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Abstract Based on the assumption of the plain-strain problem, various optimization or random search methods have
been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to
the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip
surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of
a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this
study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D
slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no
apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.
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1 Introduction

With the advent of computers, optimization techniques
and the Monte Carlo-based random search method have
become feasible tools for identifying the critical sliding
surface in the slope stability analysis (Baker, 1980; Arai
and Tagyo, 1985; Nguyen, 1985; Li and White, 1987; Chen
and Shao, 1988). A dynamic programming was proposed
by Baker (1980) for locating the critical slip surface by
using Spencer’s method for calculating the safety factor of
a slope. A combined approach (Chen, 1992) uses the
random search and the method of optimization to find an
estimate of the global minimum.

Greco (1996) used Monte Carlo-based techniques of the
random walk type to locate the critical slip surface. Such
Monte Carlo-based techniques can be regarded as a direct
search approach, which requires calculation of only safety
factors and derivatives are not necessary. A new search
procedure in generating kinematically admissible slip
surfaces was introduced by Malkawi et al. (2001), in which
the critical global slip surface as well as its associated
safety factor can be determined, and several practical cases
have demonstrated the efficiency and capability of the
method. Combining the simplified Janbu (1973) method
with the principle of optimality, Zhu (2001) proposed an
efficient tool for locating the critical slip surface.

All these methods are only used for 2D slope stability
analysis, in which an idealized plane-strain section is

selected for analyzing the safety factor of a slope and for
locating the 2D critical slip surface. However, any slope
failure has a three-dimensional geometry, so it is more
rational to treat the slope three-dimensionally for locating
the critical slip surface.

Increasing attention has been directed towards the issue
and the application of 3D models for assessing slope
stability and several 3D analyses have been proposed in
geomechanical literature (Hovland, 1977; Chen and
Chameau, 1983; Hungr, 1987,1994; Gens et al., 1988;
Leshchinsky and Huang, 1992; Lam and Fredlund, 1993;
Chen et al., 2001). Most of the 3D methods use a column-
based method, in which the differential method is
employed to analyze the integration equation of the 3D
safety factor by evenly dividing the study area into square
columns. Deduced from Hovland’s (1977) model, a
column-based 3D model will be used for calculating the
safety factor in this study. In this model, pore water
pressure is considered, and all input data can be easily
given in a grid-based form by using the GIS (geography
information system) spatial analytical function (Xie et al.,
2003).

A simple 3D search method based on the Monte Carlo
simulation method is presented here, which assumes the
initial slip surface to be the lower part of a slip ellipsoid.
The 3D critical slip surface in 3D slope stability analysis is
identified by means of a minimization of the 3D safety
factor calculated by using the 3D column-based slope-
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stability analysis. Some practical cases of known minimum
safety factors and critical slip surfaces based on 2D
optimization or random techniques are extended to 3D
problems in this study to locate the 3D critical slip surface
and a comparison was done between the results in these
cases with those in 2D cases.

2 Random Variables for Monte Carlo
Simulation

For detecting the 3D critical slip surface, a search is
performed by means of a minimization of the 3D safety
factor using the Monte Carlo random simulation method.
The initial slip surface is assumed to be the lower part of an
ellipsoid slip, and then each randomly produced slip
surface is changed according to the strength of different
strata and conditions of weak discontinuities. Finally, the
critical slip surface will be obtained and, consequently, a
relative minimization of the 3D safety factor can be
achieved.

The object for locating the critical slip surface is fulfilled
by trial searching and calculation of the 3D safety factor.
Five parameters related to the size and posture of an
ellipsoid are selected as random variables for the Monte
Carlo simulation: three axial parameters a, b and ¢, central
point C and inclination angle € of the ellipsoid (Fig. 1).If a
random produced slip surface is lower than a weak
discontinuous surface or the confines of a hard stratum, the
weak discontinuity or the confine surface of the hard
stratum will be selected as one part of the assumed slip
surface. Figure 1 shows that an assumed slip surface is
composed of part of the ellipsoid and part of the weak
discontinuity.

2.1 Three axial parameters of ellipsoid
The geometrical parameters a, b and ¢ of an ellipsoid are
randomly selected in a certain range as in Equation (1):
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where a, b and c are assumed to have uniform distribution.
From Fig. 1 it is clear that the length of a landslide is equal
to 2a, SO amay 1 set to be half of the search limit L. 2b is the
width of the landslide. If the ratio of b/a can be set, the
range of b can also be limited. By analyzing the
characteristics regarding the scale of the past 40 landslides
in Japan (Fig. 2 shows the distribution of b/a), it can be seen
that the average value of b/a is about 0.8. Therefore, the
ratio of b/a is set to be the mode (0.8) of the distribution
(Fig. 2) in the following case studies. The value of c is a

possible depth of the landslide and its range limit can be set
by referring to geotechnical information. For randomly
selecting all possible slip surfaces, ranges of a and b are set
based on Equation (2) (considering the possible range of
sliding mass and assuming the minimum search limit to be
L/1.5).

amax=L/2, Gmin=admax/15
2
bmax=08a max, Pmin=bmax/15 @

The above range is only taken as a guide for setting the
size range of the ellipsoid. No doubt the range can also be
set according to the characteristics of a certain slope.

2.2 Central point of ellipsoid

Central point C of the ellipsoid is firstly set at the
centriod of the search limit or a researcher-selected point,
and then in each trial searching, random walk will change
the central point. A random walk direction is one of the
eight directions shown in Fig. 3 and is calculated with
Equation (3):

dir = (8Rnd(i)+1)Mod8 3)
where dir=1, 2, ..., 8 is one of the eight random walk
directions, i is an integer. The walk step is set to be a length
of one grid (a square cell of a column) in the following case
studies.

2.3 Inclination angle of ellipsoid

The inclination of the ellipsoid agrees with the direction
of the slope and the inclination angle @ of the ellipsoid is
equal to the slope angle. If a slope has complicated
topographic characteristics, the inclination of the ellipsoid
is set to be the average inclination of the slope as shown in
Fig. 4. Since the inclination of the ellipsoid cannot be
steeper than that of the slope, the maximum value of 6 is
equal to the average slope angle AvrSlope, and its minimum
value is set to be 0.5 AvrSlope for more possible slip
surfaces.

2.4 Production of Monte Carlo random variables

The above five parameters are selected as the random
variables for Monte Carlo simulation, and the random
variables are assumed to have uniform distribution. Each
random variable with uniform distribution is calculated by
using a random variable in a range of [0, 1] and is obtained
with the method of multiplicative congruity:

yi= ayi,iMod(m) )]

rn=yi/m
where a = a constant (positive integer), m = module, r;, =
random variable with uniform distribution in a range of [0,
1]. By setting an initial value of y,, each random variable r;
can be obtained. The random variable in a range of [a, b] is
then calculated based on Equation (5),
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xi=rib-a)+a &)
where x; = random variable in a range of [a, b].

3 Computational Strategy

For critical slip surface searching, random variables are
firstly produced with the Monte Carlo simulation, and each
slip surface is calculated on the basis of GIS grid-based
data. Then the 3D safety factor for each random trial can be
calculated with a GIS grid-based 3D model. Figure 5 is the
flow chart for locating the 3D critical slip surface and
calculating the associated 3D safety factor. Based on the

Search limit (L)

Fig. 1. Ellipsoid for slip surface.

Fig. 3. Eight directions of random walk.

range of the five random variables, each random sample is
produced by the Monte Carlo random variable producer,
and the central point of the ellipsoid is determined by
random walk. Through these random samples for detecting
the slip surface and calculating the 3D safety factor, the 3D
critical slip surface and the associated safety factor can be
obtained based on the minimum safety factor obtained with
n times of calculation.

For critical slip identification, a test to find a suitable
number of times for the Monte Carlo random calculation
was performed, in which the frequency of trial calculation
was up to 1000. The change of the minimum 3D safety
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Fig. 2. Distribution of width/length of the 40 past landslides.
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factor of each trial calculation shows that the minimum
safety factor can be generally obtained after about 100 trial
calculations are performed. In the following case studies
the number of times for the calculation is set to be 100.

3.1 Coordinate conversion of the ellipsoid

The initial slip surface is assumed to be the lower part of
a slip ellipsoid, and the inclination of the ellipsoid is in
agreement with the average direction of inclinations over
the whole study area. The inclination angle of the ellipsoid
is basically set as the main inclination angle (slope angle)
of the study area with certain fluctuations. The main
direction of inclination & and the main inclination angle &
are determined by the main values of all pixels in the slope
failure area (for a simple slope, «is the inclination direction
and @is the slope angle). Let

si=sing, c1=cosq, s;=sin6, c,=cosf 6)
then the coordinate conversion can be done with equations
(7) and (8). Figure 6 shows the process of the coordinate
conversion.

Table 1 Minimum safety factor of case 1

Method Range of safety factor
(a) Yamagami and Ueta (1988)

BFGS 1.338

DFP 1.338

Powell 1.338

Simplex 1.338-1.438
(b) Greco (1996)

Pattern search 1.327-1.33

Monte Carlo 1.327-1.333
(c) Husein Malkawi et al. (2001)

Monte Carlo

(Random walk) 1238
(d) This study (3D)

Monte Carlo (3D) 142

Table 2 Minimum safety factor of case 2

Method Range of safety factor
(a) Sridevi and Deep (1991)
RST-2 0.401
(b) Greco (1996)
Pattern search 0.388
Monte Carlo 0.388
(c) Husein Malkawi et al. (2001)
Monte Carlo 0.401
(Random walk)
(d) This study (3D)
Monte Carlo (3D) 0.463
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where x, y, z refer to the world coordinates; x”, y”, 27 ,
local coordinates; xo, yo, 2o, the central point of the ellipsoid.

3.2 Determination of Z value and inclination angle of
the slip surface

The Z value (elevation) of point “B” of the slip surface is
determined in terms of the solution of the equation of line
AB and the ellipsoid as below (see Fig. 7).

X—x9 _Z2—20

sin(@) cos(8)

Yy=X0 9
2 2

x y z

—+ +—=1
20,2 c2

For each pixel, the direction of inclination and the angle
of the slip surface are calculated with the following
equations, and the inclination of pixel (j, i) is calculated
based on the Z values of points 1 to 4 in Fig. 8 (Zhou et al.,
2001; Xu et al., 2002a; Xu et al., 2002b).

The elevation values of points 1 to 4 are calculated with
equations (10) to (12), and the direction of inclination and
angle of slip surface are calculated by means of equation
(13).

Z1=[Z(, D)+ Z(G+ L)+ Z(j-Li-D+Z(j,i-1]/4
Zy =[Z(G D)+ Z(i+ D+ ZG+Li+ D)+ Z(j+1i)/4
Zy=[Z(j.)+Z(i-D+Z(j-Li-D+Z(j-1d1/4 (10)
Za=[ZG D)+ Z(G =L+ Z(j-1i+ )+ Z(j,i+ D]/ 4

Z1=0BZ1+Z2+Z3-2Z4)/4
Zy=(Z1+3Z2-23+2Z4)/4

Z3=(Z1-Z2+3Z3+Z4)/4 (1
Z4=(-Z1+Z2+Z3+3Z4)/4
a; =Zy -2
b, =Z3-Z; (12)
‘ 2 2
tan9=-——————‘———aZ *by
d
(13)

—a
tan @y =—=
Z
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where Z(j, i) is the Z value of pixel (j, i); 6, the inclination
angle; oy, the direction of inclination. When the highest
point is point 4, the direction of inclination is 90+ ¢;; when
the highest point is point 3, the direction of inclination is
90—y, when the highest is point 2, the direction of
inclination is 270—ag; and when the highest is point 1, the
direction of inclination is 270+ .

4 Case Studies

Case 1

Case 1 is a homogeneous slope (Fig. 9), which has been
studied by numerous researchers. For example, Yamagami
and Ueta (1988) used nonlinear programming methods to
search for the critical slip surfaces, Greco (1996) employed
the Monte Carlo and pattern search methods to locate the
critical slip surface, and Malkawi et al. (2001) used the
Monte Carlo method of the random walk type for
identifying the critical slip surface.

In this study, the case is extended to a simple 3D problem
with the same profile and the same geomechanical
parameters as those used in the above 2D cases. The study
area of 25 m x 40 m is divided into 4000 square grid cells
(the cell size is 0.5 m) for the GIS spatial analysis. All data
relating to the 3D slope stability analysis are based on the
grid column. Figure 9 shows the critical slip surface and its
3D safety factor on a 2D profile and in a 3D view. Table 1
summarizes the 3D results obtained here in comparison
with 2D results by different researchers. The minimum 3D
safety factor is based on 100 times of the Monte Carlo
simulation, and the distribution of the 3D safety factor is
shown in Fig. 10. The minimum value is 1.42, and the mean
and the mode of 100 safety factors are 1.74 and 1.75

Z' Zv Z")
‘1? ¥‘ ﬂ\,' Y"

X e— =X

X"

2. Rotation around O

'2' O 'X' pointing to 2, ‘I'{o't'ation z'\:m'l'{]d O )
azimuth direction Y o O X. pointing
to dip direction
Z

7 1. Translation

Y

Fig. 6. Coordinate conversion process.

respectively. It is clear that the 3D safety factor is higher
than those of the 2D results.

The ratio of b/a, or the ratio of the width to the length of
the search limit, is set to be 0.8 for the Monte Carlo
simulation in the case studies, and the size of the ellipsoid is
randomly changed in the range of the search limit. In this

Search limit
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0€(6 mimw 6.)n
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Fig. 5. Flow chart for locating critical slip surface.
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3D safety factor, S F'; fi)
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Fig. 7. Calculation of the Z value of slip surface.
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case study, for explaining the relationship of b/a and the
critical 3D safety factor, different b/a ratios are selected for
locating the critical slip and calculating the 3D safety
factor. Figure 11 shows the change of the minimum 3D
safety factor with increasing b/a. It can be seen that the 3D
safety factor increases sharply with the decrease of bla
when the ratio of b/a is smaller than 0.8, and that the 3D
safety factor decrease slowly with the increase of b/a and
finally approaches a 2D safety factor when the ratio of b/a
is larger than 0.8. This implies that along with the increase
of b/a, the problem of 3D safety factor calculation is
approaching a 2D problem.

Case 2
In this case, a weak layer is sandwiched between two

(5-1, i+1
4
G, i+1) P(‘].’fei)l
1 3]
G+1,1)
X
Fig. 8. Calculation of inclination of slip surface.
7
)
SF, =142 &

c=9.8kPa, $=10°
y ‘

Fig. 9. Critical slip surface of case 1.

strong strata (Fig. 12). The geotechnical properties of layers
1 to 3 are angles of friction 12°, 5° and 40°, cohesions 29.4,
9.8 and 294.0 kPa, respectively. The unit weight is 18.82
KN/m’ for all three layers. This case has been studied by
Arai and Tagyo (1985) using Janbu’s simplified method in
combination with the conjugate gradient method, Sridevi
and Deep (1991) using the random search technique RST-2
to locate the critical slip surface, and Greco (1996) and
Malkawi et al. (2001) who did identification of the critical
slip surface.

This case is extended here to a 3D slope with the same
geotechnical properties as used in the above 2D cases. The
area for the 3D slope analysis is 90 mx96 m, which is
managed by the GIS grid data with a cell size of 0.5 m.
Three grid data layers represent the ground surface and the

20 —
Safety Factor
16 — Min = 1.42
] Max =2.29
o Mode = 1.75
E 12 — Mean = 1.74
FO
=
1
g‘ 8 — /
[
4 —
0 |
1 1 1 1 T | T T T Ll

14 15 16 1.7 1.8 1.9 2 21 22 23 24

3D safety factor

Fig. 10. Distribution of safety factor of 100 times of
calculation in case 1.
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1.7

SF;

1.6

B3 —T—T 7T 7T T T T 1T T T T
04 0.8 1.2 1.6 2 24 28

width length (b/a)

Fig. 11. Minimum safety factor and ratio of width/length.
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interfaces of strata, and are handled by a grid-based 3D
slope model. Figure 12 shows the critical slip surface in a
2D profile and Fig. 13 shows a 3D view of the critical slip
surface. Based on 100 times of the Monte Carlo simulation,
the minimum 3D safety factor was obtained, which is
0.463. The distribution of all these 3D safety factors is
illustrated in Fig. 14, and the mode and the mean are also
shown in this figure. Table 2 summarizes the 2D results
obtained by different researchers and the 3D result of this
study. The value of the 3D safety factor is about 15%
higher than those of the 2D results.

Case 3

The profile of case 3 is shown in Fig. 15 and the case is
related to a slope with an underlain hard stratum whose
surface is a weak discontinuity. The geotechnical properties
of layers 1 to 4 are respectively: angles of friction 35°, 25°,
30° and 16°; cohesions 9.8, 58.8, 19.8 and 9.8 kPa; and unit
weights 19.6, 18.62, 21.07 and 21.07 kN/m>. This case was

Greco (1996)
35k _ e
SF,,=0.463 (D
4
g ’
4
Z
15 -
3D critical slip surface
of this study
3 1 1 L 1
0 18 24 48 72 96
(m)

Fig. 12. Critical slip surface and profile of case 2.

304

first analyzed by Chen and Shao (1988) using nonlinear
programming methods such as DFP, simplex, and steepest
descent. The case was also studied by Greco (1996) using
the Monte Carlo method, Malkawi et al. (2001) using the
Monte Carlo method of the random walk type, and Zhu
(2001) employing the CSF method.

This 2D case is also extended to a 3D slope here, which
is analyzed by using a GIS grid-based 3D model and the
Monte Carlo simulation for locating the 3D critical slip
surface. The area for the 3D slope analysis is extended to
240 m in length and 192 m in width. The 3D slope is
digitally represented by five GIS grid layers with a cell size
of 2 m. The five grid data layers represent the ground
surface, three interfaces of strata and the underground
water level. Figure 15 shows the critical slip surface on a
profile and the associated 3D safety factor, and the 3D view
of the critical slip surface is shown in Fig. 16. The 2D
results obtained by different researchers and the 3D result
of this study are listed in Table 3. It is apparent that the

Fig. 13. 3D critical slip surface of case 2.
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Fig. 14. Distribution of safety factor of 100 times of calculation
in case 2.

Fig. 15. Critical slip surface and profile of case 3.
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value of the 3D safety factor is higher than those of the 2D
cases.

Case 4

This case involves an earth dam resting on layered soils
(Fig. 17). The geotechnical properties of layers 1 to 4 are
respectively: angles of friction 29°, 30° 20° and 30°%
cohesions 49, 0, 7.84 and 0 kPa; and unit weights 20.38,
17.64, 20.38 and 17.64 KN/m>. As a 2D problem, this case
has been studied by many researchers for locating the
critical slip surface. Yamagami and Ueta (1988) solved this
case by wusing limiting equilibrium and different
minimization procedures. Similarly, Greco (1996) solved it
by using Spencer’s method and pattern-search and the
Monte Carlo technique. Malkawi et al. (2001) analyzed it
by using the Monte Carlo method of the random walk type.
Zhu (2001) also analyzed this case based on the CSF
method.

In order to compare this case with the 2D results, it is
also extended to a 3D problem. The Y-direction range is
208 m (X and Z direction ranges are shown in Fig. 17), and
the cell size for GIS grid layers is 2 m. The resultant critical
slip surface is shown in Fig. 17 in a 2D view and in Fig. 18
in a 3D view. The results of those 2D methods and this 3D
method are listed in Table 4. As expected, the 3D result is
larger than the 2D results.

5 Conclusions

A new GIS-based 3D searching method based on the
Monte Carlo simulation, assuming the initial slip to be the
lower part of an ellipsoid, is proposed to locate the 3D
critical slip surface in the 3D slope stability analysis. All of
the data relating to the calculation of the 3D slope safety
factor are in the form of GIS data, therefore it is not
necessary to perform data conversion between the GIS
form and other forms, and the complex algorithms and
iteration procedures of a 3D problem can be perfectly
implemented.

Some practical cases of known minimum safety factors
and associated critical slip surfaces based on the 2D
optimization or random technique are extended to 3D slope
problems to identify 3D critical slip surfaces and the result
is compared with the 2D results.

In view of only the section of the critical slip surface, no
apparent difference can be detected between the results in
3D cases and those in 2D cases, but it is clear that the 3D
safety factors are definitely higher than those in 2D cases.
The ratio of b/a, or the ratio of the width to the length of the
search limit, has been studied for explaining the
relationship of b/a and the 3D safety factor. This
relationship indicates that the suitable limit of b/a is 0.8,

Fig. 16. 3D Critical slip surface of case 3.
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(m

— — Greco (1996)
—— This study 70
7/
27 (2
N o lEEY Do
26 =
€}
0 60 180 200 260 (m)

X

Fig. 17. Critical slip surface and profile of case 4.
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Fig. 18. 3D Critical slip surface of case 4.

and the 3D safety factors will decrease slowly with the
increase of b/a, and finally the 3D safety factor approaches
the 2D safety factor.

This paper presents a new approach to locating the
critical slip surface in the 3D slope stability analysis, in
which all slope-related data are in the form of GIS grid
layer. Until now there has not been a well-accepted 3D
model for the slope stability analysis, so the comparison of
results in different 3D models should be the future work for
improving the searching approach. For a slope with
complicated strata and discontinuities, the suitable limit of
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bla is not always 0.8. In this case, the proposed approach
does not ensure that the result found is the global minimum.
It is just a relative one. The probability of detecting a global
minimum will increase by setting the limit of b/a according
to the geological and stratigraphic conditions of the study
area.
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accepted Dec 22, 2003
edited by Liu Xinzhu
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