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Abstract Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite
collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black
and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine,
pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region
consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to
rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new
member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the

composition of Martian crust and magmatism on the Mars.
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1 Introduction

SNC meteorites (including shergottites—nakhlites—
chassignites) have been widely believed to come from the
red planet, the Mars, on the basis of many lines of evidence,
e.g. (1) the relatively young crystallization ages (< 1.3 Ga)
suggest that their parent body is not an asteroidal body
(with ages of about 4.4—4.5 Ga), but rather likely an earth-
like planet (Nyquist et al., 1979; Shih et al., 1982; Chen and
Wasserburg, 1986); (2) the isotopic compositions and
relative abundances of noble gases, N and CO, trapped in
glass in these meteorites (e.g. EETA 79001) are a
remarkable match for Martian atmospheric abundances
determined by the Viking landers (Bogard and Johnson,
1983; Becker and Pepin, 1984; Carr et al., 1985; Wright et
al., 1986); and (3) the bulk compositions of these
meteorites are consistent with those of Martian soil
measured by the Viking landers and Pathfinders (Laul et al.,
1986; Rieder et al., 1997). Recently, ALH 84001, an
orthopyroxenite, has been classified as the fourth group of
Martian meteorites (Mittlefehldt, 1994, McKay et al.,
1998); and the report of evidence for the presence of old
Martian life in this meteorite (McKay et al., 1996) has

ignited Mars exploration. Shergottites are the most
abundant Martian meteorites, and they are further divided
into basaltic, lherzolitic and olivine-phyric (McSween et
al., 1979a; McSween et al., 1979b; Goodrich, 2003). Up to
date, there are 29 Martian meteorites, so far collected and
they are the only available samples from the Mars, hence
discovery of new Martian meteorites will provide a unique
probe to constrain the origin and evolutional history of the
red planet.

A total of 4 and 28 meteorites were collected in the
Grove Mountains during the 15th and 16th Chinese
Antarctic Research Expedition (CHINARE) in 1998-1999
and 1999-2000 seasons, respectively (Chen et al., 2001; Ju
and Liu, 2002; Miao et al., 2003). One of them has been
classified as a lherzolitic shergottite (Lin et al., 2003). In
2002-2003, 4448 meteorites were successfully collected in
the same Grove Mountains region during the 19th
CHINARE. Fifty-one samples were selected from this new
meteorite collection, and they were classified as 1 Martian
meteorite, 3 ureilites, 7 carbonaceous chondrites and 40
ordinary chondrites. This paper presents the petrology and
mineralogy data of GRV 020090, and discusses its
classification as a new member of lherzolitic shergottites.
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Fig. 1. (a) Photo of GRV 020090 completely covered by a black glazy fusion crust.

Small grids are 1.0 mm.
(b) Photo of the meteorite after cutting.
Note millimeter-sized light gray pyroxene clasts on the fresh surfaces.

Fig. 2. Photo mosaics of the polished thin section GRV 020090-2.

(a) A view in plane polarized light, showing two different textural portions (interstitial and poikilitic). The poikilitic areas are composed of three pyroxene
oikocrysts that have pigeonite (Pig) cores and augite (Aug) rims. The interstitial area is cumulated by euhedral olivine (Ol) and pigeonite with interstitial
maskelynitic plagioclase (Msk). Euhedral chromites (Chm) are enclosed in the poikilitic pyroxene, the interstitial olivine and maskelynite. The field of view is 20

mm.

(b) A view in cross-polarized light, showing single or twin crystals of pyroxene oikocrysts.

The field of view is 20 mm.

2 Samples and Analytical Procedures

GRV 020090 weighs 7.54 g, and measures 24 mm x 22
mm x 20 mm in size. It has a strawberry-like shape, and is
completely covered by a black and glazy fusion crust (Fig.

la). The stone was cut into two halves with nearly similar

sizes (Fig. 1b). One piece was embedded in epoxy, and two
thin slices were cut from it. A polished thin section was
made from one of the slices using oil for cooling.
Petrographic and mineralogical observations were made

under an optical microscope and in back-scattered electron
(BSE) image mode of an electron microprobe analyzer
(EPMA) Type JEOL JXA-8800R at the Sun Yat-sen
University. Quantitative analyses of minerals were carried
out using the same EPMA. The operating conditions were
15 kV of accelerating voltage and 20 nA of beam current.
Both natural and synthetic minerals were used as standards.
X-ray overlapping of K« lines by Kp lines of some
successive elements, such as V by Ti, and Mn by Cr, were
corrected. The analyses were treated using the Bence-Albee
method. Modal abundances of minerals were calculated
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Fig. 3. Back-scattered electron image of the interstitial lithology

of GRV 020090.
Note euhedral olivine (Ol) and pigeonite (Pig) grains with interstitial
maskelynite (Msk). The field of view is 3 mm.

from surface areas of the phases in both BSE and optical
photo mosaics.

3 Results

Textural features and modal compositions

The polished thin section (PTS) of GRV 020090 is 1.7
cmx1.9 ¢cm in size, with a surface area of 2.01 cm? The
fusion crust is 2040 pm thick. GRV 020090 is composed
of olivine (29.0 vol%), pigeonite (35.7 vol%), augite (15.7
vol%), plagioclase (18.1 vol%) and chromite (1.7 vol%)
with accessory minerals (e.g. phosphates, troilite, and
ilmenite). Distribution of minerals is heterogeneous on a
centimeter scale (Fig. 2a). There are three large pyroxene
oikocrysts (5 mmx8 mm, 4 mmx8 mm, 6 mmx6 mm),
accounting for ~45 vol% of the whole section. Each
pyroxene oikocryst is concentrically zoned, with a large
pigeonite core and augite rim (up to ~1 mm thick), and
often shows twin bands (up to 5 mm wide) (Fig. 2b).
Gradual variation is noticed from the pigeonite core to the
augite rim. Subhedral to rounded olivine and euhedral
chromite grains are embedded in the pyroxene oikocrysts
(Fig. 2b). These oikocrysts are referred to as poikilitic
lithology. Among the pyroxene oikocrysts, there are
euhedral olivine and pigeonite with interstitial plagioclase
(Fig. 3), referred to as interstitial lithology. The interstitial
lithology accounts for ~55 vol% of the section. Except for a
few large grains of olivine (up to 2.3 mm), most of olivine,
pigeonite and plagioclase are within the range of 0.3—1 mm
in size. Minor chromite (<1.9 vol%) occurs as small
euhedral inclusions mainly in olivine and pyroxene.

In interstitial lithology, most pyroxene grains are
pigeonite, except for a few grains of augite. Pigeonite in the

poikilitic region (4-8 mm) is much bigger in grain size than
that in the interstitial region (0.3—1 mm). Most phosphates,
ilmenite and troilite occur in contact with maskelynite in
the interstitial region. Most minerals show a heterogeneous
distribution, as indicated by their different modal
abundances in the two lithologies. The poikilitic region
contains more pigeonite (54.9 vol%) and augite (34.1 vol
%) with less olivine (4.4% vol%) and chromite (<1% vol%)
and no plagioclase, phosphate and sulfides, in comparison
with the interstitial lithology (46.2 vol% olivine, 17.7 vol%
pigeonite with a few grains of augite, 34.4 vol %
maskelynite, 1.9 vol% minor phases including chromite,
phosphates, ilmenite and troilite). Oval-shaped magma
inclusions (50-200 pm) are common in olivine and rarely
in pyroxenes. Radial cracks are often observed in the host
minerals around the magma inclusions.

Olivine, pigeonite and augite are heavily fractured and
show undulatory extinction. In addition, the pyroxene
oikocrysts show planar fractures and mosaic extinction. All
laths of plagioclase have been converted to isotropic glass
as observed in cross-polarized light. The plagioclase glass
is referred to as maskelynite (diaplectic glass). They are
colorless and do not exhibit any zoning feature under plane
polarized light. But some laths of them show chemical
zonation on BSE images. The plagioclase glass shows_no
flowing or recrystallized features. There are a few shock-
induced thin veins and pockets.

Except for a few dark brown spots probably stained by
terrestrial weathering products, several small nodules and
thin veins (<10pm thick) of gypsum have been found. They
occur in fractures. Extraterrestrial or terrestrial origin of the
gypsum cannot yet be distinguished.

Mineralogy

Analyses of most minerals show correlations with their
occurrences, and the results are summarized in Table 1.

Olivine: The grains in the interstitial region (Fa 35.4—
41.9 mol%, with an average of 40.1+1.2 mol%) are more
ferroan than those in the poikilitic clasts (Fa 30.2-40.0 mol
%, with an average of 34.3+2.8 mol%). The largest olivine
grain in the interstitial region is zoned, with Fa increasing
from 35.0 mol% to 39.7 mol% towards the rim. However,
other individual grains in both poikilitic and interstitial
regions are homogenous, regardless of significant variation
among grains. Minor elements are CaO (0.07-0.29 wt%)
and MnO (0.59-0.84 wt%), and they show no significant
differences between the two textural occurrences. The FeO/
MnO ratio of olivine is 45.3 £2.9.

Pyroxenes: Pigeonite shows a similar compositional
trend as olivine, being more ferroan in the interstitial region
(average Ensg7Wo97,Fs306) than the pigeonite cores of
pyroxene oikocrysts (average Eng;4WogssFsys7). In
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oikocrysts (average
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Fig. 4. Plot of MnQ vs. FeO of pyroxenes in GRV 020090.

The MnO contents and the FeO/MnO ratios of pyroxenes in GRV 020090 are within the ranges of other lherzolitic
shergottites, in comparison with the ranges of the Earth and the Moon. Literature: Lin and Wang, 1995.

addition, the interstitial pigeonite contains high CaO (3.97-
6.39 wt%, average 4.71+0.68 wt%), TiO, (0.16-0.58 wt%,
average 0.28+0.13 wt%), and MnO (0.63-0.75 wt%,
average 0.70+0.03 wt%), in comparison with the pigeonite
cores of pyroxene oikocrysts (CaO 1.53-6.71 wt%, average
3.40+1.44 wt%; TiO, 0.04-0.63 wt%, average 0.13+0.10
wt%; MnO 0.55-0.70 wt%, average 0.61+0.05 wt%).
Detailed analyses conducted on the pyroxene oikocrysts
revealed relatively constant contents of FeO in the
pigeonite cores (average 16.3+0.6 wt%). However, the CaO
contents increase from 1.53 wt% to 6.71 wt% towards the
augite rims. FeO/MnO ratios of pigeonite are nearly the
same for both textural occurrences (interstitial: 27.1+1.3;
poikilitic: 26.6+2.0) (Fig. 4).

Analyses of augite in the interstitial region and the rims
of pyroxene oikocrysts show similar and homogeneous
major element compositions  (oikocryst  rims:
Enso3Wos;,Fs176; interstitial grains: Enyg sWos3 1Fs1g.3). But
the interstitial augite is rich in minor elements Al,O; (1.66
wt%) and TiO, (0.32 wt%), in comparison with the augite
rim (ALO; 1.01-1.43 wt%; TiO, 0.19-0.25 wt%). The
other minor elements are MnO (0.41-0.51 wt%) and Na,O
(0.11-0.27 wt%) in both textural occurrences. The average
FeO/MnO ratio is 23.3+1.8 (Fig. 4).

Maskelynite: It is K;O-poor (0.40+0.15 wt%) with a
chemical formula of Ansgg s73Abs; 1583011 162. EPMA
profiles conducted on several laths of maskelynite reveal a
normal zoning feature, with CaO content decreasing from

20 olivine (ChmysSp;sMt;Usp,,)
are Al,Os- and Cr,O3-rich. In
contrast, other grains in
contact with maskelynite in
the interstitial region are
TiO,-rich (average
Chm,sSpysMt;oUspy;), and
some of them show pronounced zoning with TiO, and
Cr,O;  contents  increasing from the  cores
(ChmyySpy7Mt;4Uspay) to the rims (ChmyeSpisMt;7Uspag).

4 Discussion

A new lherzolitic shergottite

The main petrographic characteristics of GRV 020090,
including two distinct lithologies (poikilitic and interstitial)
and typical mineral modal abundances of olivine (29.0 vol
%), pigeonite (35.7 vol%), augite (15.7 vol%), plagioclase
(18.1 vol%) and other minor phases (1.7 vol%), obviously
suggest that GRV 020090 is a lherzolite, although its
olivine abundance is somewhat lower than the range of
lherzolites. The poikilitic lithology is composed of
pyroxene oikocrysts that enclose olivine and chromite and
are zoned from the low-Ca cores (pigeonite) to the high-Ca
rims (augite), whereas the interstitial lithology consists of
olivine cumulus, pigeonite prisms and maskelynite. These
overall textural relationships are obviously similar to those
for other known lherzolitic shergottites, including ALH
77005 (McSween et al., 1979a), LEW 88516 (Harvey et al.,
1993), Y-793605 (Mikouchi and Miyamoto, 1996, 1997)
and GRV 99027 (Lin et al., 2003). Furthermore, olivine and
pigeonite in GRV 020090 show bimodal patterns of FeO-
contents, with the grains in the interstitial region being
more ferroan than those in the poikilitic lithology, typical of
Therzolitic shergottites (Lin et al., 2003). The composition
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of maskelynite in GRV 020090 (Anj;._s;) varies from
andesine to labradorite, within the range of Martian
meteorites (Lin and Wang, 1995), but distinguishes from
much more calcic plagioclase in lunar mare basalts and
plagioclase-pyroxene achondrites (i.e., eucrites, a kind of
basalts probably from asteroid 4 Vesta, also see Lin et al.,
2004). The FeO/MnO ratio of pyroxene is a critical
parameter to distinguish various basalts from the Earth,
Moon, Mars and HED (an achondrite clan consisting of
eucrites, diogenites and howardites), as demonstrated in
Fig. 4. Analyses of pigeonite and augite in GRV 020090 are
plotted along the range of Martian meteorites, indicating an
affinity with the Mars. The FeO/MnO ratio of olivine in
GRV 020090 is also close to that of the GRV 99027
Iherzolitic shergottite (Lin et al., 2003). Hence, we classify
GRV 020090 as a new lherzolitic shergottite. In addition,
the shock effects indicate that the shock stage of GRV
020090 is Stoffler’'s S5 (Stoffler et al, 1991). In
comparison with common weathering degrees of Antarctic
meteorites, GRV 020090 is very fresh as W1 (Wlotzka,
1993).

Comparison with other lherzolitic shergottites

Up to date, 5 lherzolitic shergottites, i.e., ALHA 77005,
LEW 88516, Yamato 793605, GRV 99027 and NWA 1950,
have been reported (McSween et al., 1979a and b; Harvey
et al., 1993; Ikeda, 1997; Mikouchi and Miyamoto, 1997;
Lin et al., 2003). Compared with these meteorites (Table 2),
GRYV 020090 shares many similar petrologic and mineral
chemical features as described above. However, we also
notice significant differences between GRV 020090 and
other lherzolitic shergottites. First, GRV 020090 contains
the lowest olivine of lherzolitic shergottites (32-60 vol%,
Lin et al., 2003). This could be due to the rareness of olivine
inclusions in the pyroxene oikocrysts in this meteorite. In
contrast, the modal abundances of olivine in both
interstitial and poikilitic lithologies in GRV 99027 are
almost the same (Lin et al., 2003). Second, augite in GRV
020090 occurs predominantly as the rims of the pyroxene
oikocrysts, different from GRV 99027 and other lherzolitic
shergottites, in which augite usually coexists with pigeonite
and maskelynite in the interstitial regions (Gleason et al.,
1997; Mikouchi and Miyamoto, 1997; Lin et al., 2003).
Third, both olivine and pyroxenes contain significantly
higher FeO in GRV 020090 than their counterparts in other
lherzolites (Lin et al., 2003). Finally, maskelynite in GRV
020090 is a clear glass and has no evidence of flowing
feature, suggesting a solid transformation without melting.
This is different from plagioclase glass in Shergotty that
probably solidified from dense melt (Chen and El Goresy,
2000). In addition, GRV 020090 shows no evidence of
recrystallization, suggesting the lack of significant thermal

metamorphism after the main impact event. This is also
confirmed by preservation of the zoned maskelynite in
GRYV 020090.

GRYV 020090 was collected in the same Grove Mountains
region close to the site of GRV 99027 (10 km away), and
both are lherzolites. The first issue is whether both
meteorites are paired (pieces from the same meteorite fall).
As described above, GRV 020090 shows significant
differences from GRV 99027. These differences are too
large to be accounted for by paired meteorites. A part of
variation could be attributed to heterogeneous sampling,
since GRV 020090 and other lherzolitic shergottites are
composed of two different textural lithologies. However,
the very low modal abundance of olivine in the pyroxene
oikocrysts, the higher FeO-contents of olivine, augite and
pigeonite in both textural lithologies in GRV 020090
exclude the possibility of pairing with GRV 99027.
Furthermore, GRV 020090 could not be paired with other
Martian meteorites. Hence, its differences in modal
composition, mineral chemistry and maskelynite from
other Martian meteorites suggest that GRV 020090
probably represents a sample from another igneous unit
different from those from where other Martian meteorites
were ejected, and then opens a new window of
understanding the mechanism of formation and evolution
of the Mars.
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