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Abstract Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided
into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the
alkalinity of the rocks decreases from early to late: alkaline—-calc-alkaline—tholeiite, and geochemistry proves that the
volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins.
The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island
arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups
indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and
indicate the plate evolution during the Mesoproterozoic. The orogeny took place at ~1.05 Ga, which was coeval with the
Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate
in the Rodinia super-continent.
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1 Introduction

In the north belt of the western Kunlun Mountains, along
the north edge of the Kungaishan-Ke’ erhan-
Bugiong-Aidewagao area, there occurs the Ailiankate
Group (AG for short, Fig. 1) of the Mesoproterozoic
Jixianian Period (1400-1000 Ma). According to
predecessors (e.g. Xinjiang Bureau of Geology and
Mineral Resources, 1993), the AG is a set of metamorphic

volcanic-sedimentary rocks. The lower part of it is
composed of very thick metamorphic alkaline—
calc-alkaline bimodal volcanic rocks, while the upper part
consists of flysch and molasse, which indicate the whole
course of the forming, developing and closing of a
sedimentary basin. The Taxidaban Group of the
Mesoproterozoic Jixianian Period (TG for short, Fig. 1),
which occurs to the south of Yutian and Minfeng, is a set
of low-grade metamorphic basaltic andesite and andesite
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Fig. 1.

Sketch map of the Precambrian of the Western Kunlun Mountains.

1. Early Precambrian high-grade metamorphic basement; 2. Mesoproterozoic volcanic;sedimentary rocks; 3. Mesoproterozoic
volcanic-sedimentary sequence; 4. fault; 5. national / provincial boundaries; 6. sampling site and number of samples; @ AG of
the Jixianian Period (back-arc), @ TG of the Jixianian Period (island arc), @ Alamasi Group of the Jixianian Period (passive
continental margin sedimentation), @ Tianshuihai Group of the Changchengian Period
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in addition to a small amount of rhyolite. The two sets of
volcanic-sedimentary rocks comprise the main body of the
Mesoproterozoic strata in the north of the western Kunlun
Mountains. The Alamasi Group of the Jixianian Period,
which lies in a remote mountainous region and has been
poorly studied, is composed of clastic rocks (Miao, 1993).
Few previous studies have touch upon the Pre-Sinian in
the western Kunlun Mountains (Xiao et al., 1998; Pan,
1994; Liu et al, 1998). Stratigraphic and geochemical
studies conducted for the first time on these two sets of
volcanic-sedimentary rocks by the authors shows that they
are the result of evolution of the southern Tarim plate
during the Mesoproterozoic. The plate subduction and
collision took place at ca. 1.05 Ga, which is well
consistent with the Grenville orogeny. The study provides
very important geological data for exploring the location
of the Tarim plate in the Rodinia super-continent.

2 Geochemistry of Back-arc Basin Volcanic
Rocks

This volcanic sequence, represented by the AG, mainly
occurs in the Tiekelike tectonic belt in the southern Tarim
plate (Fig. 1). Its sedimentary sequence represents the
forming, developing and closing course of a back-arc
basin (Guo et al., 2002). As the metamorphic strata have
clear bedding and no alteration, geochemical analysis is
effectual (Xia et al, 1998). The main elements are tested
by using the XRF method and the rare earth elements
(REE for short) and trace elements (TE for short) with the
ICP-MS in the Guiyang Institute of Geochemistry, CAS
(Tables 1 and 2). There are six samples of early-stage
thyolite (No. Sm-1-1-6), four samples of early-stage
basalt (No. Sm-3-1, 2, 3 and 6), which are interlayered in
the rhyolite, in the lower part and six samples of late-stage
basalt (No. Sm-2-1-6) in the upper part. The rhyolite
contains SiO, ranging from 69% to 70%, Na,O+K,0 from
5.46% to 8.00% and K,0/Na,O from 0.88 to 1.80, and
falls on the rhyodacite field in the Si0O,-Zr/TiO, sorting
diagram (Fig. 2) (Winchester et al., 1977), and on the
subalkaline field in the SiO,-(Na,0+K,0) diagram (Fig. 3)
(Hyndman, 1985). Among the 10 basalt samples, four
early ones (in the lower part and interlayered in rhyolite)
have K,O+Na,O ranging from 4.95% to 8.81% and
K,0/Na,O from 0.54 to 1.50, and fall on the shoshonite
field in the K,0-SiO, diagram (Qiu, 1985) and on the
basanite and alkaline basalt fields in the SiO,-Zr/TiO,
diagram (Fig. 2). The late six basalt samples fall on the
subalkaline basalt field in the SiO,-Zr/TiO, diagram and
their Na,O/K,O is between 5.11 and 7.89, showing strong
Na-enrichment and characteristics of tholeiite. In the
Si0,—(K,0+Na,0) diagram, the early-stage basalt occurs

in the alkaline field, while three of the late-stage basalt
samples occur in the subalkaline field close to the
boundary and the rest ones in the alkaline field. From
early to late, the alkalinity declines gradually. Synthesized
analysis of the chemical compositions of the basalts shows
that the content of K decreases and that of Na increases
gradually from early to late with increasing M/F and
decreasing TiO, and MnO, indicating a trend from
alkaline through calc-alkaline to tholeiite series (Fig. 4)
(Mullen, 1983). All of the above shows that the volcanic
rocks were formed in a constantly extending environment.
The three early-stage shoshonite samples have high REE
compositions, the TREE is between 243.30x107° and
505.18x107%, but the ZREE of sample Sm-3-1 is similar to
that of the late basalts, and dEu=0.81-0.69. These show
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Fig. 2. SiO,-Zr/TiO, sorting diagram of volcanic rocks.
Solid circles represent the early-stage basalts from the AG
(back-arc), blank circles represent the late-stage basalts from the AG,
blank square represents the rhyolites from the AG and solid square
represents the (basaltic) andesite from the TG (island arc).
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Fig.3. SiO,-(Na,0+K,0) diagram of volcanic rocks.
Legends same as in Fig. 2.
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that the basalts have small to medium Eu negative
anomalies. (La/Y)n=4.06-7.57 and LREE/HREE=
4.42-7.45 indicate that they are LREE enriched. All these
are characteristic of intraplate basalt. For the late-stage
basalts, one can see the following facts: the ZREE ranges
from 36.5 to 67.4x10_5, close to that of ocean tholeiite;
Eu=0.83-1.13; there is no evident Eu anomaly;
(Ce/Yb)y=1.52-2.48; and the LREE and HREE show
certain differentiations. In the chondrite-normalized spider
diagram, the late-stage basalts have slightly higher LREE
compared with that of ocean tholeiite (Fig. 5). We thus
deduce that the late-stage basalts came from the mantle
and were slightly contaminated by continental crust. For
the rhyolites, the following can be seen: the ZREE ranges
from 358.1x107° to 479.7x10°7°, &Eu=0.65-0.69, there are
moderate Eu negative anomalies, LREE/HREE=3.54-3.93,
(La/Y)x=7.86—-10.51 and (Ce/Yb)x=7.91-9.19, showing
distinct LREE and HREE differentiations.

The REE spider diagram shows that the rhyolites from
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Fig. 4. TiO,-MnO-P,05x10 diagram of volcanic rocks

from different tectonic backgrounds.
Legends same as in Fig. 2
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Fig. 6. REE chondrite-normalized spider diagram of the
rhyolites from the AG.

the AG are consistent to each other (Fig. 6). Comparing
the REE spider diagram of the rhyolites with that of the
basalts, one can see that the rhyolites might come from the
same source as the early basalts, which are products of
continental crust remelting. The late basalts are quite
different from the early ones, and they might come from
mantle partial melting. On the geological sections, the
thickness of the rhyolite is four to six times that of the
basalt, which prove that the basalt and the rhyolite could
not be the products of mantle batch melting. As for the TE
(Table 2), in the N-MORB-normalized spider diagram, the
three early shoshonite samples show characteristics of the
alkaline intraplate basalt (Fig. 7) (Pearce, 1983). The
contents of Hf, Ti, Sm, Y, Yb and Sc (HFSE) of the
late-stage basalts are similar to those of N-MORB, and the
distribution patterns are also similar to those of
tholeiitic-alkaline N-MORB. From early to late, Th/Yb
declines gradually but Zr/Nb and Ba/Nb only have little
changes. In the Th-Hf/3-Ta and Zr/4-Nbx2-Y triangle
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Fig. 5. REE chondrite-normalized spider diagram of the
basalts from the AG.
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diagrams (Figs. 8 and 9) (Wood, 1979), the late-stage
basalts occur in the P-MORB field. In the Th-Hf/3-Nb/16
diagram (not shown in the paper), the early-stage
shoshonites occur in the intraplate basalt field, while the
late-stage basalts in the P-MORB and N-MORB fields. In
view of the geochemistry of the volcanic rocks of the AG,
the rocks are thought to be formed in a pull-apart
environment.

3 Geochemistry of Island-Arc Volcanic
Rocks

This volcanic sequence refers to a suite of low-grade
metamorphic but strongly-deformed TG andesite and
basaltic andesite intercalated with minor rhyolite and
marble. They occurs to the south of Minfeng and Yutian.

Hf/3

Th Ta

Fig. 8. Th-Hf/3-Ta diagram of the basalts from different
tectonic environments.

Legends same as in Fig. 2; A — N-MORB; B — P-MORB; C — WPB;
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Fig. 10. REE chondrite-normalized spider diagram of the

(basaltic) andesites from the TG.

Low-mature clasolite can be seen in some places. Its
outcropping thickness reaches several thousand meters.
Geochemical composition (for seven samples, No.
1028-11-17: six are andesite and only 1028-13 is
rhyodacite) shows that the SiO, content of the (basaltic)
andesite ranges from 52.36% to 58.30%, averaging
54.55%; and that the TiO, content is low (<0.3%),
averaging 0.22%. Na,0+K,0=1.70%-3.57%, Na,0O/K,0=
2.44-4.61, M/F=0.62-0.78, and MgO/(MgO+TFe)=
0.36-0.45. In the SiO,-Zr/TiO, sorting diagram, they
occur in the andesite field but are very close to the
subalkaline basalt field (Fig. 2). In the Si0,—(Na,0+K,0)
diagram, they fall in the subalkaline field (Fig. 3) and in
the TiO,-MnO,-P,0sx10 diagram in the calc-alkaline field
(Fig. 4). 1t is thus concluded that the volcanic rocks from
the TG are calc-alkaline. The andesites have very low

Nb X2
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Fig. 9. Zr/4-Nbx2-Y diagram of the basalts from
different tectonic environments.

Legends same as in Fig. 2; A —~ N-MORB; B - P-MORB; C — WPB;
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ZREE which ranges from 15.52x107° to 17.92x1075,
similar to that of ocean tholeiite and different from that of
the volcanic rocks occurring on the continental margin arc
that is enriched in LREE. We deduce that the andesites
came from mantle (Yogodzinski et al., 1998). Their
(La/Yb)n=0.69-1.33 and (Ce/Yb)x=0.75-1.17, which
indicate that the LREE and HREE have no obvious
differentiations. dEu=0.87-1.13 and there are very weak
Eu anomalies. The REE chondrite-normalized spider
diagram shows that the REE distribution pattern is similar
to that of ocean tholeiite (Fig. 10), and that the andesites
came from depleted mantle with no contamination of
continental crust. As for the TE, Th/Yb=0.04-0.10,
Th/Ta=5.92-11.22, Zr/Hf=20.46-29.40, and Ti/V=
4.33-5.10. In the N-MORB-normalized diagram (Fig. 11),
LILE such as Rb, Ba, Th and K are enriched and HFSE
depleted, thus yielding high Th/Ta, Ce/Yb and La/Nb
ratios. All these show the characteristics of island-arc
volcanic rocks (Pearce, 1983). Although a Ce acme occurs
in the TE spider diagram, the Th and Ce values are close
to those of N-MORB, which indicates almost no
contamination of the subduction zone (Zhang et al., 1995).
In the Th-Hf/3-Ta and Zr/4—Nbx2-Y triangle diagrams
(Figs. 8 and 9), all samples fall in the field of island arc.

To sum up, the TG vocanites to the south of Minfeng
and Yutian consist main of calc-alkaline (basaltic)
andesites intercalated with minor calc-alkaline rhyolite.
The rock association shows the characteristics of
island-arc volcanlites. The REE and TE indicate that the
rocks came from depleted mantle with no contamination
of the subduction zone. We deduce that the magma is the
product of the interaction of the subduction ocean crust
and mantle (Matthew et al., 1999).

4 Ages of Volcanic rocks
In our field work we observed the Silu Group of the

Qingbaikou’an System (1000-800 Ma)
angular-unconformably overlying the AG (Ma, 1989)

1823
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along the Bugiong and Xinjiang-Tibet Roads. Either
deformation intensity or metamorphism of the AG is
lower than those of the Archean—Paleoproterozoic
Heluositan and Karakax Groups, so the age of the volcanic
rocks is limited to Mesoproterozoic. Nd isotope analysis
of the six late-stage basalt samples from the AG (tested by
Qiao Guangsheng, Institute of Geology and Geophysics,
CAS) indicates that the single-phase Tpy of the rocks
ranges from 1500 to 1900 Ma, and that the isochron age is
1200£63 Ma. Considering that the formation age of the
rocks cannot be older than its model age and that the
Neoproterozoic overlies the volcanic rocks
angular-unconformably, the isochron age is considered to
be the formation age. The “’Ar-*Ar plateau ages of
hornblende from amphibolite and biotite in metarhyolite
from the AG are 1050+0.93 Ma and 1021+1.08 Ma
respectively (Fig. 12), so 1050 Ma should be the closing
time of the volcanic-sedimentary basin and the time of
metamorphism of the volcanic rocks. As for the island-arc
volcanic rocks of the TG, predecessors though that they
belong to the Jixianian Period, but no isotope data are
available. The Nd content of the rocks is too low for this
analysis to get good results. Our field work reveals that
Sinian tillite, which can be correlated with the Sinian
System on the AG, directly lay upon TG around
Ao’yigieke unconformably. In the ridge area of the
Western Kunlun Mountains, the Alamasi Group of the
Jixianian Period, which lines in the same tectonic belt with
the TG, unconformably overlies the Sailajiazitage Group
of the Changcheng Period (1800-1400 Ma), so the TG
should belong to the Jixianian Period. We believe that the
island-arc and the back-arc basin volcanic rocks discussed
above are coeval products of different tectonic settings.

5 Conclusions
Based on  petrostratigraphic and  geochemical

characteristics of the Mesoproterozoic volcaniltes of the
Western Kunlun Mountains, the authors hold that the rock
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Fig. 12. “Ar-*Ar plateau ages of metamorphic minerals in the AG: hornblende (a) and biotite (b).
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associations of the AG were formed in a back-arc
rifting setting; while the TG volcanic sequence,
in an island arc setting. In view of their space
distribution, the island-arc volcanic sequence
occurs in the south belt and the back-arc basin
volcanic sequence in the north. Although the two
sequences are not connected with each other
laterally, they actually represent
volcanic-sedimentary rock associations of
different tectonic settings of Mesoproterozoic
island arc and back arc. We consider that the
island-arc volcanic rocks in the western part
were concealed during the late tectonic evolution
and the volcanic-sedimentary sequence in the
eastern part, which represents a back-arc setting,
was covered by the Quaternary formations.

Jiang et al. (1992, 2000) pointed out that the
basements of the south and north sides of the
central orogen have different characters: the
north is a hard or North China-type basement,
while the south is a soft or the Yangtze-type
basement. Earlier studies have revealed that the
ancient Chinese land formed at the late
Paleoproterozoic (Ren et al., 1999) began to rift
in the Mesoproterozoic (1800 Ma), and that the
Qiangtang block was separated from the Tarim
plate to form the Kangxiwar ocean in-between (Jiang et al.,
2000) (Fig. 13A, B). The Kangxiwar oceanic crust began
to underthrust towards the ancient Tarim plate during the
Jixianian Period, and the unconformity between the Jixian
and Changcheng strata maybe indicate the transition from
extension to convergence. In this period, no magmatic
activity occurred in the south of the Kangxiwar area,
which indicates that the subduction took place from south
to north. This subduction brought about an island arc on
the south margin of the ancient Tarim plate to give rise to
back-arc rifting (Fig. 13C, D), thus forming a back-arc
basin. The tholeiite is developed in the upper part of the
AG, showing that the back-arc basin has an environment
of a small ocean basin (Fig. 13D). After the close of the
Kangxiwar Ocean, a powerful convergence momentum
drove the back-arc oceanic crust to subduct from north to
south towards the island arc (Fig. 13E). Because the
unmetamorphosed Neoproterozoic strata overlie the AG
unconformably and the peak metamorphism of the AG
took place at ca. 1.05 Ga, the folding and orogeny of the
back-arc basin and the consumption of the
Mesoproterozoic sedimentary basin should occur at the
end of the Mesoproterozoic (Fig. 13F).

The ascertainment of the Jixianian island arc and
back-arc volcanic-sedimentary sequence in West Kunlun,
and the timing of the orogeny and metamorphism of the

Fig. 13. A tectonic evolution model for the Western Kunlun
Mountains in the Mesoproterozoic.

TRM — ancient Tarim plate; QT — Qiangtang block; KXWO — Kangxiwar
Ocean;NBAB — North Kunlun back-arc basin; KL — Kunlun block; KXWF —
Kangxiwar fault; NKLF — North Kunlun fault,

volcanic-sedimentary basin indicate that there existed a
Grenville orogenic event in the north of the Qinghai-Tibet
plateau (Lu, 1998), which is 200 Ma earlier than the Tarim
movement in the Xinjiang and Jinning movement in north
of Yangtze block (Zhang et al, 2000). This study has thus
provided important geological evidence for finding out the
location of the ancient Tarim plate in the Rodinia
supercontinent.
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