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Abstract: Spectrogram analysis of seven natural gamma-ray logging of Member 1 of the Qingshankou
Formation (K,gn') and Member 1 and 2 of the Nenjiang Formation (K,n'?) of Late Cretaceous age in
the Songliao Basin reveals sedimentary cyclicities controlled by Milankovitch climate periodicities.
The recognition of Milankovitch cycles allows estimation of an average accumulation rate of ~7.55-
8.62 cm/ka for the qun1 sections, and ~6.69-10.16 cm/ka for the Kznl'2 sections. Two marine
transgression events occurred during the deposition of K,gn' and K,n'? and their ages are at ~0.74—
1.10 Ma and ~2.38-4.84 Ma, respectively. Identification of Milankovitch cycles from fine-grained deep
lake sedimentary rocks in the Songliao Basin may provide great potential for high-resolution

stratigraphic subdivisions and correlations.
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1 Introduction

The Cretaceous climate was an extreme greenhouse
climate (Huber et al., 2002; Wilson et al., 2002).
Understanding the controlling factors of Cretaceous
climate change has important implications not only for
rebuilding the Cretaceous climate history but also for
predicting the future greenhouse climate change (Wang,
2006). As a global climate change model, Milankovitch
theory provides a reasonable interpretation for the driving
mechanisms of Quaternary glacial-interglacial cycles
(Milankovitch, 1941; Berger, 1988). Many studies
indicated that Milankovitch climate forcing was
significant in Cretaceous (Stage, 1999, 2003; Prokoph et
al., 2001; D’ Argenio et al., 2004; Niebuhr, 2005; Latta et
al., 2006). With the strong greenhouse climate dominated
in Cretaceous, even the third order sea-level changes in the
Cenomanian stage might be driven by the long eccentricity
cycle (400 ka) (Gale et al., 2002). Van der Zwan (2002)
suggested that the impact of Milankovitch-scale sediment
supply is expected to be more significant in the absence of
significant sea-level fluctuations in a greenhouse world.
However, few studies so far have recognized Milankovitch
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climate changes from terrestrial sedimentary basins,
preventing a better understanding of the Cretaceous global
climate change (Kump and Arthur, 1999).

The periods parameters
(Milankovitch climate forcing) cause climate change
periodically on earth, which results in sedimentary cycles
expressed by periodicities in sedimentary structure,
lithology, lithofaces, and geophysical and geochemical
properties of sedimentary strata (Berger and Loutre, 1994;
Schwarzacher, 2000). High-resolution and continuous
geophysical logs are commonly applied to analyze
Milankovitch cycles in lithologically homogeneous deep
water strata and to identify the duration of geological
events (Rampino et al., 2000; Prokoph et al., 2001; Stage,
2003).

As one of the largest Cretaceous terrestrial basins in the
world, the Songliao Basin preserves perhaps the most
complete Cretaceous sedimentary record to study the
Cretaceous geological events (Wang, 2006). In order to
understand whether Milankovitch climate forcing had
influences on the Cretaceous lacustrine deposits in the
Songliao Basin, we have conducted a detailed spectral
analysis on seven natural gamma-ray logging of Member 1
of the Qingshankou Formation (K,gn') and Member 1 and

of astronomical orbital
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Fig. 1. (a) Location of the Songliao Basin in northeastern China; (b) Sketch map of structural zones in the Songliao Basin
and locations of the study wells; (c) Generalized stratigraphy of upper Cretaceous in the Songliao Basin (age data according

to Wang et al., 1995).

2 of the Nenjiang Formation (K,n'?) of Late Cretaceous
age in the central depression and west slope of the
Songliao Basin. The study reveals clear Milankovitch
cycles in these strata, which can be used to calculate the
average sedimentary rate and duration of two major
marine transgression events.

2 Geological Setting

The Songliao basin in northeastern China is one of the
largest Mesozoic continental basins formed during rifting
(Fig. 1a). The tectonic evolution of Songliao Basin can be
divided into four phases: (1) Late-Jurassic thermal rise and
rift phase, (2) Early Cretaceous stretching fault phase, (3)
middle Early-Cretaceous thermal subsidence depression
phases, and (4) Late Cretaceous structural inversion phase
(Liu, 1996; Chen et al., 1996; Hu et al., 1998). According
to the characteristics of rises and depressions, the Songliao
Basin can be divided into six first-order tectonic units:
central depression zone, north plunge zone, west slope
zone, northeast uplift zone, southeast uplift zone, and
southwest uplift zone (Gao et al., 1994; Li and Guo, 1998)
(Fig. 1b). The basement of the Songliao basin consists of

pre-Paleozoic and Paleozoic metamorphic and igneous
rocks. Unconformably overlying the basement, ~4000 m
thick Mesozoic and Cenozoic terrestrial strata are
unevenly distributed across the basin (Gao et al., 1994).
Early to middle Late Cretaceous was the time of the
largest extension for the Songliao Basin and thus the strata
of this age are ideal for studying the sedimentary
responses to paleoclimate change in a terrestrial basin.
Strata of this age in the Songliao Basin are dominated by
fluvial and lacustrine clastic rocks with volcanic and
volcanoclastic layers. The Upper Cretaceous strata, in an
ascending order, includes the Qingshankou, Yaojia,
Nenjiang, Sifangtai, and Mingshui formations (Fig.1c).
Two large scale marine transgression events occurred
during the deposition of Member 1 of the Qingshankou
Formation (K,gn') and Member 1 and 2 of the Nenjiang
Formation (K,n'?). These marine transgressions caused
extensive anoxic events in the basin (Gao et al., 1994,
Huang et al., 1998). The Kgqn' and Kznl'2 sections, which
are composed of thick black mudstone, shale and silty
mudstone, are also the most prolific petroleum source rock
units in the basin (Gao et al., 1994; Huang et al., 1998).
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3 Data and Methods

Natural gamma-ray logging consists of measuring in
boreholes the intensity of the gamma ray emitted during
the decay of the atomic nuclei of radioactive elements
contained in a stratigraphic sequence (Liu et al., 2001).
The intensity of gamma-ray is related to the amount of
YK, *Th and **U in rocks. Clay and organic particles
have strong capacity for absorbing the radioactive
elements. Small grain size and slow deposition rate of
clay-size particles allow that the radioactive element have
enough time to separate from fluid. The gamma-ray
logging curves can therefore reflect the change of the
amount of muddy and organic materials in sediments, both
of which are sensitive to the controlling factors such as
climate changes. Thus Gamma-ray logging has been
widely used to reconstruct the paleoenvironment and
paleoclimate (Liu et al., 1999; Liu et al., 2001; Chen et al.,
2004) and to study the Milankovitch cycles (Li, 1996;
Rampino et al., 2000; Prokoph et al., 2001; Stage, 2003;
Li et al., 2005).

Deep water sedimentary successions can often preserve
a more complete record of orbital cycles than shallow-
water successions (Gale et al., 2002). To ensure a
continuous stratigraphic record, we conducted gamma-ray
logging of the K,gn' and K,n'? sections from six wells in
the central depression zone and 1 well in west slope zone
(Fig.1b). The seven wells extend from east to west for
about 300 km (Fig.1b).

Spectrogram analysis, which can estimate the frequency
for the signal of periods, was used to analyze the
Milankovitch cyclicity signals in sedimentary strata
(Rampino et al., 2000; Prokoph et al., 2001; Stage, 2003;
Niebuhr, 2005; Latta et al., 2006). In this study,
spectrogram analysis was performed with REDFIT
software package (Schulz and Mudelsee, 2001).

4 Results and Discussion

4.1 Results of Milankovitch cycle analysis

According to the Milankovitch theory, earth orbital
parameters include eccentricity, obliquity and precession
(Milankovitch, 1941). Eccentricity frequencies are thought
to have remained constant through geologic time, whereas
obliquity and precession frequencies are dynamic and
variable through time (Berger and Loutre, 1994). In the
late Cretaceous, these orbital frequencies were ~10%
shorter than the present. Major Milankovitch periodicities
include long (E;=405 ka) and short (E,=123 ka and E;=95
ka) eccentricity, obliquity (0O,=51.2 ka and O,=39.4 ka)
and precession (P,=22.5 ka and P;=18.6 ka) (Berger and
Loutre, 1994).

One of the best ways to identify whether the observed
cycles in sedimentary strata are controlled by astronomical
forcing is to compare the relative ratio of the observed
cycles with the relative ratio of the Milankovitch cycles. If
they are similar, it would likely indicate that the periods of
astronomical forcing controls the periodicities in the strata.

The spectral analysis is performed on the data while it is
still on a depth scale, so that the peaks in spatial frequency
can be determined. Cycle thickness can then be calculated
because it is the inverse of the spatial frequency. The
power spectra of gamma-ray data from the seven wells is
shown in Fig. 2, which indicate that all the natural
gamma-ray profiles show significant periodicities. For
example, spectral analysis on the well Gu692 gamma-ray
logging of K,gn' indicates that 19 frequency peaks are
present (Fig. 2c¢), and the ratios of cycle thickness for the
six main peaks are 10.60 : 8.25 : 4.39 : 3.39 : 1.81 : 1.57
(m). These ratios are similar to the ratios of the long
periods of Milankovitch forcing during Late Cretaceous
(123 : 95 : 51.2 : 39.4 : 22.5 : 18.6). Therefore, the six
major spectral peaks are considered to be caused by
eccentricity (123 ka and 96 ka), obliquity (51 and 39.4 ka),
and precession (21.2ka and 18.2 ka), respectively. The
strata thickness of qun1 from well Gu692 is 74.0 m,
which record 8.97 short eccentricity (E;) cycles. Based on
the duration of individual Milankovitch cycles, the
average sediment accumulation rate can be estimated as
8.62 cm/ka and the duration of qun] as 0.86 Ma (Table 1,
Fig. 2c). Assuming a stable tectonic setting and constant
accumulation rates during this time period, average
sedimentation rate of 7.55-8.62 cm/ka and 6.69-10.16 cm/
ka can be estimated for the Upper Cretaceous Kogn' and
K,n'? sections in the Songliao Basin, respectively (Table
1). The dominance of long-period eccentricity signals in
gamma-ray logging of the Kon'? section indicates that it
may provide a new tool for high-resolution stratigraphic
correlation for the Cretaceous terrestrial strata across the
Songliao Basin (Fig. 2 h-1, Table 1).

4.2 Estimation for the duration of marine
transgression events

Many studies indicated that marine transgressions
occurred in the Songliao Basin during late Cretaceous.
Fossil remains of euryhaline organisms such as bivalves
(Gu et al., 1976), fishes (Zhang and Zhou, 1978),
dinoflagellates (Gao et al., 1992), and nannofossils (Ye
and Wei, 1996) were found in the Kznl'2 sections. Liu and
Wang (1997) found brackish to fresh-water argillaceous
dolomite  concretions in  the Kznl'2 sections.
Paleontological and organic geochemical studies (e.g.,
Hou et al., 2000) provided additional evidence for marine
transgression events during the deposition of the K,gn'
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Fig. 2. Spectrogram analysis of gamma-ray loggings of the Kogn' (a-g) and Kon'? (h-1) sections in the Songliao Basin. Also
shown is calculated red-noise (dashed line) variance of power spectrum.

and Kon'? It has also been suggested that marine 2000; Li and Pang, 2004).
transgression events played an important role in the It is difficult, however, to precisely estimate the
formation of prolific petroleum source rocks (Hou et al., duration for the two massive marine transgression events
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Table 1 Milankovitch cycles and thicknesses from gamma-ray loggings of the qun1 and K,n'? sections in
the Songliao Basin

Cycle thicknesses (m)

Well Thickness (m) Eccentricity Obliquity Precession D?ﬁg)o " Arzfeu tr;t;i;i]i;(;n
Es(ka) Ex(ka) Eij(a Ox(ka) Oika) Pr(ka) Pi(ka)
Orbital Cycles (ka/cycle) 400 123 95 512 39.4 22.5 18.6 - -

Member 1 of Qingshankou Formation (qun])

A0901 89.5 - 9.97 4.27 - 1.82 1.52 1.10 8.11
Cycle ratio - 123 52 - 22.5 18.7

Chao503 76.0 - 9.52 4.00 3.05 1.67 1.47 0.98 7.74
Cycle ratio - 123 51.6 39.4 21.6 18.9

Gu692 74.0 - 10.60 8.25 4.39 3.39 1.81 1.57 0.86 8.62
Cycle ratio - 123 96 51 394 21.2 18.2

Mao701 74.0 - 9.28 7.42 - - 1.81 - 0.98 7.55
Cycle ratio - 121 96 - - 23.5 -

Mao702 75.0 - 9.39 - - 2.93 1.77 1.47 0.98 7.63
Cycle ratio - 123 - 38.4 23 19.3

Mao805 64.0 - 9.20 4.02 3.06 1.74 1.50 0.83 7.67
Cycle ratio - 120 52 39.6 22.5 19.4

Ta281 61.5 - 10.27 4.30 3.27 1.76 1.55 0.74 8.34
Cycle ratio - 123 515 39.1 21.1 18.6

Member 1 and 2 of Nenjiang Formation (Kon'™)

A0901 330.5 27.56 8.48 - 2.73 1.56 1.31 4.80 6.89
Cycle ratio 400 123 - - 39.6 22.5 19

Gu692 357.5 29.90 9.17 7.02 3.68 3.00 1.65 1.35 4.84 7.38
Cycle ratio 405 124 95 49.8 40.6 223 18.3

Chao503 260.0 28.8 8.13 6.72 3.65 - 1.61 1.35 3.67 7.08
Cycle ratio 407 115 95 51.5 - 225 19.0

Mao805 303.0 26.5 - 6.35 - 2.64 1.53 1.27 4.53 6.69
Cycle ratio 396 - 95 - 39.4 22.8 19

Ta281 241.5 40.51 12.55 9.64 - 4.02 225 1.96 2.38 10.16
Cycle ratio 400 123.5 95 - 39.6 22.2 19.3

due to (1) the lack of materials appropriate for precise age
dating in the black shale and mudstones of the
Qingshankou and Nenjiang Formations and (2) the
difficulty for age determination and correlation between
terrestrial and marine fossils. Gao et al.(1994) suggested
that the age of the two marine transgressions are
Cenomanian and late Turonian—early Coniacian. Based on
the K-Ar ages from mudstones, Wang et al.(1995)
proposed that the Qingshankou Formation is Cenomanian
—Turonian in age and estimated the duration of the Kygn'
section to be ~3 Ma. Rb-Sr ages from carbonate rocks
indicated that the Nenjiang Formation is most likely
Campanian and the duration of the Kznl"2 section is ~4
Ma, while carbon isotope data from the Qingshankou
Formation preferred a Cenomanian age (Wan et al., 2005).
Taking the later suggestion, the age for the first member of
the Qingshankou Formation is early Cenomanian.

Based on the spectral analysis and duration of
Milankovitch cycles, we estimate that the marine
transgression recorded in the Kznl"2 section lasted ~2.38-
4.84 Ma, which is consistent with the estimation of Wang
et al. (1995) and Wan et al.(2005). However, the duration
of the marine transgression recorded by Kygn' section is
~(0.74-1.10 Ma, which is nearly half of the estimation of
Wang et al.(1995).

5 Conclusions

(1) Spectral analysis of the gamma-ray logging of the

qun1 and Kon'? sections indicate that Milankovitch
climate forcing controlled the sedimentary cycles during
Late Cretaceous in the Songliao Basin. The clear signal for
Milankovitch cycles in gamma-ray logs may provide a
new tool for high-resolution stratigraphic subdivisions and
correlations of the Cretaceous terrestrial strata in the
Songliao Basin.

(2) The duration of marine transgression events
recorded in Member 1 of the Qingshankou Formation
(Kagn') and Member 1 and 2 of the Nenjiang Formation
(Kon'?) are ~0.74-1.10 Ma and ~2.38-4.84 Ma,
respectively.
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