (e.g.,
Reitner et al., 1995; Kruse and Zhuravlev, 2008; Adachi et
al., 2013; Lee et al., 2014). On the other hand, some of the
metazoan-constructed reefs contain microbial carbonates:
metazoans build the main framework of reefs, baffling
sediment particles, whereas microbes may help encrust
and stabilize the framework of reefs (e.g., Hong et al.,
2012; Wang et al., 2012).

The earliest metazoan-microbial reef that formed during
the Neoproterozoic was mainly constructed by microbial
carbonates with a few metazoans (Adams et al., 2005;
Grotzinger et al., 2005). Followed by the Precambrian
example, the early Cambrian (Terreneuvian and Cambrian
Series 2) archaeocyaths required microbial carbonates to
encrust and stabilize frameworks (Rowland and Shapiro,
2002). Similar trends occur during the Early and Middle
Ordovician, when siliceous sponges, corals, bryozoans,
and crinoids built reefs together with encrusting and
binding calcimicrobes (Great Ordovician
Biodiversification Event) (Webby, 2002; Adachi et al.,
2011). The microbial carbonates were gradually
substituted by metazoan-dominated reefs during the
Middle-Late Ordovician as metazoan encrustors (e.g.,
cnidarian, bryozoan, stromatoporoid, etc.) began to occur
(Webby, 2002; Riding, 2006b; Adachi et al., 2011).

During the later period of the Phanerozoic, microbial
carbonates still persisted within the metazoan-dominated
reefs, although they sometimes resurged and formed pure
microbial-dominated reefs (e.g., Late Devonian—Early

Carboniferous, Earliest Triassic, and Jurassic) (Kershaw et
al., 1999; Lehrmann, 1999; Parcell, 2002; Shen and Webb,
2004b) or metazoan-microbial reefs (e.g., Carboniferous,
Early—Middle Triassic, Jurassic, and Cretaceous) (Reitner
et al.,, 1995; Dupraz and Strasser, 2002; Olivier et al.,
2004; Shen and Webb, 2005). Indeed, microbial
carbonates occupy significant portion in the Phanerozoic
reefs (including modern coral reefs), suggesting that they
played an important role
Phanerozoic reefs (Reitner, 1993; Camoin et al., 1999,
2006; Shen and Wang, 2008; Martindale et al., 2010).

Recent studies reveal that some microbialites contain
reef-building metazoans that are invisible by outcrop or
hand specimen observations (e.g., Hong et al., 2012;
Kwon et al., 2012; Lee et al.,, 2014). For example, the
Furongian (late Cambrian) to Early Ordovician
microbialites are often characterized by maze-like cm- to
dm-scale structures (maceria), which lack apparent
occurrence of metazoan reef builders in the outcrops or
hand specimens (Shapiro and Awramik, 2006; Lee et al.,
2010). Based on detailed microfacies analysis on relatively
well-persevered maze-like (maceriate) microbialites in the
North China Platform, however, Lee et al. (2014) found
abundant sponge spicule networks in the microbialites,
and revealed that the maceria structures were constructed
by  siliceous  sponges, together  with  some
microstromatolites and calcified microbes (Fig. 8). The
discovery of the sponge spicules in the Furongian maze-
like “microbialites” raised a question as to whether
metazoan reef-builders (i.e., sponges) already flourished in
the late Cambrian reefal ecosystem prior to their
diversification during the Great Ordovician
Biodiversification Event (Webby, 2002; Adachi et al.,
2011).

in construction of the

5 Relationship with Mass Extinction Events

The abundancy of microbial carbonates fluctuates in the
geological history, and started to decline from the
Neoproterozoic when metazoans began to occur (Fig. 9a).
It is generally accepted that feeding, disturbance, and
competition for the living niches were ascribed to the
decline of microbial carbonates (Awramik, 1971).
Furthermore, modern microbial-dominated reefs mainly
developed in stressful conditions where diversity of
metazoans is low, such as high-energy conditions (e.g.,
Bahama stromatolites) or high-salinity conditions (Shark
Bay stromatolites). It was suggested that the stressful
conditions limited flourish of metazoans and promoted the
growth of microbes (Garrett, 1970; Sheehan and Harris,
2004; Riding, 2006b).

In Phanerozoic, microbial carbonates mainly flourished
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Fig. 8. Sponge spicules and microbial carbonates in the Furongian maceriate (maze-like) reefs, Shandong, China.

(a) Photograph of a thin section, showing chaotic biogenic maceria structures and micritic inter-macerial sediments. (b) Photomicrograph showing that maceria
structures are composed of sponge spicules (S), microstromatolites (M), and Girvanella (G), whereas inter-macerial sediments consist of micrite with a few
fossil fragments. (c) Evenly distributed sponge spicules in micrite; (d) Lateral occurrence of microstromatolites (M) and networks of sponge spicules (S).

in the aftermath of mass extinction events (e.g., Early
Silurian, Late Devonian—Early Carboniferous, and Early
Triassic) (Sheehan and Harris, 2004; Wang et al., 2005;
Kershaw et al., 2012; Mei and Gao, 2012) (Fig. 9b). These
microbial carbonates are therefore regarded as “disaster
forms” (Schubert and Bottjer, 1992) or “anachronistic
facies” (indicating sedimentary deposits such as microbial
carbonates in the aftermath of mass extinction) (Sepkoski
et al, 1991; Wignall and Twitchett, 1999). All these
phenomena lead to a consensus that flourish and decline of
microbial carbonates are closely related to mass extinction
and resurgence of metazoans, respectively.

However, some fundamental questions were raised with
respect to the relationship between flourish of microbial
carbonates and major geological events. Did flourish of

microbial carbonates in the aftermath of mass extinction
result directly from the mass extinction or from the crisis-
associated paleoenvironmental conditions (e.g., high
temperature and supersaturation of CaCOs;) (Riding,
2000)? Did calcified microbes increase in absolute
abundance in the aftermath of metazoan extinctions, or
conspicuously survive due to decline of some other groups
(Feng et al., 2010)? Whether microbial carbonates begin to
flourish in the aftermath of metazoan extinction or already
become major component in the metazoan-microbial reefs
prior to the extinction (e.g., Shen et al., 2010)?

Indeed, flourish of microbial carbonates during the
Cambrian Explosion, abundant occurrence of calcified
microbes in the Frasnian (prior to the Famennian mass
extinction), and absence of widely distributed microbial
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Fig. 9. Occurrence and abundance of microbialites and microbial carbonates in Earth history (after Riding, 2006b).

(a) Stromatolite diversity (white columns) and reefal microbial carbonate (i.e., carbonate microbialites) abundance (black columns). The smooth gray curve
shows the overall trend of microbialites. Arrows indicate major elements of the overall trend. (b) Relationship between relative abundance of reefal microbial
carbonates (by white columns) and major extinction events (vertical dash lines). The smooth dot line indicates the overall trend of the changes in number of

marine metazoan genera.

carbonates in the aftermath of End-Triassic and End-
Cretaceous mass extinctions collectively suggest that the
abundancy of microbial carbonates in the geological
history is not only related with metazoan competition, but
also affected by other geological factors such as ocean
water pH conditions, Ca”" concentration, and atmospheric
CO, proportion (Webb, 2001; Riding, 2006a). It is for
these reasons that the two interpretive terms
“anachronistic facies” and “disaster forms” should be
avoided when describing the nature of the deposits
(Kershaw et al., 2009).

6 Sequence-stratigraphic and Paleoenviron-
mental Implications

Most of the microbes that account for the formation of
microbialites and microbial carbonates rely on
photosynthesis, which is mainly dependent on sunlight
(controlled by water depth and clarity) and nutrient (riverine
influx and oceanographic perturbation). Microbialites and
microbial carbonates are also greatly affected by drowning
of carbonate factory, submarine erosion, siliciclastic input,
and subaerial exposure; all of these factors are closely
related to relative sea-level changes (Tucker, 1977;
Grotzinger, 1989; Sami and James, 1994; Kershaw et al.,
1999; Whalen et al., 2002; Adams et al., 2005; Grotzinger et
al., 2005; Chen et al., 2012; Lee et al., 2012).

Microbialites and microbial carbonates can form
various texture and structures in response to sea-level
changes (e.g., Parcel, 2002). During relative sea-level fall,

development of microbial carbonates stops due to
inadequate accommodation space; instead, karstification
may develop as a result of subaerial exposure (Myrow et
al., 2003). During initial transgression, exposed carbonate
platform is submerged again. Relatively small microbial
buildups may develop on the flooded topographic highs
(Turner et al., 1997; Kershaw et al., 1999; Chen et al,,
2011) (Fig. 10a). With subsequent transgression, rate of
relative sea-level rise becomes greater than the growth rate
of microbial carbonates, resulting in water depth
deepening, which may drown the microbial carbonates.
When the growth rate of microbial carbonates keeps up
with the sea-level rise, thick microbial carbonates form
instead (e.g., marginal reef) (Turner et al., 1993). During
sea-level highstand, microbial carbonates keep up with
sea-level rise and expand laterally, forming relatively
extensive microbial flat or reefs, e.g., biostromal
microbialites (Lee et al., 2012) (Fig. 10b). In some cases,
microbialites may catch up rapid sea-level rise, forming
domal megastructures (Lee et al., 2012; Mercedes-Martin
et al., 2013) (Fig. 10b). Growth, flourish, and termination
of microbial carbonates can, therefore, indicate relative
sea-level changes in many cases.

Texture and morphologies of microbialites and
microbial carbonates are largely dependent on the water
depth and associated environmental conditions (Southgate,
1989; Turner et al., 1997; Parcel, 2002; Jahnert and
Collins, 2011; Tang et al., 2013). In fact, same types of
microbial carbonates (e.g., stromatolites or thrombolites)
with various texture and structures may indicate various
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Fig. 10. Microbialites in response to relative sea-level changes.

(a) Photograph and line drawing of small thrombolitic microbial buildups (early Furongian) developing on a submerged subaerial unconformity during initial
transgression, Jinan region, Shandong, China (Chen et al., 2011). (b) Thick (~15 m) and laterally extensive (tens of km in distance) flat-bedded and domal
microbialites (middle Furongian) developed during sea-level highstand and subsequence sea-level rise, respectively (Jinan region, Shandong, China) (Chen et

al., 2012).

water depth and hydraulic conditions (e.g., Mei, 2007;
Tang et al., 2013). For example, microbial laminites can
form in either deep-water settings (Mei, 2007) or shallow-
water settings (inter- to supratidal flat) (Lee and Chough,
2011). These microbial laminites, however, have different
features: deep-water laminites have relatively flat and
continuous laminae, whereas shallow-water ones
commonly contain desiccation cracks and tepee structures.
As another example, based on detailed meso- to macro-
scale observations on Mesoproterozoic thrombolites in the
North China Platform, Tang et al. (2013) revealed that the
domal structures formed in lower subtidal zone, whereas
tabular structures developed in upper subtidal zone.
Therefore, we can only interpret the depositional settings
and hydraulic conditions of microbialites and microbial
carbonates based on detailed facies analysis (texture,
sedimentary structures, geometry, etc.) and stratigraphic
correlation.

7 Conclusions

Microbialites  and  microbial  carbonates  are
organosedimentary deposits that result from a complex
interaction among physical, chemical, and biological
processes. They are characterized by simple chemical
composition (mostly CaCOs) and various complex texture
and structures, and thus bear important geological
implications. Recent years, microbialites and microbial
carbonates have become the focus of carbonate
sedimentology and many progresses have been achieved
with respect to classification and nomenclature, formative
processes, and relationship with metazoan reef-builders
and major geological events. There are, however, still
many questions left unsolved. In order to promote the
advance of studies on microbialites and microbial
carbonates, it is highly necessary to carry out integrated
studies including detailed sedimentary facies and
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microfacies analysis, paleontology and paleoecology,
integrative stratigraphy, and geochemistry.
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