• Volume 84,Issue 5,2010 Table of Contents
    Select All
    Display Type: |
    • Accelerating Oil and Gas Exploration in Western China by Studies of Formations of Hydrocarbon Accumulations in Superimposed Basins — A Preface

      2010, 84(5).

      Abstract (1819) HTML (0) PDF 2.17 M (105) Comment (0) Favorites

      Abstract:

    • Classification of Complex Reservoirs in Superimposed Basins of Western China

      2010, 84(5):1011-1034.

      Abstract (1956) HTML (0) PDF 14.18 M (72) Comment (0) Favorites

      Abstract:Superimposed basins in West China have experienced multi-stage tectonic events and multi-cycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97%. This reflects the effectiveness and reliability of the new theory, methods and technology.

    • Multiple-Element Matching Reservoir Formation and Quantitative Prediction of Favorable Areas in Superimposed Basins

      2010, 84(5):1035-1054.

      Abstract (1674) HTML (0) PDF 11.34 M (60) Comment (0) Favorites

      Abstract:: Superimposed basins in West China have experienced multi-stage tectonic events and multi-cycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97%. This reflects the effectiveness and reliability of the new theory, methods and technology.

    • Late-Stage Reservoir Formation Effect and Its Dynamic Mechanisms in Complex Superimposed Basins

      2010, 84(5):1055-1077.

      Abstract (1589) HTML (0) PDF 15.52 M (38) Comment (0) Favorites

      Abstract:Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing adjustment, reconstruction and destruction of later-stage multiple tectonic events. In this paper, this phenomenon is called the late-stage reservoir formation effect. The late-stage reservoir formation effect is a basic feature of oil and gas-forming reservoirs in complex superimposed basins, revealing not only multi-stage character, relevance and complexity of oil and gas-forming reservoirs in superimposed basins but also the importance of late-stage reservoir formation. Late-stage reservoir formation is not a basic feature of oil and gas forming reservoir in superimposed basins. Multi-stage reservoir formation only characterizes one aspect of oil and gas-forming reservoir in superimposed basins and does not represent fully the complexity of oil and gas-forming reservoir in superimposed basins. We suggest using “late-stage reservoir formation effect” to replace the “late-stage reservoir formation” concept to guide the exploration of complex reservoirs in superimposed basins. Under current geologic conditions, the late-stage reservoir formation effect is represented mainly by four basic forms: phase transformation, scale reconstruction, component variation and trap adjustment. The late-stage reservoir formation effect is produced by two kinds of geologic processes: first, the oil and gas retention function of various geologic thresholds (hydrocarbon expulsion threshold, hydrocarbon migration threshold, and hydrocarbon accumulating threshold) causes the actual time of oil and gas reservoir formation to be later than the time of generation of large amounts of hydrocarbon in a conventional sense, producing the late-stage reservoir formation effect; second, multiple types of tectonic events (continuously strong reconstruction, early-stage strong reconstruction, middle-stage strong reconstruction, late-stage strong reconstruction and long-term stable sedimentation) after oil and gas reservoir formation lead to adjustment, reconstruction and destruction of reservoirs formed earlier, and form new secondary hydrocarbon reservoirs due to the late-stage reservoir formation effect.

    • Alteration and Reformation of Hydrocarbon Reservoirs and Prediction of Remaining Potential Resources in Superimposed Basins

      2010, 84(5):1078-1096.

      Abstract (1680) HTML (0) PDF 11.89 M (47) Comment (0) Favorites

      Abstract:Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations, reformation and destruction of hydrocarbon reservoirs formed at early stages. They are characterized currently by trap adjustment, component variation, phase conversion, and scale reformation. This is significant for guiding current hydrocarbon exploration by revealing evolution mechanisms after hydrocarbon reservoir formation and for predicting remaining potential resources. Based on the analysis of a number of complex hydrocarbon reservoirs, there are four geologic features controlling the degree of destruction of hydrocarbon reservoirs formed at early stages: tectonic event intensity, frequency, time and caprock sealing for oil and gas during tectonic evolution. Research shows that the larger the tectonic event intensity, the more frequent the tectonic event, the later the last tectonic event, the weaker the caprock sealing for oil and gas, and the greater the volume of destroyed hydrocarbons in the early stages. Based on research on the main controlling factors of hydrocarbon reservoir destruction mechanisms, a geological model of tectonic superimposition and a mathematical model evaluating potential remaining complex hydrocarbon reservoirs have been established. The predication method and technical procedures were applied in the Tazhong area of Tarim Basin, where four stages of hydrocarbon accumulation and three stages of hydrocarbon alteration occurred. Geohistorical hydrocarbon accumulation reached 3.184 billion tons, of which 1.271 billion tons were destroyed. The total volume of remaining resources available for exploration is ~1.9 billion tons.

    • Comparison of the Surface and Underground Natural Gas Occurrences in the Tazhong Uplift of the Tarim Basin

      2010, 84(5):1097-1115.

      Abstract (1451) HTML (0) PDF 8.87 M (36) Comment (0) Favorites

      Abstract:The oil, gas and water volumes revealed by the productivity of exploratory wells do not reflect the actual underground situations. Under the geologic conditions, a certain amount of dissolved natural gas is stored in oil or water. Based on the production test data of exploratory wells in the Tazhong uplift of the Tarim basin, this paper discusses in detail the differences in occurrence and distribution featrues between the surface and underground natural gases; presents a restoration of the surface gas occurrence to actual underground geologic conditions according to the dissolubility of natural gas under different temperature, pressure and medium conditions; and classifies the natural gas into three states, i.e. the oversaturated, saturated and undersaturated, according to its relative content underground. Through a comparative analysis of the differences in surface and underground occurrences of natural gas, it discusses the hydrocarbon reservoir formation mechanism and distribution rules, thereby providing guidances as new methods and technologies for the prediction of potential natural gas reservoir distribution in the study area.

    • Differences of Hydrocarbon Enrichment between the Upper and the Lower Structural Layers in the Tazhong Paleouplift

      2010, 84(5):1116-1127.

      Abstract (1366) HTML (0) PDF 8.03 M (32) Comment (0) Favorites

      Abstract:The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts vary in number, type and reserves, but the mechanism was rarely researched before. Therefore, an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift. After studying the evolution and reservoir distribution of the Tazhong paleouplift, it is concluded that the evolution in late Caledonian, late Hercynian and Himalayan periods resulted in the upper and the lower structural layers. It is also defined that in the upper structural layer, structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift, which are dominated by oil reservoirs, while for the lower structural layer, lithological reservoirs are developed in the lower part of the paleouplift, which are dominated by gas reservoirs, and more reserves are discovered in the lower structural layer than the upper. Through a comparative analysis of accumulation conditions of the upper and the lower structural layers, the mechanism of enrichment differences is clearly explained. The reservoir and seal conditions of the lower structural layer are better than those of the upper layer, which is the reason why more reservoirs have been found in the former. The differences in the carrier system types, trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution. An accumulation model is established for the Tazhong paleouplift. For the upper structural layer, the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift, while for the lower structural layer, the weathering crust reservoirs are formed at the top, the reef-flat reservoirs are formed on the lateral margin, the karst and inside reservoirs are formed in the lower part of the paleouplift.

    • Origin of the Silurian Crude Oils and Reservoir Formation Characteristics in the Tazhong Uplift

      2010, 84(5):1128-1140.

      Abstract (1580) HTML (0) PDF 11.51 M (39) Comment (0) Favorites

      Abstract:The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution. For this reason, the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area. Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks, i.e., heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No. I fault belt and the TZ16 well-block, which means that the oil properties are controlled by structural patterns. Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks, suggesting a good genetic relationship. However, the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks. Most Silurian oils have a record of secondary alterations like earlier biodegradation, including the occurrence of “UCM” humps in the total ion current (TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils, and regular changes in the abundances of light and heavy components from the structural low to the structural high. The fact that the Silurian oils are enriched in chain alkanes, e.g., n-alkanes and 25-norhopane, suggests that they were mixed oils of the earlier degraded oils with the later normal oils. It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions. The migration and accumulation models of these oils in the TZ47-15 well-blocks, the No. I fault belt and the TZ16 well-block are different from but related to each other. The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.

    • Logging Evaluation of the Ordovician Carbonate Reservoir Beds in the Lungudong Region, Tarim Basin

      2010, 84(5):1141-1156.

      Abstract (1540) HTML (0) PDF 7.95 M (36) Comment (0) Favorites

      Abstract:In recent years, great progress has been made constantly in oil and gas exploration in the Lungudong region of the Tarim Basin. However, progress has been slow in the evaluation of its main oil-producing horizons ? the Ordovician carbonate reservoir beds. Based on previous researches and on the various data such as drilling, geology and oil test, in combination with the interpretation of each single-well imaging and conventional logging data, and through analysis and comparison, the identification methods in imaging and conventional logging for four types of carbonate reservoir beds in this region are summarized in this paper. Calculation formulas for four reservoir bed parameters, i.e. shale content, porosity, permeability and oil saturation in this region are proposed; and reservoir beds in this region are divided into three levels (I, II and III) by combining oil test data and logging data, The lower limits of the effective porosity of reservoir beds and the fracture porosity of effective reservoir beds are determined as 1.8% and 0.04%, respectively. The physical property parameters are calculated by conventional logging curves, and the most advantageous areas for reservoir development are predicted comprehensively. On the plane, the high-value zones of reservoir bed parameters are mainly concentrated in the N-S-trending strike-slip fault, the Sangtamu fault horst zone and near the LG38 well area; vertically, the reservoir bed parameters of the Yijianfang Formation are better than those of the Yingshan and Lianglitage formations.

    • Origin of Crude Oil in the Lunnan Region, Tarim Basin

      2010, 84(5):1157-1169.

      Abstract (1601) HTML (0) PDF 9.11 M (35) Comment (0) Favorites

      Abstract:The oil source of the Tarim Basin has been controversial over a long time. This study characterizes the crude oil and investigates the oil sources in the Lunnan region, Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches. Although the crude oil has a good correlation with the Middle-Upper Ordovician (O2+3) source rocks and a poor correlation with the Cambrian-Lower Ordovician (?-O1) based on biomarkers, the d13C data of n-alkanes of the Lunnan oils show an intermediate value between ?-O1 and O2+3 genetic affinity oils, which suggests that the Lunnan oils are actually of an extensively mixed source. A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11% to 70% (averaging 36%), slightly less than that of the Tazhong uplift. It is suggested that the inconsistency between the biomarkers and d13C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources. The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible. To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.

    • Ordovician Carbonate Reservoir Bed Characteristics and Reservoir-Forming Conditions in the Lungudong Region of the Tarim Basin

      2010, 84(5):1170-1179.

      Abstract (1786) HTML (0) PDF 5.50 M (31) Comment (0) Favorites

      Abstract:Basic characteristics of Ordovician carbonate reservoir beds in the Lungudong region of northeastern part of the Tarim Basin are described in detail and the reservoir-forming conditions of oil and gas are preliminarily discussed in this paper by collecting and sorting out a large amount of data. The carbonate reservoir beds are mainly developed in open-platform and platform marginal facies; the reservoir beds have large changes in and low average values of physical property; the main type is fractured reservoir beds with the fracture-porous type second. The reservoir bed development is chiefly controlled by the distribution of sedimentary facies, tectonic activity and karstification. Whereas the accumulation and distribution of hydrocarbons in the region are controlled by an advantageous structural location, a good reservoir-caprock combination and a favorable transporting system, with the distribution characterized by zones horizontally and belts vertically, the oil and gas are mainly concentrated in areas with structural uplift, densely developed fractures, and surface karst, a vertical vadose zone, and a horizontal undercurrent belt of palaeokarst.

    • Hydrocarbon Accumulation Conditions of Ordovician Carbonate in Tarim Basin

      2010, 84(5):1180-1194.

      Abstract (1746) HTML (0) PDF 9.77 M (29) Comment (0) Favorites

      Abstract:Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration.

    • Different Hydrocarbon Accumulation Histories in the Kelasu-Yiqikelike Structural Belt of the Kuqa Foreland Basin

      2010, 84(5):1195-1208.

      Abstract (1583) HTML (0) PDF 9.91 M (35) Comment (0) Favorites

      Abstract:The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.

    • Characteristics of Oil Sources from the Chepaizi Swell, Junggar Basin, China

      2010, 84(5):1209-1219.

      Abstract (1634) HTML (0) PDF 6.21 M (29) Comment (0) Favorites

      Abstract:So far there has been no common opinion on oil source of the Chepaizi swell in the Junggar Basin. Therefore, it is difficult to determine the pathway system and trend of hydrocarbon migration, and this resulted in difficulties in study of oil-gas accumulation patterns. In this paper, study of nitrogen compounds distribution in oils from Chepaizi was carried out in order to classify source rocks of oils stored in different reservoirs in the study area. Then, migration characteristics of oils from the same source were investigated by using nitrogen compounds parameters. The results of nitrogen compounds in a group of oil/oil sand samples from the same source indicate that the oils trapped in the Chepaizi swell experienced an obvious vertical migration. With increasing migration distance, amounts and indices of carbazoles have a regular changing pattern (in a fine linear relationship). By using nitrogen compounds techniques, the analyzed oil/oil sand samples of Chepaizi can be classified into two groups. One is the samples stored in reservoir beds of the Cretaceous and Tertiary, and these oils came from mainly Jurassic source rock with a small amount of Cretaceous rock; the other is those stored in the Jurassic, Permian and Carboniferous beds, and they originated from the Permian source. In addition, a sample of oil from an upper Jurassic reservoir (Well Ka 6), which was generated from Jurassic coal source rock, has a totally different nitrogen compound distribution from those of the above-mentioned two groups of samples, which were generated from mudstone sources. Because of influence from fractionation of oil migration, amounts and ratios of nitrogen compounds with different structures and polarities change regularly with increasing migrating distance, and as a result the samples with the same source follow a good linear relationship in content and ratio, while the oil samples of different sources have obviously different nitrogen compound distribution owing to different organic matter types of their source rocks. These conclusions of oil source study are identical with those obtained by other geochemical bio-markers. Therefore, nitrogen compounds are of great significance in oil type classification and oil/source correlation.

    • Late Carboniferous–Early Permian Sequence Stratigraphy and Depositional Evolution in the Northeast Ordos Basin, North China

      2010, 84(5):1220-1228.

      Abstract (1672) HTML (0) PDF 6.10 M (48) Comment (0) Favorites

      Abstract:Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.

    • Tectonic Fractures in Tight Gas Sandstones of the Upper Triassic Xujiahe Formation in the Western Sichuan Basin, China

      2010, 84(5):1229-1238.

      Abstract (1912) HTML (0) PDF 6.67 M (39) Comment (0) Favorites

      Abstract:The western Sichuan Basin, which is located at the front of the Longmen Mountains in the west of Sichuan Province, China, is a foreland basin formed in the Late Triassic. The Upper Triassic Xujiahe Formation is a tight gas sandstone reservoir with low porosity and ultra-low permeability, whose gas accumulation and production are controlled by well-developed fracture zones. There are mainly three types of fractures developed in the Upper Triassic tight gas sandstones, namely tectonic fractures, diagenetic fractures and overpressure-related fractures, of which high-angle tectonic fractures are the most important. The tectonic fractures can be classified into four sets, i.e., N-S-, NE-, E-W- and NW-striking fractures. In addition, there are a number of approximately horizontal shear fractures in some of the medium-grained sandstones and grit stones nearby the thrusts or slip layers. Tectonic fractures were mainly formed at the end of the Triassic, the end of the Cretaceous and the end of the Neogene-Early Pleistocene. The development degree of tectonic fractures was controlled by lithology, thickness, structure, stress and fluid pressure. Overpressure makes not only the rock shear strength decrease, but also the stress state change from compression to tension. Thus, tensional fractures can be formed in fold-thrust belts. Tectonic fractures are mainly developed along the NE- and N-S-striking structural belts, and are the important storage space and the principal flow channels in the tight gas sandstone. The porosity of fractures here is 28.4% of the gross reservoir porosity, and the permeability of fractures being two or three grades higher than that of the matrix pores. Four sets of high-angle tectonic fractures and horizontal shear fractures formed a good network system and controlled the distribution and production of gas in the tight sandstones.

    • Origin of Paleofluids in Dabashan Foreland Thrust Belt: Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks

      2010, 84(5):1239-1255.

      Abstract (1343) HTML (0) PDF 12.13 M (40) Comment (0) Favorites

      Abstract:In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.

    • Control of Facies and Potential on Jurassic Hydrocarbon Accumulation and Prediction of Favorable Targets in the Hinterland Region of the Junggar Basin

      2010, 84(5):1256-1272.

      Abstract (1545) HTML (0) PDF 9.98 M (32) Comment (0) Favorites

      Abstract:Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure facies belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currently discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies-potential index FPI>0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon-bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone.

    • Dynamic Systems of Petroleum Accumulation in the Nanpu Depression, Bohai Bay Basin, China

      2010, 84(5):1273-1285.

      Abstract (1539) HTML (0) PDF 9.00 M (34) Comment (0) Favorites

      Abstract:It is significant to distinguish the dynamic systems of petroleum accumulation (DSPA) for the understanding of petroleum accumulation and distribution. According to the formation pressure framework, genetic types of petroleum and characteristics of conduit systems, three dynamic systems of petroleum accumulation were identified in the vertical profile in the Nanpu depression, Bohai Bay basin. The deeper DSPA (including formations Es3 to Es2) is a sealed system with high-overpressure and high-mature self-sourced oil. Most of the crude oil in the system accumulated in the periods of late Oligocene (23.5 Ma) and late Pliocene (2.4 Ma). The middle DSPA (including formations Es1 to Ed1) is an overpressured half-sealed system with mature or lower-mature self-sourced oil. The accumulation of oil in the system also occurred in the late Oligocene (23.5 Ma) and late Pliocene (2.4 Ma). The shallower DSPA (including formations Ed2 to Q) is a hydrostatic system with lower-mature alien-sourced oil from the middle system. Oil within this system accumulated only in the late Pliocene period. The oil in the shallower system migrated vertically along the faults from the formerly accumulated oil in the middle system by lateral migration along the sandbodies, whereas petroleum accumulation in the deeper system was mainly derived from the system itself by lateral migration along the sandbodies and rarely migrated out of the system. In this case, it seems that the deeper system is a more potential exploration prospect in addition to the other two proved favorable systems.

    • Tectono-thermal Evolution in the Bachu Uplift, Tarim Basin, China

      2010, 84(5):1286-1293.

      Abstract (1515) HTML (0) PDF 5.44 M (43) Comment (0) Favorites

      Abstract:The thermal evolution of source rocks in the Paleozoic has long been a problem to petroleum exploration in the Bachu uplift, Tarim basin, since the thermal history in the Paleozoic could not be rebuilt objectively due to lack of effective thermal indicators in the Lower Paleozoic successions. The apatite and zircon (U-Th)/He thermochronometry can be used as a new kind of technique to study the thermal history and tectonic uplift of sedimentary basins. Based on the measured apatite and zircon (U-Th)/He ages, apatite fission track data and equivalence vitrinite reflectance (%EVRo), the tectonothermal histories in 5 wells of the Bachu uplift were modeled. The modeling results show that there was relatively high gradient at the Early Paleozoic in the Bachu uplift and it decreased gradually during the entire Paleozoic: 33–35°C/km in the Cambrian-Ordovician, 32–33°C/km in the Silurian-Devonian, 30–32°C/km at the end of Carboniferous and 27.5–31°C/km at the end of Permian. Therefore, the thermal history can be modeled by combining multiple thermal indicators of AFT, (U-Th)/He ages and EVRo data. Especially, this provides a new method to rebuild the thermal history for the Low Paleozoic carbonate successions in the Tarim Basin.

    • Alkyl Naphthalenes and Phenanthrenes: Molecular Markers for Tracing Filling Pathways of Light Oil and Condensate Reservoirs

      2010, 84(5):1294-1305.

      Abstract (1353) HTML (0) PDF 7.00 M (32) Comment (0) Favorites

      Abstract:Condensates and light oils are generally characterized by high maturity, low concentration of sterane and terpane biomarkers and low content of non-hydrocarbon fraction. As a result, some commonly-used sterane, terpane and carbazole migration parameters in conventional oil reservoirs may have a certain limitation in condensate and light oil reservoirs for their poor signal-noise ratios in the gas chromatography-mass spectrometry (GC-MS). Naphthalene, phenanthrene and their methylated substituents, however, are present in significant concentrations in condensates and light oils. Taking the Fushan depression (in the Beibuwan Basin, Northern South China Sea) as an example, this paper attempts for the first time to use polycyclic aromatic hydrocarbon (PAH)-related parameters to trace migration directions and filling pathways for condensate and light oil reservoirs. The result shows that TMNr (i.e. 1, 3, 7-TMN/ (1, 3, 7-TMN + 1, 2, 5-TMN), TMN: trimethylnaphthalene)), MPI-1 (i.e. 1.5×(2-MP + 3-MP)/(P + 1-MP + 9-MP), P: phenanthrene MP: methylphenanthrene), MN/DMN (Smethylnaphthalene/ Sdimethylnaphthalene, %) and MN/TMN (Smethylnaphthalene/Strimethylna-phthalene, %) can be used to trace the filling pathways of condensate and light oil reservoirs. These parameters, together with geological consideration and other bulk oil properties (e.g. the gas to oil ratio and density), suggest that the condensates and light oils in the Huachang oil and gas field are mainly sourced from the Bailian sag that is located to the northeast of the Huachang uplift in the Fushan depression.

    • Effects of Near-Surface Absorption on Reflection Characteristics of Continental Interbedded Strata: the Dagang Oilfield as an Example

      2010, 84(5):1306-1314.

      Abstract (1490) HTML (0) PDF 5.31 M (26) Comment (0) Favorites

      Abstract:Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological interface. The absorption of the near-surface layer decreases the resolution of the seismic wavelet, intensifies the interference of seismic reflections from different sand bodies, and makes seismic data interpretation of thin interbedded strata more complex and difficult. In order to concretely investigate and analyze the effects of the near-surface absorption on seismic reflection characteristics of interbedded strata, and to make clear the ability of current technologies to compensate the near-surface absorption, a geological model of continental interbedded strata with near-surface absorption was designed, and the prestack seismic wave field was numerically simulated with wave equations. Then, the simulated wave field was processed by the prestack time migration, the effects of near-surface absorption on prestack and poststack reflection characteristics were analyzed, and the near-surface absorption was compensated for by inverse Q-filtering. The model test shows that: (1) the reliability of prediction and delineation of a continental reservoir with AVO inversion is degraded due to the lateral variation of the near-surface structure; (2) the corresponding relationships between seismic reflection events and geological interfaces are further weakened as a result of near-surface absorption; and (3) the current technology of absorption compensation probably results in false geological structure and anomaly. Based on the model experiment, the real seismic data of the Dagang Oil Field were analyzed and processed. The seismic reflection characteristics of continental interbedded strata were improved, and the reliability of geological interpretation from seismic data was enhanced.

Chief Editor:HOU Zengqian

Governing Body:China Association for Science and Technology

Organizer:Geological Society of China

start publication :1922

ISSN:ISSN 1000-9515

CN:CN 11-2001/P

  • Most Read
  • Most Cited
  • Most Downloaded
Press search
Search term
From To