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Abstract On the basis of the study on the REE geochemistry of the ore minerals and host rocks of the Kalatongke Cu-Ni
deposit, Xinjiang, it is indicated that the major ore minerals, sulfides, were sourced from the host mafic-ultramafic magma.
Characterized by low REE content of sulfide, such a Cu-Ni sulfide deposit occurring in the orogen is obviously different
from that on the margin of the craton. Because the mafic-ultramafic rocks from the Cu-Ni sulfide deposit occurring in the
orogen is water-rich and the REEs of some sulfides show a particular “multiple-bending” pattern, which suggests
coexistence of multiple liquid phases (fluid and melt), the sulfide melt possibly contains a great deal of hydrothermal fluids
and increasingly developed gases and liquid-rich ore-forming fluids after the main metallogenic epoch (magmatic

segregation stage).
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1 Introduction

The Kalatongke deposit, about 30 km southeast of Fuyun
county, northern Xinjiang, is a large-scale copper-nickel
deposit associated with such elements or elemental
combinations as Co, PGE, Au and Ag. It belongs to the
magmatic liquation type as many typical sulfide Cu-Ni
deposits in China as well as in the world. The deposit,
however, possesses some distinct features as follows: (1) It
occurs within an orogen or taphrogeosyncline and is far
from the craton and (2) the host mafic-ultramafic rock
contains hydrous silicates like amphibole and biotite (Hao
et al., 1992; Tu, 1993). The authors systematically selected
samples from different ore types, analyzed their REE
contents, and discussed the REE characteristics based on
the analytic data of mafic-ultramafic rocks. It is expected
that this study would provide helpful information about the
metallization in such a peculiar geological setting.

2 Geological Setting

The Kalatongke mining area is situated on the northern
margin of the Junggar orogen, about 20 km from the Irtysh
fault. The northern area of the fault belongs to the Siberian
plate and the south belongs to the Junggar-Kazakhstan
massif. The mining area is near the core of a synclinofium
(Fig. 1). There mainly occurs the Lower Carboniferous
Nanmingshui Formation within the Kalatongke mining
area. This set of strata is composed of carbonaceous
sedimentary tuff/slate and intermediate to felsic vitric

crystal tuff, and might be divided into three lithologic
members. Four groups of faults, striking NW, NE, nearly
E-W and nearly N-S, are developed in the area.

The deposit occurs in Cu-Ni mineralized mafic-
ultramafic complex intrusions intruding into the top of the
Nanmingshui Formation. Eleven such ore-bearing
intrusions have been discovered within approximately 12.5
km? in the mining area and the isotopic ages range mainly
from 285 to 298 Ma (Wang et al., 1991; Zhao, 1991).
Minable mineralization was discovered in the Nos. 1, 2, 3
and 7 intrusives, which are named the Nos. 1, 2, 3 and 7 ore
blocks respectively. The No. 1 ore block, the only exploited
block at present, has the best mineralization and the Nos. 2
and 3 bodies are unexposed. It is supposed that the Nos. 1, 2
and 3 intrusives are probably conjoined at a depth lower
than 300 m (Yuan et al., 1993), and the acidity increases
from west (No. 1) to east (No. 3). Most of the ore-bearing
intrusions are composed of three lithofacies: biotite
hornblende hyperite facies (central facies), biotite
hornblende norite facies and gabbro-diabase facies (border
facies), and diorite facies, which can be partly developed on
the top of a intrusion.

The No. 1 intrusion has an irregular lenticular shape in
plane and is sphenoid in cross section (Fig. 2). The
principal minable ore bodies are classified into two types.
Ore bodies of the first type are irregular shaped with large
scales and composed mainly of sparse to dense
disseminated ores formed by autochthonous liquation of
late-stage magmas, or composed of veinlet-disseminated
ores formed by  postmagmatic  hydrothermal
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Fig. 1. A sketch map showing the geology of the Kalatongke mine (modified after Wang et al., 1991).

metasomatism; whereas those of the second type are vein-
like and composed chiefly of massive and secondarily of
brecciated ore formed by liquation and injection. The
former distribute in rocks with high basicity near the
bottom of the intrusive rock, while the latter occur mainly
in the middle or on the bottom of the intrusive body. More
than 70 kinds of mineral have been recognized in the
deposit. The gangue minerals are the same as rock-forming
minerals and their altered minerals in the host rock. The
major ore minerals are pyrrhotite, chalcopyrite and
pentlandite, and other common but minor ore minerals are
pyrite, violarite, and magnetite etc. Two metallogenic
epochs, the magmatic epoch and the ore magmatic epoch,
are identified.

3 Sampling, Processing and Analysis

Representative samples of massive ore and disseminated
ore in ultramafic rocks and veinlet ore in sedimentary tuff

were selected from the Nos. 1, 2 and 7 ore blocks. Four
major ore minerals, pyrrhotite, chalcopyrite, pentlandite
and pyrite, were picked up under the binocular. They were
treated with ultrasonic cleaning under room temperature
and heat-drying before grinding to —200 mesh. The sulfides
were analyzed with the ICP-MS method at the ICP-MS
Laboratory of the Geological Research Institute of the
National Nuclear Cooperation (Beijing) where the indium
standard solution was adopted. The precision accuracy of
this method is 3%= and the detection limit is from 0.002
(La) to 0.02 ppm (Ce). The bulk compositions of rock and
ore were collected from previous works.

4 Characteristics of Rare Earth Elements
The REE Characteristics of the sulfides and ore from

different ore types and host rocks are listed in Tables 1 and
2.
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Fig. 2. A sketch map showing cross sections of the Nos. 20 and 39 exploration lines for the Kalatongke
deposit (simplified from the No. 4 Geological Team of Xinjiang Bureau of Geology and Mineral Resources, 1985).

4.1 REE content

The REE content (XREE) of sulfide has a large range
from 0.58 to 47.51 ppm, which is related to the ore type. It
is higher when the sulfide disseminates in more acidic rock
(e.g., diorite of the No. 2 ore block, sample H2711-12); on
the contrary, lower ZREE of sulfide is in the case of less
acidic wall rocks. In the same way, the £REE of sulfide in
massive ore is lower than that in disseminated ore. The
ZREE of ore and host rock are directly proportional to the
SiO, content, ie., XREE;. rock >XREEgiceminated ore™>
SREE sissive aies For the host rock, the ZREE in the No. 2
block is higher than that in the No. 1 block, and the higher
the acidity, the higher the XREE will be. Different sulfide
species in a single ore sample are very slightly different in
ZREE, which suggests that the REEs have similar
distribution coefficients in sulfides during the magmatic
mineralizing process. The ZREE of sulfide in veinlet ore
hosted in sedimentary tuff from the No. 1 block is close to
that in massive ore.

4.2 REE fractionation

All sulfide, ore and host rock of this deposit are
attributed to LREE enrichment. However, the degree of
REE fractionation is different, and the fractionation
features might be classified into the following three types.
(1) Sulfide minerals and massive ores have the highest
degree of REE fractionation with relatively high ZL.REE/
ZHREE ratios (>8.0) and La/Yb ratios (>11.0), (2) olivine-
gabbro from the No. 1 block has the weakest REE
fractionation with relatively low XLREE/ZHREE ratios
(<5.0) and La/Yb ratios (<8.0) and (3) other host rocks and
disseminated ore have moderate REE fractionation with
the ZLREE/ZHREE ratios ranging from 5.0-8.0 and the
La/YDb ratios ranging from 8.0-11.0. It is obvious that the
REE fractionation of sulfide is more intensive than that of
silicate minerals. In disseminated ore, sulfides have lower
REE contents and take a smaller proportion (less than 30%)
compared with silicates, thus it is impossible to generate
much more intensive effect on the REE fractionation of the
ore, and thus the disseminated ore and the host rock have
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Table 2 REE contents of ore-bearing mafic-ultramafic rocks from the Kalatongke deposit
Ore block No. 1 No. 2
. Hornblende Olivine Hornblende | Hornblende | Hornblende Quartz
Redictype Hornblende norite hyperite gabbro hyperite norite gabbro diorite
Number of samples 2 1 1 2 5 2 3
Ser. No. 1 2 3 4 5 -6 7

La 10.61 9.37 7.31 10.95 13.57 17.91 2222

Ce 24.97 21.97 16.92 24.36 28.86 37.25 48.45

Pr 2.98 2.55 2.14 274 3.13 4.00 523

Nd 12.26 10.18 10.7 12.06 13.59 17.82 24.59

Sm 2.77 2.06 3.04 2.51 2.78 3.75 5.08

Eu 0.70 0.51 1.13 0.70 0.73 1.02 1.36

Gd 246 1.76 3.44 2.13 2.35 3.33 4.55

ppm Tb 0.54 0.34 0.58 0.35 0.38 0.55 0.74

Dy 2.35 1.62 3.93 1.83 2.12 2.98 4.02

Ho 0.47 03 0.79 0.36 042 0.59 0.78

Er 1.24 0.84 2.18 0.98 1.19 1.64 2.14

Tm 0.13 0.10 0.33 0.16 0.20 0.26 0.33

Yb 1.18 0.75 2.15 0.92 1.23 1.58 1.95

Lu 0.18 0.10 0.32 0.14 0.20 0.27 0.30
X REE 62.81 52.45 54.96 60.16 70.75 92.92 121.73
ZLREE/ZHREE 6.367 8.028 3.006 7.775 7.742 7.304 7.218
La/Yb 9.026 12.493 3.400 11.897 11.050 11.332 11414

JEu 0.804 0.799 1.065 0.904 0.851 0.862 0.846

oCe 1.054 1.064 1.018 1.044 1.030 1.018 1.047
(La/Yb)n 6.085 8.423 2.292 8.021 7.450 7.640 7.696
(La/Sm)n 2413 2.861 1.513 2.748 3.070 3.007 2.753

similar REE fractionation. However, the olivine-gabbro
from the No. 1 block probably belongs to late-stage dykes
which were derived from a source different from that of the
No. 1 host intrusive body (Ni et al., 1995).

4.3 Europium anomaly (§Eu)

All sulfides and ores from the No. 1 block are
characterized by positive Eu anomalies. The dEu value of
massive ore is higher than that of disseminated ore, and the
OEu value of sulfide is higher than that of ore. The host
rock of the No. 1 block has moderate negative anomalies or
almost no Eu anomaly (#Eu values varying from 0.80 to
1.07). All sulfides from the Nos. 2 and 7 blocks and host
rock of the No. 2 block have negative Fu anomalies, and
particularly the sulfides have fairly high negative Eu
anomalies (§Eu values varying from 0.66 to 0.72).

4.4 Cerium anomaly (6 Ce)

Most sulfides, ore and host rock have no Ce anomaly
except for one sample, pyrite collected from the open pit of
the No. 7 ore block, which has a comparatively high
positive Ce anomaly (0 Ce=1.92). It is easy to understand
that Ce enrichment in pyrite results in high §Ce values
because Ce™ is oxidized to Ce** very easily under a dry and
oxidizing condition at surface.

4.5 REE pattern

The REE patterns of sulfide, ore and rock are shown in
Figs. 3 and 4, from which one can see the following
features. (1) Most REE patterns of sulfide, ore and host
mafic-ultramafic rocks are shown as steeply declined
smooth curves with similar slopes. The (La/Yb)n values
vary from 6 to 13 and the LREE and the HREE have
approximately equivalent fractionation. (2) The REE
pattern of olivine-gabbro from the No. 1 block is shown as
a smooth and gently aslope curve ((La/Yb)n=2.29) and the
LREE and the HREE also have approximately equivalent
fractionation. (3) REEs of 'some sulfide show a “multiple-
bending” pattern, e.g., the No. 1 curve (pyrite from the No.
7 block), the No. 5 curve (chalcopyrite of veinlet ore in tuff
from the No. 1 block), the No. 6 curve (chalcopyrite of
massive ore from the No. 1 block) and the No. 10 curve
(pyrrhotite of massive ore from the No. 1 block) in Fig. 3.
The common feature of these curves is steep for the LREE
but gentle for the HREE ((Gd/Yb)n==1). Particularly, the
HREE shows a downward bending pattern (relatively low
Tb to Tm values) with obvious Eu, Ce or Yb anomalies in
most cases. The REE of the homblende norite and
hornblende hyperite from the No. 1 block also show a
“multiple-bending” pattern more or less.
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Fig. 4. Chondrite-normalized REE patterns for the host rocks of No. 1 ore block (A) and No. 2 ore block

(B) in the Kalatongke deposit.

5 Discussion

5.1 REE characteristics of the Cu-Ni sulfide deposit in
the orogen

It is well known that meta-peridotite of the ophiolite
suite from the orogen has extremely low XREE values
(0.26-0.63 ppm) and an “U”-shaped REE pattern, i.e.,
weak LREE fractionation ((La/Yb),=0.33-3.16, (Gd/Yb)n
=0.63-0.92) (Frey, 1984). On the contrary, the intrusive
ultramafic rocks related to the Cu-Ni sulfide deposit are
characterized by higher ZREE values and enrichment of
LREE (ZREE=1040 ppm, (La/Yb),=2-10, (Gd/Yb)n
=1.3-4.4) in the Noril’sk Cu-Ni deposit, Russia
(Hawkesworth et al., 1995). Although the Kalatongke Cu-
Ni deposit occurs within the orogen, the REE
characteristics of its host ultramafic rock are distinctly
different from those of the ophiolite from an orogen, but

rather close to those of the melanocratic rock series.

The REE content of the sulfide, except for the
disseminated pyrrhotite of diorite from the No. 2 block, is
quite low (ZREE=0.58-5.34 ppm), which is similar to that
of the massive ore in the orogen, e.g., 0.69 ppm for the
Baimazhai Cu-Ni deposit from Sichuan province (Tang and
Liu, 1998), but much lower than that of the massive ore on
the margin of the craton, e.g., 12.78-25.21 ppm for the
Jinchuan Cu-Ni deposit in Gansu province (Tang and Liu,
1998).

5.2 Homological relationship between sulfide and host
rock

Compared with the REE pattern of sulfide, ore and host
mafic-ultramafic rock (Figs. 3 and 4), it is obvious that the
sulfide and host rock have similar REE patterns,
particularly very close LREE and HREE fractionation, but
some differences in ZREE and dEu values. It is indicated
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by the similarity of REE patterns between the host silicate
and sulfide that the REE is distributed selectively in the
above two phases during the magmatic process, and thus
the sulfide equally absorbs each rare earth element from the
parental magmas. This is similar to its geochemical
behavior in ore-forming solutions (Wang et al., 1991).
Because of its lithophile feature, the REE is selectively
enriched in the silicate phase during immiscible separation
between silicate magma and Cu-Ni sulfide ore magma and
therefore the REE content in the sulfide phase is much
lower than that in its parent rock, i.e. silicate rock.
Difference of the Eu anomaly is related to the
metallogenitic environment such as temperature and
oxygen fugacity. It is evidenced by not only Drake’s
experiment (Drake, 1975) but also the REE feature of ore
itself (Lettermoster, 1991) that europium is easily enriched
in a low-fo, environment. Despite of insufficient fo, data
about the Kalatongke deposit at present, it is presumed that
the fo, value in ore magma for sulfide enrichment is much
higher than that in magma dominated by a single silicate
phase, and thus the 6 Eu value of sulfide is higher than that
of the parent rock.

5.3 Coexistence of fluid and melt in mineralization
process

Some REE patterns of the sulfides in the Kalatongke
deposit display a “multiple-bending” feature. It has ever
been reported that some geological bodies in nature have a
“tetrad effect” of rare earth elements, i.e. La—Nd, Pm—Gd,
Gd-Ho and Er-Lu construct four upwards-convex curves
respectively and the important controlling factors include
coexistence of different liquid phases and formation of
complexes of REE (Zhao et al., 1992). The features of
REE, especially HREE, of the sulfide in this deposit are
quite similar to this case, which might be related with
hydrothermal activity. Studies of helium and argon isotopes
in recent years suggest that copper-nickel ore of the
Kalatongke deposit was derived from slow degasification
of the mantle plume tail (Wang et al., 2001). Multistage,
especially late hydrothermal activity is extraordinary
notable in the deposit and the late chalcopyrite veinlets in
tuff just represent the postmagmatic hydrothermal activity.
The sulfide melt possibly contained a lot of hydrothermal
fluids and liquid-rich ore-forming fluids were gradually
generated after the main metallogenic epoch (the magmatic
segregation stage). It is the coexistence of fluid and melt,
that results in the multiple-bending model of REE, similar
to the “tetrad effect” of REE.

6 Conclusions

The following conclusions can be reached in regard to

the REE characteristics of the Kalatongke Cu-Ni sulfide
deposit.

(1) Sulfide and the host rock have similar REE patterns,
but the former has relatively low ZREE values, which
indicates that REE is selectively enriched in the silicate
phase during the magmatic immiscible process, and thus
the sulfide was derived from the host mafic-ultramafic
magma.

(2) Distinguished from the Cu-Ni deposit on the margin
of a craton, the Cu-Ni sulfide deposit of this area occurs in
an orogen. It is characterized by low REE content and was
partially contaminated by the host strata.

(3) The “multiple-bending” pattern of REE of the
sulfides suggests coexistence of multiple liquid phases
(fluid and melt). The sulfide melt possibly contained a lot
of hydrothermal fluids, and liquid-rich ore-forming fluids
were gradually generated after the main metallogenic
epoch (magmatic segregation stage).
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