
1 Introduction 
 
The Central Asian Orogenic Belt (CAOB) is one of the 

largest accretionary orogens on Earth (Sengör et al., 1993; 
Windley et al., 2007) and lies between the two major 
continental blocks of the North China Craton (NCC) and 
the Siberian Craton (Mossakovsky et al., 1994; Sengör 
and Natal’in, 1996; Jahn et al., 2000; Buslov et al., 2001; 
Xiao et al., 2003, 2013; Jahn, 2004; Windley et al., 2007; 
Eizenhöfer et al., 2014; Song et al., 2016). The CAOB 
formed  mainly  from  subduction  of  the  Paleo-Asian 
oceanic plate and the amalgamation of terranes of different 

types and derivation (Sengör et al., 1993; Jahn et al., 2000; 
Xiao et al., 2003; Wu et al., 2011; Yang et al., 2019). The 
tectonic  evolution  of  the  CAOB  is  characterized  by 
Paleozoic  accretion,  collision,  and  intracontinental 
deformation  during  closure  of  the  Paleo-Asian  Ocean 
(PAO) (Khain et al., 2002; Windley et al., 2007; Xiao et 
al., 2009; Wilhem et al., 2012; Xu et al., 2013; Li et al., 
2015). However, the location of the suture that marks 
PAO closure and the timing of closure remain uncertain 
(Wang and Liu, 1986; Chen et al., 2000, 2009; Badarch et 
al., 2002; Xiao et al., 2003, 2009; Miao et al., 2007, 2008; 
Jian et al., 2008, 2010, 2012; Li et al., 2015; Dong et al., 
2016; Yu et al., 2017; Tian et al., 2018). One school of 
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thought is that the Hegenshan-Heihe suture represents the 
location of final closure of the ocean between the North 
China and Siberia cratons (Tang et al., 1990), but other 
researchers have argued that the final suture of the PAO is 
represented by the Solonker-Xra Moron-Changchun-Yanji 
suture (SXCYS) (Huang et al., 1977; Xiao et al., 2003; 
Sun et al., 2004). Since the proposal of these hypotheses, 
most paleontological, geochronological, sedimentary, and 
structural data have strongly supported the SXCYS as the 
final closure suture of the PAO (Xiao et al., 2003; Sun et 
al., 2004; Wu et al., 2007, 2011; Li Y L et al., 2009; 
Zhang et al., 2009a, b, c; Chen et al., 2009; Zhang X H et 
al., 2009a, b, 2012; Jian et al., 2010; Li et al., 2013, 2014, 
2016a, b, 2017; Eizenhöfer et al., 2014, 2015a, b; Liu et 
al., 2015; Song et al., 2016; Yuan et al., 2016; Liu et al., 
2017; Zhao et al., 2017; Yang et al., 2019). However, the 
closure time of the PAO along the SXCYS is much less 
certain, and the various proposals can be divided into the 
following five different viewpoints. 

(1) On the basis of Sm-Nd isotopic data for mafic and 
ultramafic rocks from the Toudaogou Formation, as well 
as metamorphic data for the Hulan Group, it has been 
suggested that the PAO closed during the early Paleozoic 
and that  the  regional  tectonic  setting  of  the  northern 
margin of the NCC changed from subduction to extension 
during the late Paleozoic (Zhao et al., 1996; Wang et al., 
1997; Zhang et al., 1998). 

(2) According to the analysis of sedimentary lithofacies 
and  ophiolite  mélanges,  together  with  the  contact 
relationship between Carboniferous strata and ophiolites, 
it has been proposed that the North China and Siberian 
cratons  collided  during  the  early  late  Paleozoic, 
accompanied by the closure of the PAO along the SXCYS. 
After  the  late  Carboniferous,  the  Chifeng  area  was 
characterized  by  intracontinental  rift  magmatism  and 
sedimentary deposition (He and Shao, 1983; Guo, 1986; Cao 
et al., 1986; Tang, 1990; Shao, 19991; Xu and Chen, 1997; 
Ren et al., 2002; Zhu, 2015), including formation of a rift 
basin during the Permian and associated intense volcanism 
related to tectonic extension (Tang, 1990; Shao, 1991). 

(3) On the basis of the early to middle Permian alkaline 
granite belt distributed along the northern margin of the 
NCC, it has been inferred that the final closure time of the 
PAO along the SXCYS was sometime before the early to 
middle Permian (Shi et al., 2004; Zhang et al., 2007; 
Zhang X H et al., 2009a, b; Wang, 2014; Jiang, 2014; Li et 
al., 2016b). 

(4) Considering observations of paleontological mixing 
and extinctions, detrital zircon U-Pb age data of Permian 
clastic  sedimentary strata  in  the  Balinzuoqi  area,  and 
paleomagnetic data (Wang and Liu, 1986; HsuÈ et al., 
1991; Sengör et al., 1993; Li, 1995; Li et al., 2006, 2009; 
Zhang et al., 2009a; Zhang et al.,  2015), it has been 
suggested that subduction of the Paleo-Asian oceanic plate 
continued during the late Paleozoic and finally ceased 
during the late Permian-Early Triassic. The following lines 
of  evidence  also  support  this  proposal:  1)  the  Early 
Triassic  magmatism  occurred  in  a  post-collision 
extensional environment (Xiao et al., 2003, 2009; Sun et 
al., 2004; Tang et al., 2004; Li, 2006; Zhang et al., 2006; 
Windley et al., 2007; Li et al., 2009; Zhang et al., 2009c; 

Li et al., 2013, 2014, 2016a, b, 2017); 2) Carboniferous 
ocean-floor basalts and Permian radiolarian siliceous rocks 
have been discovered to the north of the Xra Moron River, 
and  late  Permian  reefs  and marine  fossils  have  been 
discovered in the Linxi area, underlying an unconformity 
in Baarin Right Banner and Jiutai County (Fan, 1996; 
Wang and Fan, 1997; Wang et al., 1999; Wang, 2001; 
Shang, 2004; Wang et al., 2005; Li et al., 2007); and 3) 
an island-arc/back-arc ophiolite suite formed during the 
late Permian-Early Triassic (Robinson et al., 1999; Miao 
et al., 2008; Jian et al., 2010; Chu et al., 2013; Song et 
al., 2016). 

(5) The occurrence of middle Permian-Middle Triassic 
collisional  granites  and  Late  Triassic  post-orogenic 
granites has been used to infer that closure of the PAO 
along the SXCYS started at the end of the late Permian but 
lasted through to the Late Triassic (Chen et al., 2001, 
2002; Zhang et al., 2004; Li et al., 2007, 2009; Fu et al., 
2010; Zhang et al., 2012; Sun, 2013; Duan et al., 2014; 
Liu et al., 2016). 

The lack of consensus regarding the closure time of the 
PAO is partly because the distribution of magmatism 
between  the  northern  margin  of  the  NCC  and  the 
Xingmeng orogenic belt is unclear. There is also a need 
for data to be obtained from new research locations. The 
present study focuses on the less studied granitic intrusive 
rocks exposed in the Chifeng area, which connects the 
Songliao Block to the north with the NCC to the south. 
We present new zircon U-Pb ages and whole-rock major- 
and trace-element compositions for six early Mesozoic 
granitic  plutons  and  evaluate  their  petrogenesis  and 
tectonic environment. The results provide new evidence 
that constrains the closure time of the PAO. 

 
2 Geological Background and Sample Descriptions 
 

The North China-Inner Mongolia tract encompasses a 
vast area from southern Inner Mongolia to northern China 
along the central-eastern part of the CAOB (Fig. 1a). 
According to recent field observations, geochronology, 
geochemistry, and geophysics, three tectonic units have 
been recognized in this tract, including, from north to 
south, the Songliao Block, the northern margin of the 
NCC, and the NCC (Fig. 1; Wu et al., 2011) 

The Songliao Block comprises the Mesozoic Songliao 
Basin, the Lesser Xing'an Range, and the Zhangguangcai 
Range. The Lesser Xing'an and Zhangguangcai ranges are 
characterized  by  voluminous  Phanerozoic  granitoids 
together with rare Paleozoic strata that occur as remnants 
in these granitoids (Wu et al., 2000, 2002). Data from 
several hundred drill-holes in the Songliao Basin reveal 
that Paleozoic-Mesozoic granitoids and Paleozoic strata 
(Gao et al., 2007; Pei et al., 2007) are widespread in the 
basement, with minor ~1.8 Ga Mesoproterozoic granitic 
gneisses (Wang et al., 2006; Pei et al., 2007) that may 
represent a tectonic slice of the NCC (Wu et al., 2011). 

The southern core of the North China-Inner Mongolia 
tract, the NCC, is one of the most ancient cratons in the 
world, with crustal rocks as old as 3.8 Ga (Zhao and Zhai, 
2013; Zhao, 2014). The craton features a basement of 
predominantly  Archean-Paleoproterozoic  tonalitic-
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Fig. 1. (a) Schematic tectonic map showing main tectonic subdivisions of central and eastern Asia and location of northeast 
China (modified from Li, 2006); (b) geological map of the central Inner Mongolia of the CAOB showing tectonic units 
(modified from Song et al., 2015).  
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trondhjemitic-granodioritic  (TTG)  gneisses  and  meta-
volcanic-meta-sedimentary  rocks.  Unconformably 
overlying  the  basement  is  a  thick  sequence  of 
unmetamorphosed  volcanic-sedimentary  successions  of 
Mesoproterozoic age,  namely,  the Changcheng, Jixian, 
and Qingbaikou systems, as well as Phanerozoic cover (Li 
et al., 1995; Zhao et al., 2005). Tectonically, the NCC is 
further divided into the Eastern and Western blocks and 
three  Paleoproterozoic  tectonic  belts,  which  are  the 
Khondalite Belt,  the Jiao-Liao-Ji Belt,  and the Trans-
North China Orogen (Zhao and Guo, 2012). The Western 
Block is subdivided into the Yinshan Block in the north 
and the Ordos Block in the south, which amalgamated 
along  the  E-W-trending  Khondalite  Belt  at  ~1.95  Ga 
(Zhao et al., 2005; Guo et al., 2012). The Eastern Block is 
subdivided into the Langrim Block in the southeast and 
the Longgang Block in the northwest, which were joined 
along the Jiao-Liao-Ji Belt during the Paleoproterozoic (Li 
and Zhao, 2007). The united Eastern and Western blocks 
finally amalgamated along the Trans-North China Orogen 
at ~1.85 Ga (Zhao et al., 2005, 2008). 

Extending from Chifeng through Faku and Liaoyuan to 
Yanji, the northern margin of the NCC was a convergent 
plate margin during the Paleozoic and was the site of 
episodic magmatic activity, including Devonian alkali 
intrusions,  Carboniferous  calc-alkaline  intrusions  and 
appinitic suites, early Permian mafic complexes and calc
-alkaline granitoids, late Permian to Early Triassic calc-
alkaline  to  alkaline  intrusions,  and  Jurassic  to  Early 
Cretaceous granitoids (Zhang et al., 2009, 2010, 2011, 
2012; Wu et al., 2011; Yu et al., 2014; Yuan et al., 
2016). 

The present study focuses on the Chifeng area around 
Chifeng  City,  Inner  Mongolia  Autonomous  Region, 
situated within the northern margin of the NCC (Fig. 1). 
The units cropping out include (1) a Paleoproterozoic 
sedimentary-metamorphic  assembly (e.g.,  the  Baoyintu 
and  Wulashan  groups),  which  is  composed  of  schist, 
marble, gneiss, and shallow granulite with a zircon U-Pb 
age of ca. 1860 Ma (Chen et al., 2015); (2) early Paleozoic 
marine-facies strata and intermediate to acidic volcanic 
rocks  (e.g.,  the  Cambrian  Jinshan  Formation,  the 
Ordovician  Minganshan  Formation,  and  the  Silurian 
Badangshan, Shaiwusu, and Xibiehe formations); (3) late 
Palaeozoic marine-facies strata (e.g., the Carboniferous 
Chaotugou, Baijiadian, and Jiujuzi formations, and the 
Permian Sanmianjing, Elitu, and Yujiabeigou formations), 
which are composed predominantly of limestone, marble, 
sandstone, and intermediate-basic volcanic rocks and have 
undergone  slight  metamorphism;  and  (4)  Mesozoic 
terrigenous-facies  volcanic-pyroclastic  rocks  and 
terrigenous clastic rocks (e.g., the Triassic Houfulongshan 
and Hongla formations, the Jurassic Manketouebo and 
Manitu  formations,  and  the  Cretaceous  Baiyingaolao, 
Yixian, Jiufotang, Fuxin, and Sunjiawan formations).  

Samples analyzed in this study were collected from six 
different  Triassic  granitic  intrusions  identified  in  the 
Chifeng  area  (Fig.  2),  namely,  the  Mengguyingzi 
(MGYZ),  Xiaxinjing  (XXJ),  Daluobogou  (DLBG), 
Songshugouliang (SSGL), Ailingou (ALG), and Bajiazi 
(BJZ) plutons. Seven samples and 27 samples from these 

plutons  were  selected  for  geochronological  and 
geochemical analyses, respectively. 

The  MGYZ pluton,  located  5  km south  of  Aohan 
Banner (Fig. 2), intrudes Paleoproterozoic strata (i.e., the 
Baoyintu Group) and the Carboniferous Jiujuzi Formation, 
and is overlain by the volcanics and sediments of the 
Cretaceous Yixian Formation. This pluton is dominated by 
granodiorites (samples PM101-5-1, PM101-7-1, PM101-7
-2,  PM101-7-3,  PM101-7-4,  and  PM101-7-5)  with 
porphyritic texture and weak gneissosity. These samples 
consist of plagioclase (37 wt%), quartz (23 wt%), feldspar 
(5 wt%), hornblende (15 wt%), and biotite (15 wt%), with 
accessory zircon, titanite, magnetite, and apatite (5 wt%) 
(Fig. 3a, Fig. 3b). The pluton also contains a small amount 
of syenogranite (T101) (Fig. 2). 

The XXJ pluton, located 50 km east of Chifeng City 
(Fig.  2),  intrudes  early  Carboniferous  granodiorites. 
Samples D2711-1, D2711-2, PM205-2-2, PM205-4-1, and 
PM205-10-1 are syenogranites with medium-fine-grained 
subhedral texture and massive structure. The main rock-
forming minerals are alkali feldspar (50 wt%), quartz (35 
wt%), plagioclase (10 wt%), and biotite (3 wt%), with 
accessory  minerals  including  magnetite,  zircon,  and 
apatite (2 wt%) (Figs. 3c, 3d). 

The DLBG pluton, located 15 km east of Heishui Town 
(Fig. 2), intrudes Permian monzogranite. Samples PM210-
2-1,  PM210-6-1,  PM210-8-2,  and  PM210-8-3  are 
composed  of  syenogranite  with  medium-fine-grained 
subhedral texture and massive structure. The main rock-
forming minerals are alkali feldspar (45 wt%), plagioclase 
(15 wt%), quartz (36 wt%), and biotite (2 wt%), with 
accessory minerals  including apatite,  titanium dioxide, 
zircon, and limonite (2 wt%) (Figs. 3e, 3f). 

The SSGL pluton, located 17 km north of Heishui Town 
(Fig. 2), is intruded by Cretaceous monzogranite. This 
pluton is dominated by granodiorite (sample D3493-1) 
with medium-fine-grained subhedral texture and massive 
structure. The main rock-forming minerals are plagioclase 
(55 wt%), quartz (20 wt%), alkali feldspar (15 wt%), 
hornblende (5 wt%), and biotite (3 wt%), with accessory 
zircon, magnetite, and apatite (2 wt%) (Figs. 3g, 3h). 

The ALG pluton, located 40 km north of Chifeng City 
(Fig. 2), intrudes the Silurian Badangshan, Shaiwusu, and 
Xibiehe formations. Samples 14CH13, 14CH14, 14CH15, 
14CH16, and 14CH17 are granodiorites with medium-fine
-grained texture and massive structure. They consist of 
plagioclase (50 wt%), quartz (22 wt%), alkali feldspar (15 
wt%), and biotite (10 wt%), and accessory zircon, titanite, 
and apatite (3 wt%) (Figs. 3i, 3j). 

The BJZ pluton, located 45 km southeast of Aohan 
Banner (Fig. 2), intrudes Permian monzogranite and is 
overlain by volcanics of the Cretaceous Yixian Formation. 
This  pluton  is  dominated  by  monzogranites  (samples 
PM403-3-1, PM403-5-1, PM403-7-1, PM403-7-2, M403-
7-3, PM403-7-4, and PM403-7-5) with a fine-medium-
grained  granitic  texture  and  massive  structure.  They 
consist of quartz (32 wt%), alkali feldspar (32 wt%), 
plagioclase (30 wt%), and biotite (5 wt%), and accessory 
zircon,  hematite,  pyrite,  anatase,  galena,  and  titanium 
dioxide (1 wt%) (Figs. 3k, 3l).  
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3 Analytical Methods 
 
3.1 Sample preparation 

Zircons  crystals  were  separated  from  whole-rock 
samples by using conventional heavy liquid and magnetic 
techniques, and the separates were further purified by hand
-picking under a binocular microscope at the Langfang 
Yuneng  Mineral  Separation  Limited  Company,  Hebei 
Province, China. The zircons were selected and embedded 
in  epoxy  resin  and  polished  and  then  imaged  using 
cathodoluminescence  (CL)  to  reveal  their  internal 
structures with a scanning electron microscope. CL images 
of three samples (D2711-1, PM210-6-1, and D3493-1) 
were obtained at the electron microprobe Laboratory of 
the  Institute  of  Geology  and  Geophysics,  Chinese 
Academy of Sciences, and the others at the Zhongnan 
Mineral Supervision and Testing Center of the Ministry of 
Land and Resources. 

 
3.2 Zircon LA-ICP-MS U-Pb isotope dating 

U-Pb zircon ages for the Triassic granites in the Chifeng 
area were obtained using an Agilent 7500a inductively 

coupled plasma-mass spectrometry (ICP-MS) instrument 
equipped with a 193 nm ArF Excimer laser-ablation (LA) 
system. The spot size was 36 μm for the analyses, with an 
energy density of 8.5 J/cm2 and a repetition rate of 10 Hz. 
Helium was used as the carrier gas to transport the ablated 
material from the standard LA cell. Zircon 91500 was 
used as the external standard for age calibration, and 
standard silicate NIST 610 glass was used to calibrate 
content calculations (Wiedenbeck et al.,  1995). Zircon 
standards TEMORA (16±5 Ma) and QH (160±1 Ma) were 
also used as secondary standards to monitor any deviation 
of age measurement. Isotopic ratios and element contents 
were calculated using the Glitter software program. The 
age calculation and concordia plots were obtained using 
Isoplot  (ver  3.0)  (Ludwig,  2003).  Common  Pb  was 
corrected using the method of Andersen (2002). Analyses 
of three samples (D2711-1, PM210-6-1, and D3493-1) 
were conducted at the Geologic Laboratory Center, China 
University of Geosciences (Beijing, China), and the others 
at the Zhongnan Mineral Supervision and Testing Center 
of the Ministry of Land and Resources. 

 

 

Fig. 2. A detailed geological map of the Chifeng City region in the north margin of the North China Craton showing sample loca-
tions, after the results of 1:50000 regional geological survey (2015).  
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3.3 Major- and trace-element analyses 
Major-, trace-, and rare-earth-element (REE) analyses 

for 29 samples were performed at the Northeast China 
Supervision and Inspection Center of Mineral Resources, 
Ministry  of  Land  and  Resources,  Shenyang,  China. 
Samples were crushed and ground to 200 mesh in an agate 
mill after petrographic examination and removal of altered 

rock surfaces. Whole-rock major-element contents were 
determined by X-ray fluorescence spectrometry (XRF), 
yielding analytical precisions of better than 2%. Trace-
element and REE contents were determined by ICP-MS, 
and yielding analytical precisions of better than 5% for 
elements with contents of >10 ppm, better than 8% for 
elements with contents of <10 ppm, and 10% for the 

 

Fig. 3. Photographs and microphotographs (cross-polarized light) showing field relationships and rock textures. 
(a) Outcrop of the Xiaxinjing syenogranite showing a massive structure; (b) Syenogranite (sample D2711-1); (c) Outcrop of the Daluotogou syenogranite 
showing a massive structure; (d) Syenogranite (sample PM210-6-1); (e) Outcrop of the Megnguyingzi granodiorite; (f) Granodiorite (sample PM101-7-2); (g) 
Outcrop of the Songshugouliang granodiorite; (h) Granodiorite (sample D3493-1);. (i) Outcrop of the Ailingou granodiorite showing a medium-fine grained 
texture; (j) Granodiorite (sample14CH14); (k) Outcrop of the Bajiazi monzogranite showing a massive structure; (l) Monzogranite (sampleT409).  
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transition metals. Details of the techniques used for major- 
and trace-element determinations are described by Li et al. 
(2005). 

 
4 Analytical Results 

 
4.1 Zircon U-Pb ages 

Seven granite samples were selected for zircon LA-ICP-
MS dating, and the analytical results are listed in Table 1. 
All the zircons are transparent and generally euhedral, 
ranging in size from 80 to 200 μm with length:width ratios 
of  1:1  to  3:1.  Almost  all  of  these  zircons  are  pure, 
colorless,  and  euhedral-subhedral  and  contain  clear 
oscillatory zoning visible during CL imaging (Fig. 4). 
These features, in combination with high Th/U ratios of 
0.20–5.90,  indicate  a  magmatic  origin  (Hoskin  et  al., 
2001;  Belousova  et  al.,  2002).  Therefore,  the  ages 
represent the timing of crystallization of these samples. 
Zircon U-Pb concordia diagrams with weighted mean ages 
are shown in Fig. 5. 

 
4.1.1 Early Triassic syenogranite  

Sample D2711-1 is a syenogranite from the Xiaxinjing 
pluton. Twenty-four U-Pb analyses were obtained, with all 
but three yielding ages of 260 to 242 Ma distributed in one 
group on or near the concordia. Their weighted mean 
206Pb/238U age is 250±2 Ma (MSDW=1.5; n=21) (Fig. 5a), 
which is regarded as the crystallization age of sample 
D2711-1. 

Sample T101 is a syenogranite from the Mengguyingzi 
pluton. Twenty U-Pb analyses were obtained, with all but 
one yielding ages of 255 to 234 Ma clustered in a single 

group on or near the concordia. Their weighted mean 
206Pb/238U age is 250±4 Ma (MSDW=0.59; n=19) (Fig. 
5b), which is interpreted to represent the crystallization 
age of the syenogranite. 

Sample  PM210-6-1  is  a  syenogranite  from  the 
Daluobogou  pluton.  Twenty-five  U-Pb  analyses  were 
obtained, with all but one of the ages ranging from 253 to 
244 Ma distributed in a group on or near the concordia. 
Their  weighted  mean  206Pb/238U  age  is  248±1  Ma 
(MSDW=0.87; n=24) (Fig. 5c) and is interpreted as the 
crystallization age of the syenogranite. 

 
4.1.2 Middle Triassic granodiorite  

Sample  PM101-7-2  is  a  granodiorite  from  the 
Mengguyingzi  pluton.  Twenty  U-Pb  analyses  were 
obtained,  of which all  but two data give a range of 
206Pb/238U ages between 255 and 238 Ma and are clustered 
in a single group on or near the concordia. Their weighted 
mean 206Pb/238U age is 244±2 Ma (MSDW=0.78; n=18) 
(Fig. 5d), which is regarded as the crystallization age of 
sample PM101-7-2. 

Sample  D3493-1  is  a  granodiorite  from  the 
Songshugouliang pluton. Twenty-five U-Pb analyses were 
obtained, with all but four giving a range of 206Pb/238U 
ages between 247 and 236 Ma and being distributed in one 
group on or near the concordia. Their weighted mean 
206Pb/238U age is 243±1 Ma (MSDW=0.66; n=21) (Fig. 
5e), which is interpreted as representing the timing of 
crystallization of the granodiorite. 

 
4.1.3 Late Triassic granodiorite and monzogranite  

Sample 14CH14 is a granodiorite from the Ailingou 

 

Fig. 4. Cathodoluminescence (CL) images of selected zircon grains from Triassic granites in this study.  
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Fig. 5. Zircon 207Pb/235U-206Pb/238U concordia diagrams of Triassic granites samples from this study.  
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Table 1 LA-ICP-MS zircon U-Pb data for the Triassic granites in the Chifeng City, Inner Mongolia Autonomous Region in 
the north margin of the North China Craton 

Sample 
wB (ppm) 

Th/U
Isotope ratio T (Ma) 

Pb Th U 207Pb/235U±1σ 206Pb/238U±1σ 207Pb/235U±1σ 206Pb/238U±1σ
D2711-1-01 6.76 157.88 131.29 1.20 0.28386 0.01513 0.03998 0.00065 254 12 253 4 
D2711-1-02 5.96 124.37 120.59 1.03 0.28663 0.02161 0.04050 0.00068 256 17 256 4
D2711-1-03 4.35 81.53 91.89 0.89 0.28172 0.02290 0.03967 0.00076 252 18 251 5 
D2711-1-04 3.84 53.86 82.86 0.65 0.29040 0.03007 0.04109 0.00074 259 24 260 5 
D2711-1-05* 19.23 335.09 408.49 0.82 0.32711 0.01093 0.04096 0.00058 287 8 259 4
D2711-1-06 30.80 214.59 720.65 0.30 0.29460 0.01234 0.04070 0.00058 262 10 257 4 
D2711-1-07 13.67 306.10 274.45 1.12 0.28109 0.01266 0.04000 0.00062 252 10 253 4 
D2711-1-08 39.51 949.74 836.15 1.14 0.27722 0.00816 0.03838 0.00053 248 6 243 3 
D2711-1-09 10.42 278.09 202.49 1.37 0.26947 0.01431 0.03830 0.00059 242 11 242 4 
D2711-1-10 5.00 87.53 109.05 0.80 0.28737 0.02257 0.03877 0.00067 256 18 245 4 
D2711-1-11 9.00 203.38 183.67 1.11 0.27530 0.01569 0.03900 0.00061 247 12 247 4 
D2711-1-12 1.17 21.00 25.25 0.83 0.28325 0.04350 0.03979 0.00096 253 34 252 6 
D2711-1-13 7.03 103.82 152.56 0.68 0.29972 0.02242 0.03971 0.00065 266 18 251 4
D2711-1-14 8.53 209.74 177.29 1.18 0.28684 0.01217 0.03993 0.00062 256 10 252 4 
D2711-1-15 18.04 426.96 342.75 1.25 0.28738 0.01073 0.04033 0.00058 256 8 255 4 
D2711-1-16 6.23 130.59 124.25 1.05 0.28507 0.02748 0.03986 0.00089 255 22 252 6 
D2711-1-17* 7.48 108.07 171.04 0.63 0.30255 0.01928 0.03834 0.00064 268 15 243 4 
D2711-1-18 14.45 264.30 296.88 0.89 0.28494 0.01021 0.04022 0.00058 255 8 254 4 
D2711-1-19 3.69 54.32 79.73 0.68 0.28578 0.01738 0.04036 0.00075 255 14 255 5 
D2711-1-20 11.11 249.39 224.69 1.11 0.27775 0.01390 0.03966 0.00062 249 11 251 4 
D2711-1-21 3.75 59.31 80.42 0.74 0.29076 0.02525 0.04002 0.00073 259 20 253 5 
D2711-1-22 2.92 47.62 64.53 0.74 0.27201 0.02150 0.03857 0.00072 244 17 244 4 
D2711-1-23* 9.30 78.22 156.69 0.50 0.40001 0.01539 0.05438 0.00081 342 11 341 5 
D2711-1-24 3.45 76.41 75.36 1.01 0.28464 0.03012 0.04031 0.00071 254 24 255 4 
T101-01* 1.60 40.09 32.63 1.23 0.76864 0.08334 0.03955 0.00335 579 48 250 21
T101-02 1.68 36.40 31.21 1.17 0.87075 0.10003 0.04059 0.00174 636 54 257 11
T101-03 1.17 26.56 22.46 1.18 0.93123 0.07274 0.03952 0.00174 668 38 250 11
T101-04 1.68 35.56 32.41 1.10 0.77944 0.07417 0.04077 0.00158 585 42 258 10
T101-05 1.14 27.88 20.40 1.37 1.17313 0.11252 0.04075 0.00181 788 53 257 11
T101-06 1.66 38.92 31.71 1.23 0.70655 0.08072 0.03877 0.00203 543 48 245 13
T101-07 1.63 41.02 28.66 1.43 0.75538 0.12314 0.03837 0.00270 571 71 243 17
T101-08 1.20 28.85 22.62 1.28 0.81673 0.05816 0.04069 0.00195 606 33 257 12
T101-09 1.96 40.33 39.20 1.03 0.78539 0.14128 0.03773 0.00214 589 81 239 13
T101-10 1.38 30.51 25.51 1.20 0.94989 0.06963 0.04081 0.00176 678 36 258 11
T101-11 3.11 52.40 61.02 0.86 0.59640 0.04495 0.04096 0.00140 475 29 259 9 
T101-12 1.33 24.54 22.23 1.10 1.57258 0.12535 0.04040 0.00172 959 50 255 11
T101-13 1.81 40.37 33.85 1.19 0.80155 0.06170 0.04027 0.00162 598 35 255 10
T101-14 3.80 72.13 80.63 0.89 0.43799 0.03252 0.03855 0.00103 369 23 244 6 
T101-15 1.38 30.28 27.51 1.10 1.05524 0.09350 0.03803 0.00170 731 46 241 11
T101-16 1.99 55.79 42.40 1.32 0.90227 0.14203 0.03704 0.00166 653 76 234 10
T101-17 1.60 42.80 30.18 1.42 0.78529 0.07604 0.03816 0.00154 588 43 241 10
T101-18 1.25 36.30 24.72 1.47 0.99539 0.13652 0.03866 0.00172 701 70 244 11
T101-19 2.56 41.46 55.47 0.75 0.55569 0.04830 0.04032 0.00115 449 32 255 7 
T101-20 1.33 37.23 26.14 1.42 0.69045 0.04380 0.04027 0.00138 533 26 254 9

PM210-6-1-01 6.68 121.42 139.37 0.87 0.27960 0.00981 0.03922 0.00053 250 8 248 3 
PM210-6-1-02 13.86 193.56 307.78 0.63 0.29493 0.00796 0.03905 0.00050 262 6 247 3 
PM210-6-1-03 9.51 162.88 202.45 0.80 0.27820 0.00797 0.03906 0.00051 249 6 247 3 
PM210-6-1-04 11.54 164.39 255.88 0.64 0.27584 0.00707 0.03902 0.00050 247 6 247 3 
PM210-6-1-05 13.54 190.34 297.67 0.64 0.27974 0.00767 0.03969 0.00052 250 6 251 3 
PM210-6-1-06 11.94 137.74 265.29 0.52 0.28726 0.00876 0.04007 0.00052 256 7 253 3 
PM210-6-1-07 11.64 235.89 240.32 0.98 0.27874 0.00795 0.03876 0.00051 250 6 245 3 
PM210-6-1-08 14.43 223.00 319.14 0.70 0.27623 0.00743 0.03869 0.00050 248 6 245 3 
PM210-6-1-09 7.66 152.37 152.86 1.00 0.28444 0.00938 0.03989 0.00054 254 7 252 3
PM210-6-1-10 14.43 229.12 315.56 0.73 0.28054 0.00792 0.03886 0.00050 251 6 246 3 
PM210-6-1-11 14.00 275.67 289.43 0.95 0.27615 0.00728 0.03902 0.00051 248 6 247 3 
PM210-6-1-12 25.56 389.62 559.64 0.70 0.28302 0.00661 0.03985 0.00050 253 5 252 3
PM210-6-1-13 9.04 116.98 199.98 0.58 0.28337 0.01088 0.04010 0.00055 253 9 253 3 
PM210-6-1-14 8.93 115.62 202.74 0.57 0.27413 0.00860 0.03884 0.00052 246 7 246 3 

PM210-6-1-15* 71.18 160.55 176.90 0.91 5.01581 0.10732 0.31872 0.00397 1822 18 1783 19
PM210-6-1-16 10.32 197.46 216.78 0.91 0.27663 0.00952 0.03883 0.00051 248 8 246 3 
PM210-6-1-17 12.61 224.10 273.11 0.82 0.27211 0.00787 0.03872 0.00051 244 6 245 3
PM210-6-1-18 10.28 180.69 223.14 0.81 0.29942 0.00999 0.03893 0.00051 266 8 246 3 
PM210-6-1-19 12.03 180.28 262.90 0.69 0.27786 0.00871 0.03952 0.00053 249 7 250 3 
PM210-6-1-20 12.78 231.74 269.35 0.86 0.27635 0.00817 0.03885 0.00051 248 6 246 3
PM210-6-1-21 16.77 251.43 373.32 0.67 0.28182 0.00739 0.03883 0.00050 252 6 246 3 
PM210-6-1-22 8.57 140.42 187.00 0.75 0.29004 0.01119 0.03854 0.00054 259 9 244 3 
PM210-6-1-23 5.31 94.28 115.41 0.82 0.27754 0.00978 0.03859 0.00054 249 8 244 3
PM210-6-1-24 11.51 212.30 244.43 0.87 0.28534 0.00889 0.03899 0.00052 255 7 247 3 
PM210-6-1-25 17.33 203.65 401.79 0.51 0.27998 0.00772 0.03935 0.00051 251 6 249 3 
PM101-7-2-01 8.61 142.04 186.69 0.76 0.26933 0.04082 0.03772 0.00163 242 33 239 10

PM101-7-2-02* 24.08 374.97 519.92 0.72 0.21816 0.02474 0.04019 0.00096 200 21 254 6 
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Continued Table 1 
Sample wB (ppm) 

Th/U
Isotope ratio T (Ma) 

Pb Th U 207Pb/235U±1σ 206Pb/238U±1σ 207Pb/235U±1σ 206Pb/238U±1σ
PM101-7-2-03* 11.86 156.03 299.89 0.52 0.19816 0.02161 0.03504 0.00147 184 18 222 9 
PM101-7-2-04 11.32 211.21 231.44 0.91 0.28954 0.03642 0.03791 0.00117 258 29 240 7 
PM101-7-2-05 14.22 210.06 312.19 0.67 0.27320 0.01495 0.03868 0.00114 245 12 245 7
PM101-7-2-06 23.17 341.93 530.49 0.64 0.28098 0.02862 0.03908 0.00093 251 23 247 6 
PM101-7-2-07 22.56 320.12 513.55 0.62 0.28251 0.01330 0.03837 0.00068 253 11 243 4
PM101-7-2-08 17.14 269.04 403.56 0.67 0.27131 0.01794 0.03754 0.00102 244 14 238 6 
PM101-7-2-09 11.33 185.81 254.53 0.73 0.27872 0.02183 0.03811 0.00103 250 17 241 6 
PM101-7-2-10 27.44 457.68 640.34 0.71 0.28238 0.01212 0.03822 0.00063 253 10 242 4
PM101-7-2-11 14.73 192.81 362.72 0.53 0.28310 0.01703 0.03783 0.00081 253 13 239 5 
PM101-7-2-12 24.60 369.87 570.75 0.65 0.27892 0.01159 0.03920 0.00071 250 9 248 4 
PM101-7-2-13 17.43 289.43 410.90 0.70 0.27770 0.02168 0.03785 0.00055 249 17 239 3
PM101-7-2-14 19.73 260.21 469.52 0.55 0.28135 0.01223 0.03966 0.00069 252 10 251 4 
PM101-7-2-15 5.54 104.16 131.16 0.79 0.29169 0.01864 0.03802 0.00101 260 15 241 6 
PM101-7-2-16 24.98 327.04 573.08 0.57 0.29370 0.03144 0.04029 0.00122 261 25 255 8 
PM101-7-2-17 20.77 326.66 475.35 0.69 0.27771 0.01085 0.03901 0.00065 249 9 247 4 
PM101-7-2-18 16.62 218.85 398.18 0.55 0.28638 0.01550 0.03925 0.00083 256 12 248 5 
PM101-7-2-19 37.62 511.76 926.91 0.55 0.27092 0.01178 0.03821 0.00067 243 9 242 4 
PM101-7-2-20 22.00 278.30 513.17 0.54 0.30168 0.01318 0.03927 0.00065 268 10 248 4 

D3493-1-01 11.94 231.73 245.25 0.94 0.27272 0.01044 0.03873 0.00049 245 8 245 3 
D3493-1-02* 19.48 283.98 468.93 0.61 0.27809 0.00875 0.03593 0.00045 249 7 228 3 
D3493-1-03 8.49 104.00 195.07 0.53 0.27618 0.01361 0.03783 0.00052 248 11 239 3 
D3493-1-04* 8.02 130.86 191.91 0.68 0.31441 0.01730 0.03355 0.00053 278 13 213 3 
D3493-1-05 11.60 265.66 227.95 1.17 0.26734 0.01207 0.03898 0.00049 241 10 247 3 
D3493-1-06 4.93 81.78 106.53 0.77 0.27761 0.02109 0.03842 0.00055 249 17 243 3 
D3493-1-07 17.00 248.36 373.45 0.67 0.27450 0.00909 0.03885 0.00049 246 7 246 3 
D3493-1-08 13.98 313.98 274.52 1.14 0.27296 0.01269 0.03876 0.00049 245 10 245 3 
D3493-1-09 11.19 224.95 228.39 0.98 0.27606 0.01086 0.03859 0.00050 248 9 244 3 
D3493-1-10 6.71 117.22 143.10 0.82 0.27305 0.01204 0.03853 0.00053 245 10 244 3
D3493-1-11 8.28 121.94 183.68 0.66 0.26613 0.01052 0.03855 0.00052 240 8 244 3 
D3493-1-12* 115 1794 2472 0.73 0.38384 0.00867 0.03881 0.00046 330 6 245 3 
D3493-1-13 49.54 642.61 1060 0.61 0.28433 0.01255 0.03888 0.00049 254 10 246 3 
D3493-1-14 9.06 202.82 181.02 1.12 0.27813 0.01538 0.03835 0.00053 249 12 243 3 
D3493-1-15 6.29 118.68 131.77 0.90 0.27526 0.01418 0.03855 0.00055 247 11 244 3 
D3493-1-16 17.98 531.30 331.91 1.60 0.27059 0.01026 0.03812 0.00048 243 8 241 3 
D3493-1-17 13.20 206.55 292.19 0.71 0.26659 0.00927 0.03847 0.00049 240 7 243 3 
D3493-1-18 12.83 225.62 284.14 0.79 0.26369 0.01221 0.03726 0.00052 238 10 236 3
D3493-1-19 7.42 260.54 125.38 2.08 0.27440 0.02007 0.03817 0.00057 246 16 241 4 
D3493-1-20 11.04 168.94 244.30 0.69 0.26922 0.01089 0.03858 0.00050 242 9 244 3 
D3493-1-21 10.38 205.05 221.10 0.93 0.27162 0.01114 0.03840 0.00051 244 9 243 3
D3493-1-22 41.81 620.47 938.91 0.66 0.26118 0.00834 0.03836 0.00049 236 7 243 3 
D3493-1-23* 14.82 145.77 253.32 0.58 0.20793 0.02402 0.03275 0.00046 192 20 208 3 
D3493-1-24 12.56 137.42 292.39 0.47 0.26743 0.02054 0.03875 0.00072 241 16 245 4 
D3493-1-25 5.33 93.98 115.00 0.82 0.27543 0.02871 0.03854 0.00061 247 23 244 4 
14CH14-01 106 379 1876 0.20 0.25797 0.00895 0.03716 0.00039 233 7 235 2 
14CH14-02 80 388 977 0.39 0.27184 0.01235 0.03673 0.00046 244 10 233 3 

14CH14-03* 84 352 977 0.35 0.30114 0.01349 0.03818 0.00046 267 11 242 3 
14CH14-04* 1125 665 2043 0.30 4.22415 0.12125 0.27072 0.00571 1679 24 1544 29
14CH14-05* 91 458 882 0.50 0.27534 0.01230 0.03966 0.00059 247 10 251 4 
14CH14-06* 80 365 1033 0.34 0.28399 0.01115 0.03757 0.00047 254 9 238 3 
14CH14-07 90 417 1201 0.34 0.26498 0.01061 0.03681 0.00043 239 9 233 3 
14CH14-08 119 531 1902 0.27 0.25283 0.00850 0.03563 0.00036 229 7 226 2 
14CH14-09 95 422 1280 0.30 0.27103 0.01018 0.03667 0.00041 244 8 232 3 
14CH14-10 211 1118 2318 0.46 0.25408 0.00750 0.03527 0.00032 230 6 223 2 
14CH14-11 119 569 1349 0.38 0.27113 0.00921 0.03636 0.00041 244 7 230 3 

14CH14-12* 206 1103 2078 0.51 0.26597 0.00821 0.03470 0.00038 239 7 220 2 
14CH14-13 108 510 1314 0.37 0.27034 0.00999 0.03694 0.00042 243 8 234 3 
14CH14-14 174 823 2133 0.37 0.25864 0.00861 0.03670 0.00036 234 7 232 2 
14CH14-15 77 363 1005 0.35 0.25839 0.01142 0.03566 0.00046 233 9 226 3 

14CH14-16* 46 194 398 0.44 0.35626 0.02154 0.03578 0.00061 309 16 227 4 
14CH14-17* 75 369 682 0.52 0.27834 0.01383 0.03513 0.00047 249 11 223 3 
14CH14-18* 67 301 933 0.30 0.25106 0.01062 0.03855 0.00051 227 9 244 3 
14CH14-19 84 413 962 0.41 0.26357 0.01151 0.03643 0.00043 238 9 231 3 
14CH14-20 64 363 596 0.56 0.26065 0.01421 0.03688 0.00070 235 11 233 4 
T409-01* 124 512 247 2.07 0.66196 0.03268 0.04843 0.00115 516 20 305 7
T409-02* 392 408 218 1.87 1.40546 0.03531 0.04860 0.00074 891 15 306 5 
T409-03* 1139 443 452 0.98 1.69171 0.06081 0.04663 0.00117 1005 23 294 7 
T409-04* 215 1974 765 2.58 0.47380 0.05099 0.04657 0.00156 394 35 293 10
T409-05* 883 3140 533 5.90 1.50018 0.04418 0.04706 0.00066 930 18 296 4 
T409-06* 731 1780 437 4.07 1.27712 0.06097 0.04606 0.00154 836 27 290 10
T409-07* 1271 265 183 1.45 3.44493 0.08164 0.04786 0.00066 1515 19 301 4 
T409-08* 304 1279 339 3.77 0.90627 0.04242 0.04751 0.00080 655 23 299 5 
T409-09* 421 1069 358 2.99 1.26014 0.03984 0.04799 0.00058 828 18 302 4 
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pluton. Twenty U-Pb analyses were obtained, twelve of 
which give a range of 206Pb/238U ages between 235 and 
226 Ma and cluster in a single group on or near the 
concordia. Their weighted mean 206Pb/238U age is 230±2 
Ma (MSDW=2.5; n=12) (Fig. 5f), which is interpreted to 
represent the crystallization timing of the granodiorite. 
This age is consistent (within error) with the age of 227±1 
Ma obtained by Zhang (2013). 

Sample T409 is a monzogranite from the Bajiazi pluton. 
Nineteen U-Pb analyses were obtained, only two of which 
are distributed on/near the concordia, possibly because of 
the high contents of common lead. The weighted mean 
206Pb/238U age is 232±4 Ma (MSDW=0.78; n=2) (Figs. 5g, 
5h). This age is interpreted to be the crystallization age of 
the monzogranite and is consistent with the age (233 Ma) 
obtained by Song et al. (2010). 
 
4.1.4 Zircon U-Pb age groups  

Based on the new ages and previous age data (Duan et 
al.,  2014;  Zhang,  2013;  Song  et  al.,  2010),  Triassic 
granites in the Chifeng area can be divided into three main 
groups. The syenogranites (D2711-1, T101, and PM210-6-
1) with ages of 250–248 Ma belong to the Early Triassic, 
the granodiorites (PM107-7-2 and D3493-1) with ages of 

244–243  Ma belong  to  the  Middle  Triassic,  and  the 
granodiorite  (14CH14)  and  monzogranite  (T409)  with 
ages of 230 Ma and 232 Ma, respectively, belong to the 
early Late Triassic.  

 
4.2 Major- and trace-element geochemistry 

A total of 27 granitic samples, including syenogranite, 
granodiorite, and monzogranite, were analyzed for major- 
and trace-element compositions. The results are listed in 
Table 2. 

 
4.2.1 Early Triassic syenogranite 

The syenogranite samples all contain high contents of 
SiO2 (73.41–76.65 wt%), K2O (3.77–5.11 wt%), and total 
Na2O+K2O (7.92–9.13 wt%), and plot within the high-K 
calc-alkaline fields in a K2O vs. SiO2 diagram (Fig. 6a; 
Peccerillo and Taylor, 1976). The samples also contain 
low contents of Al2O3 (11.54–13.50 wt%), TiO2 (0.07–
0.18 wt%),  MnO (0.02–0.07 wt%),  MgO (0.10–0.19 
wt % ),  and  P2O5  (0.01–0.04  wt% ),  with  total  Fe2O3 
(TFe2O3) of 1.32–2.99 wt%. Their A/CNK [molar Al2O3/
(Na2O+K2O+CaO)]  values  range  from  0.96  to  1.06, 
indicating a metaluminous to weakly peraluminous nature, 
as shown in an A/NK vs. A/CNK diagram (Fig. 6b; 

Continued Table 1 
Sample wB (ppm) 

Th/U
Isotope ratio T (Ma) 

Pb Th U 207Pb/235U±1σ 206Pb/238U±1σ 207Pb/235U±1σ 206Pb/238U±1σ
T409-10* 189 985 622 1.58 0.41912 0.02972 0.03752 0.00115 355 21 237 7 
T409-11* 452 2763 611 4.53 1.31036 0.04053 0.03611 0.00078 850 18 229 5 
T409-12 57 994 329 3.02 0.26577 0.01888 0.03738 0.00092 233 15 232 6 

T409-13* 132 683 624 1.09 0.59580 0.02117 0.03832 0.00093 475 13 242 6 
T409-14* 294 1019 363 2.81 1.12912 0.04248 0.03702 0.00119 767 20 234 7
T409-15* 431 1369 337 4.06 1.30177 0.04202 0.03659 0.00061 847 19 232 4 
T409-16 53 633 421 1.50 0.25834 0.01989 0.03668 0.00078 233 16 232 5 

T409-17* 205 813 332 2.45 0.64869 0.02308 0.03639 0.00059 508 14 230 4 
T409-18* 632 1414 295 4.80 1.87100 0.04989 0.03573 0.00048 1071 18 226 3 
T409-19* 203 689 239 2.89 0.51140 0.01619 0.03713 0.00047 419 11 235 3 

*Representing the abandoned points when calculating weighted average age because of discordance.

 

 

Fig. 6. (a) K2O versus SiO2 diagram for intrusive rocks. Normalization values are from Le Maitre (1984) and Rickwood (1989); (b) 
A/NK (molar/molar) versus A/CNK (molar/molar) diagram for these rocks. Normalization values are from Le Maitre (1984) and 
Rickwood (1989).  
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Table 2 Major (wt%) and trace (ppm) elements data of Triassic granites in the Chifeng City, Inner Mongolia Autonomous 
Region in the north margin of the North China Craton 

Sample D2711-1 D2711-2 PM205-2-2 PM205-4-1 PM205-10-1 PM210-2-1 PM210-6-1 PM210-8-2 PM210-8-3
Lithology Syenogrinite Syenogrinite 

Pluton Xiaxinjing Daluobogou 
Era Early Triassic 
SiO2 74.28 75.48 74.51 76.56 73.41 76.21 76.37 76.65 76.44 
TiO2 0.18 0.09 0.12 0.1 0.15 0.07 0.08 0.08 0.08 
Al2O3 13.09 12.54 13.16 12.33 13.5 12.36 12.33 11.96 11.54 

TFe2O3 2.04 1.78 2.08 1.87 2.99 1.45 1.32 1.83 2.2 
FeO 0.76 0.9 0.88 0.86 1.6 0.79 0.61 0.97 1.4 
MnO 0.06 0.04 0.04 0.04 0.07 0.02 0.02 0.03 0.03 
MgO 0.13 0.18 0.19 0.17 0.09 0.1 0.1 0.1 0.11 
CaO 0.39 0.49 0.58 0.4 0.51 0.57 0.53 0.5 0.52 
Na2O 4.02 3.89 4.31 4.15 4.12 3.88 3.89 3.62 3.23 
K2O 5.11 4.76 4.28 3.77 4.63 4.94 4.93 5.09 5.36 
P2O5 0.03 0.01 0.03 0.02 0.04 0.01 0.01 0.01 0.01 
LOI 0.47 0.5 0.47 0.4 0.3 0.24 0.27 0.04 0.34 
Total 100.5 100.6 100.6 100.6 101.4 100.6 100.4 100.8 101.2 

Na2O+K2O 9.13 8.65 8.59 7.92 8.75 8.82 8.82 8.72 8.59 
Na2O/K2O 0.79 0.82 1.01 1.1 0.89 0.79 0.79 0.71 0.6 

A/NK 1.08 1.09 1.12 1.13 1.15 1.05 1.05 1.04 1.04 
A/CNK 1.02 1.01 1.03 1.06 1.06 0.97 0.97 0.97 0.96 

SI 1.09 1.57 1.65 1.57 0.64 0.93 0.93 0.83 0.87 
AR 3.96 3.97 4.33 4.3 3.85 4.01 4.06 3.78 3.3 
σ43 2.66 2.3 2.34 1.87 2.53 2.34 2.33 2.26 2.21 
σ25 1.69 1.48 1.49 1.22 1.57 1.52 1.51 1.47 1.43 
R1 2250 2458 2349 2664 2198 2474 2498 2533 2574 
R2 305 307 330 292 321 307 303 291 285 

Mg# 0.1 0.12 0.13 0.12 0.03 0.08 0.1 0.06 0.05 
La 40.33 23.8 28.59 23.87 34.15 23.43 24.97 33.78 22.01 
Ce 85.28 56.17 63.43 49.73 62.69 53.1 64.81 76.88 59.66 
Pr 8.43 5.08 5.56 5.83 6.77 7.46 7.74 9.28 6.25 
Nd 28.24 16.75 18.06 22.94 22.11 28.93 29.73 33.36 22.67 
Sm 4.25 3.06 2.92 4.98 3.72 7.2 6.79 6.05 4.6 
Eu 0.76 0.75 0.68 0.97 0.59 0.17 0.16 0.14 0.19 
Gd 3.55 2.19 2.51 4.33 3.06 3.96 4.06 4.06 3.09 
Tb 0.43 0.33 0.34 0.78 0.43 0.77 0.76 0.57 0.56 
Dy 2.38 2.01 1.89 4.94 2.43 5.21 5.41 3.06 3.78 
Ho 0.51 0.42 0.38 1.05 0.65 0.94 1.07 0.58 0.75 
Er 1.51 1.06 1.14 2.77 1.47 2.16 2.64 1.47 1.85 
Tm 0.34 0.2 0.21 0.48 0.24 0.39 0.49 0.24 0.33 
Yb 2.57 1.36 1.42 3.07 1.52 2.44 3.08 1.56 2.11 
Lu 0.46 0.21 0.22 0.46 0.23 0.37 0.46 0.23 0.31 
Y 16.05 11.6 11.66 30.19 15.89 24.13 28.77 14.06 19.6 

ΣREE 179 113 127 126 140 136 152 171 128 
LREE 167.3 105.6 119.2 108.3 130 120.3 134.2 159.4 115.3 
HREE 11.74 7.78 8.1 17.86 10.03 16.24 17.97 11.76 12.79 

LREE/HREE 14.25 13.58 14.72 6.06 12.97 7.41 7.47 13.56 9.02 
LaN/YbN 11.25 12.56 14.47 5.58 16.16 6.88 5.81 15.53 7.47 
δEu 0.58 0.84 0.75 0.62 0.52 0.09 0.09 0.08 0.14 
δCe 1.08 1.19 1.16 1 0.95 0.98 1.13 1.05 1.23 
Sc 5.59 5.27 4.34 3.8 3.49 5.34 5.26 5.24 4.32 
Co 2.24 2.18 1.03 0.39 0.75 2.94 2.83 0.72 2.23 
Ni 1.69 3.58 7.32 7.25 7.95 2.88 1.82 2.68 2.57 
Be 3.77 2.38 3.4 2.55 2.01 3.03 3.05 2.81 2.05 
Rb 175 87 128 120 133 193 195 142 152 
Sr 84.54 42.36 77.55 62.61 108.3 24.69 28.26 19.12 27.84 
Ba 339 506 572 429 656 72 103 60 86 
Zr 134 82.66 104 106 121 120 135 126 116 
Nb 18.89 12.11 16.35 20.8 14.67 30.95 29.38 13.12 14.12 
Hf 5.8 3.08 3.19 3.4 3.8 5.82 6.65 5.34 4.85 
Ta 1.62 1.45 2.11 2.04 1.8 2.3 2.46 0.96 1.91 
Th 6.63 10.91 10.64 11.68 5.18 11.01 7.85 14.3 12.74 
U 2.17 1.01 1 1.39 1.97 2.21 2.37 1.43 1.63 

Sr/Y 5.27 3.65 6.65 2.07 6.82 1.02 0.98 1.36 1.42 
Zr+Nb+Ce+Y 254 162 195 207 214 228 258 230 210 
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Continued Table 2 
Sample PM101-5-1 PM101-7-1 PM101-7-2 PM101-7-3 PM101-7-4 PM101-7-5 PM403-3-1 PM403-5-1 PM403-7-1

Lithology Granodiorite Monzogranite 
Pluton Mengguyingzi Bajiazi 

Era Middle Triassic Late Triassic 
SiO2 65.17 65.74 64.7 65.29 67.41 64.68 72.56 75.04 75.81 
TiO2 0.65 0.69 0.76 0.69 0.54 0.77 0.36 0.17 0.16 
Al2O3 16.07 15.66 16.08 15.93 15.48 15.89 14.5 13.14 13.16 

TFe2O3 4.27 4.21 4.35 4.15 3.58 4.48 1.41 1.56 0.75 
FeO 3.01 2.65 3.01 2.57 2.29 2.88 0.54 0.54 0.36 
MnO 0.06 0.07 0.07 0.06 0.07 0.07 0.01 0.02 0.01 
MgO 1.77 1.73 1.92 1.79 1.45 2 0.11 0.07 0.01 
CaO 2.97 2.64 3.15 2.97 2.3 3.17 0.35 0.27 0.25 
Na2O 4.73 4.59 4.77 4.76 4.76 4.69 4.46 3.23 3.38 
K2O 3.61 3.52 3.45 3.62 3.66 3.57 4.94 5.46 5.4 
P2O5 0.21 0.22 0.24 0.22 0.18 0.25 0.03 0.02 0.01 
LOI 0.27 0.76 0.31 0.32 0.4 0.2 1 0.82 0.88 
Total 102.8 102.4 102.8 102.3 102.1 102.6 100.2 100.3 100.1 

Na2O+K2O 8.34 8.12 8.23 8.38 8.42 8.26 9.4 8.69 8.78 
Na2O/K2O 1.31 1.3 1.38 1.32 1.3 1.31 0.9 0.59 0.63 

A/NK 1.37 1.38 1.39 1.36 1.31 1.37 1.14 1.17 1.15 
A/CNK 0.94 0.97 0.93 0.93 0.97 0.92 1.1 1.12 1.11 

SI 10.23 10.44 11.06 10.66 9.25 11.43 0.97 0.64 0.07 
AR 2.56 2.59 2.5 2.59 2.8 2.53 4.02 2.85 3.03 
σ43 3.22 2.94 3.2 3.21 2.94 3.22 2.98 2.35 2.34 
σ25 1.72 1.61 1.69 1.73 1.66 1.71 1.87 1.51 1.52 
R1 1570 1700 1558 1590 1750 1560 2048 2528 2571 
R2 704 665 730 706 612 733 330 292 287 

Mg# 0.28 0.3 0.3 0.32 0.3 0.32 0.12 0.08 0.01 
La 43.16 43.17 50.25 46.49 38.11 50.69 52.78 29.15 29.57 
Ce 95.95 104.1 115.1 106.1 84.56 114.2 102.4 49.53 51.94 
Pr 12.56 13.42 14.84 13.64 10.13 14.82 11.01 5.08 4.67 
Nd 46.92 47.83 56.23 51.48 35.49 55.92 38.56 16.41 14.23 
Sm 7.79 7.69 9.69 8.76 5.98 9.41 6.09 2.45 1.84 
Eu 1.63 1.46 2.11 1.88 1.45 2.03 1.18 0.69 0.54 
Gd 6.06 6.46 7.31 6.57 4.63 7.14 4.53 1.93 1.53 
Tb 0.89 0.89 1.07 0.98 0.68 1.06 0.64 0.24 0.18 
Dy 4.326 4.411 5.188 4.643 3.24 5.101 3.09 1.18 0.82 
Ho 0.79 0.81 0.92 0.84 0.6 0.94 0.54 0.2 0.14 
Er 2.09 2.2 2.46 2.28 1.97 2.46 1.33 0.53 0.4 
Tm 0.34 0.36 0.4 0.38 0.29 0.39 0.18 0.08 0.05 
Yb 2.3 2.69 2.7 2.57 1.96 2.76 1.14 0.56 0.4 
Lu 0.28 0.32 0.32 0.32 0.26 0.32 0.16 0.09 0.07 
Y 24.98 25.34 28.02 26.86 19.54 29.32 14.23 5.26 3.73 

ΣREE 225 235 268 246 189 267 223 108 106 
LREE 208 217 248 228 175 247 212 103 102 
HREE 17.09 18.15 20.37 18.57 13.63 20.18 11.61 4.81 3.59 

LREE/HREE 12.17 11.99 12.19 12.3 12.89 12.25 18.27 21.49 28.64 
LaN/YbN 13.45 11.5 13.36 12.97 13.97 13.18 33.33 37.61 53.43 
δEu 0.7 0.62 0.74 0.73 0.81 0.73 0.66 0.93 0.96 
δCe 1 1.05 1.02 1.02 1.03 1.01 0.99 0.92 0.98 
Sc 6.97 7.53 7.75 7.28 6.33 7.83 1.72 1.24 1.2 
Co 9.58 8.75 9.43 10.23 7.45 10.39 0.53 1.74 0.24 
Ni 14.36 16.2 16.9 15.36 12.2 15.58 1.13 2.3 0.01 
Be 3.16 3.13 3.37 3.17 3.15 3.22 1.31 1.5 1.08 
Rb 109 129 106 106 118 109 115 125 122 
Sr 671 507 661 653 558 656 365 234 230 
Ba 784 641 733 768 712 789 942 552 517 
Zr 232 224 222 197 170 244 174 131 124 
Nb 18.84 23.91 17.94 18.89 17.3 19.14 14.39 6.2 6.59 
Hf 6.53 6.83 8 6.43 6.53 7.44 4.4 3.37 3.82 
Ta 1.42 2.26 2.29 2.1 1.83 2.12 0.96 0.51 0.38 
Th 16.69 19.08 22.46 19.51 14.21 24.86 9.43 7.89 5.6 
U 2.78 2.84 3.48 3.03 3.19 3.72 1.03 0.69 0.6 

Sr/Y 26.88 20.05 23.62 24.33 28.56 22.39 25.68 44.6 61.85 
Zr+Nb+Ce+Y 372 378 384 349 291 406 305 192 186 
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Continued Table 2 
Sample PM403-7-2 PM403-7-3 PM403-7-4 PM403-7-5 14CH13 14CH14 14CH15 14CH16 14CH17 

Lithology Monzogranite Granodiorite 
Pluton Bajiazi Ailingou 

Era Late Triassic 
SiO2 74.91 73.56 73.36 73.03 68.76 68.67 68.98 68.54 66.79 
TiO2 0.19 0.35 0.33 0.35 0.5 0.54 0.51 0.54 0.73 
Al2O3 12.91 14.01 14.24 14.8 14.95 14.8 14.58 14.73 15.18 

TFe2O3 1.17 0.91 1.6 1.25 3.56 3.82 3.65 3.68 4.38 
FeO 0.67 0.31 0.45 0.49 1.63 2.28 2.53 2.88 3.25 
MnO 0.01 0 0.01 0.01 0.06 0.07 0.06 0.07 0.07 
MgO 0.8 0.27 0.09 0.03 0.89 0.99 0.97 0.94 1.4 
CaO 0.44 0.37 0.33 0.29 2.13 2.2 2.21 2.31 2.92 
Na2O 3.12 4 4.34 4.01 4.17 4.2 4.05 4.22 3.92 
K2O 5.32 4.99 4.4 5.05 3.83 3.71 4 3.91 3.85 
P2O5 0.02 0.03 0.05 0.04 0.16 0.15 0.16 0.15 0.18 
LOI 0.91 0.99 1.05 0.95 0.89 0.75 0.74 0.92 0.57 
Total 100.4 99.79 100.2 100.2 99.9 99.9 99.9 100 100 

Na2O+K2O 8.44 9 8.74 9.06 8 7.91 8.05 8.13 7.77 
Na2O/K2O 0.59 0.8 0.99 0.79 1.09 1.13 1.01 1.08 1.02 

A/NK 1.19 1.17 1.2 1.23 1.36 1.36 1.33 1.32 1.43 
A/CNK 1.1 1.11 1.14 1.18 1.01 0.99 0.97 0.96 0.95 

SI 7.24 2.55 0.8 0.31 6.4 6.66 6.39 6.03 8.39 
AR 2.75 3.51 3.94 3.26 2.76 2.74 2.84 2.82 2.5 
σ43 2.23 2.64 2.51 2.72 2.49 2.46 2.52 2.62 2.59 
σ25 1.43 1.68 1.59 1.71 1.46 1.42 1.46 1.51 1.43 
R1 2594 2297 2273 2223 2046 2015 2014 1930 1889 
R2 341 332 322 325 563 567 561 572 663 

Mg# 0.44 0.36 0.11 0.04 0.27 0.22 0.2 0.18 0.22 
La 38.23 48.74 56.19 50.01 49.7 41.2 36.3 40.1 28.4 
Ce 66.09 97.75 108.5 99.82 94.4 79.6 74.4 84.1 60.1 
Pr 5.83 10.12 11.66 10.48 11.4 9.37 8.71 9.55 7.39 
Nd 17.21 35.18 40.64 36.18 42.5 34.6 33 35.7 29.1 
Sm 2.09 5.43 6.44 5.54 8.14 6.38 6.61 6.96 5.65 
Eu 0.57 1.13 1.25 1.08 1.26 1 1.05 1.05 1.16 
Gd 1.78 3.96 4.98 4.08 8.51 6.75 6.58 7.14 5.72 
Tb 0.19 0.53 0.7 0.53 1.17 0.9 1.02 1.04 0.79 
Dy 0.79 2.59 3.61 2.6 6.03 4.89 5.37 5.73 4.3 
Ho 0.15 0.46 0.62 0.51 1.24 1.05 1.16 1.16 0.9 
Er 0.4 1.13 1.6 1.18 3.46 2.83 2.92 3.16 2.37 
Tm 0.06 0.17 0.21 0.18 0.51 0.42 0.42 0.43 0.38 
Yb 0.45 1.09 1.35 1.1 3.5 2.78 2.71 3.04 2.29 
Lu 0.07 0.16 0.18 0.15 0.48 0.36 0.37 0.4 0.3 
Y 4.51 12.05 16.79 15.09 32.6 25.4 27.3 28.3 21.3 

ΣREE 133 208 237 213 232 192 180 199 148 
LREE 130 198 224 203 207 172 160 177 131 
HREE 3.88 10.08 13.25 10.33 24.9 19.98 20.55 22.1 17.05 

LREE/HREE 33.55 19.67 16.95 19.66 8.33 8.61 7.79 8.03 7.73 
LaN/YbN 60.67 31.94 29.92 32.55 10.19 10.63 9.61 9.46 8.9 
δEu 0.89 0.71 0.65 0.67 0.46 0.46 0.48 0.45 0.62 
δCe 0.97 1.02 0.99 1.02 0.94 0.95 0.99 1.02 0.99 
Sc 1.37 2.12 2.07 2.23 7.69 6.72 6.89 6.64 6.95 
Co 0.44 0.34 2.33 0.79 6.64 6.08 5.4 4.94 7.99 
Ni 1.2 0.48 0.98 0.73 5.59 4.45 4.7 4.41 6.5 
Be 1.13 1.17 1.37 1.25 3.81 2.89 2.71 2.65 1.75 
Rb 121 112 109 118 137 113 120 109 98 
Sr 228 359 336 365 312 240 253 239 314 
Ba 523 856 891 905 676 499 596 532 645 
Zr 153 184 164 187 330 277 245 287 224 
Nb 6.97 14.7 13.98 15.31 26.6 22.8 24.1 24.7 20.8 
Hf 3.62 5.51 4.3 4.93 8.38 7.12 6.36 7.43 5.98 
Ta 0.39 1.02 1.1 0.9 2.13 1.84 1.81 1.87 2.02 
Th 5.82 7.55 8.81 7 15.6 15.3 12.7 14.9 11.5 
U 0.6 0.8 1.14 0.96 2.36 2.09 2.15 2.23 2.14 

Sr/Y 50.62 29.87 20.07 24.22 9.57 9.45 9.27 8.45 14.74 
Zr+Nb+Ce+Y 231 308 303 317 483 404 370 424 326  
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Maniar and Piccoli, 1989). 
Total REE (ΣREE) contents of the syenogranite samples 

are 113–179 ppm, close to the continental crust average 
value  of  154.7  ppm.  The  chondrite-normalized  REE 
patterns exhibit enrichment of light REE (LREEs) relative 
to heavy REEs (HREEs), with ΣLREE/ΣHREE ratios and 
(La/Yb)N  ratios  of  7.41–14.72  and  5.58–16.16, 
respectively (Fig. 7a; Sun and McDonough, 1989). The 
samples exhibit  negative Eu anomalies (Eu/Eu*=0.08–
0.84). They also display enrichment in high-field-strength 
elements (HFSEs) and depletion in large-ion lithophile 
elements (LILEs), with negative Ba, K, Sr, P, and Ti 
anomalies, and positive Nb, Ta, Zr, and Hf anomalies 

(Fig. 7b; Sun and McDonough, 1989). 
 

4.2.2 Middle Triassic granodiorite 
SiO2 contents of the Middle Triassic granodiorites vary 

within a narrow range from 64.68 to 65.74 wt%. The 
samples contain relatively high contents of K2O (3.45–
3.66 wt%) and are classified as high-K calc-alkaline series 
in a K2O vs. SiO2 diagram (Fig. 6a; Peccerillo and Taylor, 
1976). These samples also have contents of Al2O3=15.48–
16.08  wt % ,  TFe2O3=3.58–4.48  wt % ,  CaO=2.30–3.15 
wt%, MnO=0.06–0.07 wt%, and P2O5=0.18–0.25 wt%. 
The A/CNK ratios range from 0.92 to 0.97, indicative of 
metaluminous  granites  (Fig.  6b;  Maniar  and  Piccoli, 

 

Fig. 7. (a, c, e) Chondrite-normalized rare earth element patterns and (b, d, f) primitive mantle normalized trace element spider 
diagram for these Triassic granitic rocks. The values of chondrite and primitive mantle are from Sun and McDonough (1989).  
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1989). 
ΣREE contents of the granodiorites are 189–267 ppm, 

higher than the average value of continental crust (154.7 
ppm). The samples are enriched in LREEs relative to 
HREEs in a chondrite-normalized REE diagram (Fig. 7c; 
Sun and McDonough, 1989), with ΣLREE/ΣHREE ratios 
and  (La/Yb)N ratios  of  11.99–12.89  and 11.50–13.97, 
respectively, and exhibit moderate negative Eu anomalies 
(Eu/Eu*=0.62–0.81). The granodiorites are enriched in 
LILEs (e.g., Rb, Ba, Th, U, and K) and depleted in HFSEs 
(e.g., Nb, Sr, Ti, and P) in a primitive-mantle-normalized 
trace-element  spider  diagram  (Fig.  7d;  Sun  and 
McDonough, 1989) 
 
4.2.3 Late Triassic monzogranite and granodiorite 

SiO2 contents of the monzogranites range from 72.56 to 
75.92 wt%. The samples contain relatively high contents 
of K2O (4.40–5.46 wt%) and total Na2O+K2O (8.44–9.40 
wt%) and belong to the high-K calc-alkaline series (Fig. 
6a; Peccerillo and Taylor, 1976). They also have contents 
of  Al2O3=12.91–14.80  wt% ,  TFe2O3=0.75–1.56  wt% , 
CaO=0.25–0.35  wt % ,  MnO=0.01–0.02  wt % ,  and 
P2O5=0.01–0.05 wt%. Their A/CNK values range from 
1.10 to 1.18, indicating that they are peraluminous (Fig. 
6b; Maniar and Piccoli, 1989). 
ΣREE contents of the monzogranites are 106–223 ppm. 

The degree of fractionation of LREEs and HREEs is very 
high (Fig. 7e; Sun and McDonough, 1989), with ΣLREE/
ΣHREE ratios and (La/Yb)N ratios of 16.95–30.58 and 
31.94–33.43,  respectively.  The  samples  exhibit  slight 
negative  Eu  anomalies  (Eu/Eu*=0.65–0.96),  and  are 
enriched in LILEs (e.g., Rb, K, La, and Ce) but depleted in 
HFSEs  (e.g.,  Nb,  Sr,  Ti,  and  P)  (Fig.  7f;  Sun  and 
McDonough, 1989). 

The Late Triassic granodiorite samples have a narrow 
range of SiO2 contents (66.79–68.98 wt%). They also have 
contents  of  Al2O3=14.58–15.18  wt % ,  K2O=3.71–4.00 
wt % ,  TFe2O3=3.56–4.38  wt % ,  CaO=2.13–2.92  wt % , 
MnO=0.06–0.07 wt%, and P2O5=0.15–0.18 wt%, and are 
classified as high-K calc-alkaline series in a K2O vs. SiO2 
diagram (Fig. 6a; Peccerillo and Taylor, 1976). They have 
A/CNK  ratios  ranging  from  0.95  to  1.01,  indicating 
metaluminous  granites  (Fig.  6b;  Maniar  and  Piccoli, 
1989). 
ΣREE contents of the granodiorites are 148–232 ppm, 

higher than the average value of continental crust (154.7 
ppm).  LREEs  are  enriched  relative  to  HREEs,  with 
ΣLREE/ΣHREE ratios and (La/Yb)N ratios of 11.99–12.89 
and  11.50–13.97,  respectively.  The  samples  exhibit 
moderate  negative  Eu  anomalies  (Eu/Eu*=0.45–0.62) 
(Fig.  7e;  Sun  and  McDonough,  1989),  and  display 
enrichment  of  LILEs  and  depletion  in  HFSEs,  with 
negative Nb, Sr, P, and Ti anomalies and positive Nd, Zr, 
and Hf anomalies (Fig. 7f; Sun and McDonough, 1989).  
 
5 Discussion 
 
5.1 Early Mesozoic magmatism in the Chifeng area 
5.1.1 Early Triassic (250–248 Ma) 

Early Triassic granitic magmatism in the study area was 
a continuation of late Permian magmatism within the same 

tectonic setting (Zhang et al., 2009c; Zhang et al., 2010). 
The Early Triassic granitic plutons in the Chifeng area are 
the 250 Ma MGYZ fine-grained syenogranite, the 250 Ma 
XXJ syenogranite, and the 248 Ma DLG syenogranite. 
Other magmatic rocks of this period in the study area 
include the late Permian 256 Ma Shangchaoyanggou weak 
gneissic granite, 255 Ma Qixieyingzi syenogranite, 253 
Ma Erdaogou monzogranite (Chen, 2018), and 256 Ma 
Chaihuyingzi diorite (Shao et al., 2012), and the Early 
Triassic 250 Ma Menguyingzi granodiorite (Liu et al., 
2015)  and  249  Ma  Jinchangou  gold  deposit  gneissic 
monzogranite (Duan et al., 2014). These results together 
confirm the  extensive  late  Permian  to  Early  Triassic 
magmatic activity in the Chifeng area. 

 
5.1.2 Middle Triassic (244–243 Ma) 

Middle Triassic granitic magmatic activity recorded in 
the study area is scarce and is represented by isolated 
individual plutons. We identified the 244 Ma porphyritic 
granodiorite in the center of the MGYZ pluton and the 243 
Ma  Songshugou  coarse  granodiorite  within  the 
Shaoguoyingzi pluton during this study. In the northern 
margin of the NCC, only rare magmatic activity during the 
Middle  Triassic  is  recorded,  including the  244±2 Ma 
Fengning Yunwushan monzogranite (Zhang et al., 2014), 
the 241–237 Ma Jianping granite (Zhang et al., 2009c), 
and the 241±6 Ma Xiaofangshen gabbro (Zhang et al., 
2009b) (Table 3). 

 
5.1.3 Early Late Triassic (232–230 Ma) 

Late  Triassic  granites  are  distributed mostly  in  the 
southeastern part of the study area and include the 232 Ma 
Bajiazi  monzogranite  and  the  239–233  Ma 
Beipiaojianggoushan monzogranite (Song et al., 2010). 
The Ailingou porphyry-like monzogranite formed at 230 
Ma, which is consistent with the crystallization age of 
granodiorite in this pluton (227±1 Ma, Zhang, 2013). 
Other  Late  Triassic  rocks  in  the  study  area  include 
porphyritic  monzogranite  and  intermediate-acidic  vein 
rocks  in  the  Jinchangouliang  gold  deposit  (Aohanqi), 
which formed at 216±1 Ma and 228±1 Ma, respectively 
(Table  3).  The  occurrence  of  Late  Triassic  granitic 
magmatism in the Chifeng area was a response to large-
scale Late Triassic magmatic events in the northern margin 
of the North China Plate. 

Based on our zircon U-Pb age data and results of 
previous studies, the Triassic granitic magmatism of the 
Chifeng  area  can  be  divided  into  three  stages:  Early 
Triassic (250–248 Ma), Middle Triassic (244–243 Ma), 
and early Late Triassic (232–230 Ma). 

 
5.2 Genetic types of Triassic granitic rocks from the 
Chifeng area 
5.2.1 Early Triassic syenogranites 

The Early Triassic syenogranites, represented by the 
XXJ  and  DLBG  plutons,  have  high  Si  and  total 
Na2O+K2O contents and Na2O/K2O ratios of 0.60–1.30, 
indicating  characteristics  of  alkali-rich,  calc-alkaline 
rocks.  Their  A/CNK values range from 0.87 to 1.06, 
showing transitional characteristics from metaluminous to 
weakly peraluminous. ΣREE contents of the syenogranites 
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are lower than the average continental crust value, and 
they have moderate Eu negative anomalies. Geochemical 
characteristics show that the syenogranites of this stage are 
classified  as  Al-saturated,  high-K  calc-alkaline  series 
rocks, and it is therefore concluded that the intrusive rocks 
of this stage are similar to I-type granites. In (K2O+Na2O)/
CaO  vs.  (Zr+Nb+Ce+Y)  and  TFeO/MgO  vs. 

(Zr+Nb+Ce+Y) diagrams (Figs. 8a, 8b), the Early Triassic 
syenogranite samples plot mostly in the fields of FG and 
OGT (Figs. 8a, 8b). In (La/Yb)N vs. YbN and Y vs. Sr/Y 
diagrams (Figs. 8c, 8d), all of the samples plot in the 
island-arc  field.  Considering  all  the  above,  the  Early 
Triassic syenogranites are considered to be high-K I-type 
granites. 

 

Fig. 8. Genesis diagram of the Early-Middle Triassic granites in Chifeng area 
(a) Zr+Nb+Ce+Y versus (K2O+Na2O)/CaO, (b) Zr+Nb+Ce+Y versus FeOT/MgO, after Whalen et al. (1987). A, A-type granite; FG, highly fractionated I-
type; OGT, unfractionated I, S and M-type. (c) LaN/YbN versus YbN; (d) Sr/Y versus Y, after Whalen et al. (1987).  

Table 3 Geochronological data for the Triassic granitic rocks in the Chifeng area 
Order Sample Pluton Lithology Age (Ma) Method References 

1 T101 Mengguyingzi syenogranite 250 LA-ICPMS This study 
2 D2711-1 Xiaxinjing syenogranite 250 LA-ICPMS This study 
3 PM210-6-1 Daluobogou syenogranite 247 LA-ICPMS This study 
4 PM101-7-2 Mengguyingzi Granodiorite 244 LA-ICPMS This study 
5 D2493-1 Songshugouliang Granodiorite 243 LA-ICPMS This study 
6  Bajiazi Monzogranite 234 LA-ICPMS Regional geological survey 
7 T409  Monzogranite 232 LA-ICPMS This study 
8 14CH14 Ailingou Granodiorite 230 LA-ICPMS This study 
9  Ailingou Granodiorite 228 LA-ICPMS Zhang, 2013 
10  Xitaizi Monzogranite 214 LA-ICPMS Regional geological survey
11 PM023-17 Xitaizi Monzogranite 209 LA-ICPMS Regional geological survey 
12 GSJ2 Jichanggouliang Diorite 228 LA-ICPMS Fu et al., 2010 
13 PM025-7 Jianggoushan Monzogranite 239 LA-ICPMS Song et al., 2010
14 PM023-16 Jianggoushan Monzogranite 233 LA-ICPMS Song et al., 2010 
15 HNY-2 Henanyingzi Diorite 221 LA-ICPMS Shao et al., 2011 
16 XG01 Jichanggouliang Monzogranite 250 LA-ICPMS Duan et al., 2014
17 FS04 Xitaizi Monzogranite 217 LA-ICPMS Duan et al., 2014  
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5.2.2 Middle Triassic granodiorites 
The  Middle  Triassic  acidic  intrusive  rocks  are 

distributed  predominantly  in  the  MGYZ  and  SSLG 
plutons  and  are  composed  chiefly  of  granodiorites. 
Geochemically, the granodiorites are characterized by high 
SiO2 (64.48–67.41 wt%), Al2O3 (15.48–16.08 wt%), MgO 
(1.45–2.00 wt%), and Sr (507.96–671.55 ppm) contents, 
high (La/Yb)N, slight negative Eu anomalies, and low 
HFSE (e.g.,  Nb  and  Ta)  contents;  these  geochemical 
features are similar to those of adakites (Zhang, 2001, 
2004; Defant et al., 2002; Paterno, 2006). However, the 
granodiorites have high Y (19.54–29.32 ppm) and Yb 
(2.30–2.76 ppm) contents, low Sr/Y (20.05 ppm) contents, 
and weak negative Sr anomalies. In Y vs. Sr/Y and YbN vs. 
(La/Yb)N diagrams (Figs. 8c, 8d), none of the granodiorite 
samples falls in the adakite field. 

The petrological and geochemical characteristics of the 
granodiorites  suggest  that  they  are  quasi-aluminous, 
moderately  alkaline,  high-K calc-alkaline  series  rocks, 
with Na2O/K2O ratios and A/CNK values of 1.30–1.38 and 
0.92–0.97, respectively. REE contents are higher than the 
average value of continental crust. Eu shows moderate 
negative  anomalies,  consistent  with  I-type  granite.  In 
(Zr+Nb+Ce+Y) vs. TFeO/MgO and (Zr+Nb+Ce+Y) vs. 
(K2O+Na2O) diagrams (Figs. 8a, 8b), the granodiorites 
plot mostly in the boundary region of the undifferentiated 
I-,  S-,  and  M-type  granites  and  A-type  granite. 

Furthermore, in diagrams of Zr, Nb, Ce, and Y vs. SiO2 
(Fig. 9), all the samples fall in the I-type granite domain. 
Considering  all  the  above,  the  Middle  Triassic 
granodiorites are high-K I-type granites, although they 
have a certain similarity to adakitic rocks. 

 
5.2.3 Late Triassic granites 

The Late Triassic Bajiazi monzogranite is rich in Si and 
poor in Al, with higher total Na2O+K2O contents, Na2O/
K2O ratios of 0.59–0.99, and A/CNK ratios of 1.09–1.18, 
and the corundum molecule (C) appears in the CIPW 
standard mineral calculation, which together show that the 
Bajiazi monzogranites are micro-peraluminous alkali-rich 
high-K calc-alkaline rocks. ΣREE contents are similar to 
the average value of continental crust, and Eu shows slight 
negative  anomalies.  Geochemical  and  petrological 
characteristics indicate that these monzogranites may be A
-type  granites  (Zhang  et  al.,  2012;  Zhang,  2013).  In 
geochemical discrimination diagrams proposed by Whalen 
et al. (1987), most samples plot in the A-type field (Fig. 
10). However, the BJZ monzogranite samples have higher 
Al2O3 contents (12.91–14.80 wt%) and show only weak/
negligible  negative  Sr  and  Ba  anomalies.  These 
geochemical characteristics differ substantially from those 
of A-type granite (Zhang et al., 2012; Zhang, 2013) but are 
similar to those of evolved I-type granite. 

Petrological and geochemical results show that the Late 

 

Fig. 9. Diagram of SiO2 vs. Zr, Nb, Ce, Y for the Middle Triassic granodiorite (Collins et al.,1982).  
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Triassic Alingou granodiorites have medium Si and Al and 
low total alkali w(Na2O+K2O) contents, Na2O/K2O ratios 
of 1.01–1.13, and A/CNK ratios of 0.95–1.01 (slightly 
superaluminous), and the corundum molecule (C) appears 
in the CIPW standard mineral calculation, which together 
indicate that these granodiorites are high-K calc-alkaline 
rocks. ΣREE contents of these granodiorite samples are 
higher than the average continental crust value, and Eu 
displays moderate negative anomalies. The samples are 
enriched in Rb, K, La, Ce, and other LILEs, slightly 
enriched in Nd, Zr, Hf,  and other HFSEs, and show 
negative anomalies for Nb, P, Ti, and Sr. In 10,000Ga/Al-
(K2O+Na2O)/CaO,  10,000Ga/Al-K2O/MgO,  and 
10,000Ga/Al-Na2O/K2O diagrams, all of the samples plot 
in the transition zone of I-, S-, and A-type granites (Fig. 
10). However, considering the SiO2 and K2O contents, 
these rocks are clearly not A-type granites (Zhang et al., 
2012; Zhang, 2013). 

Given all the above, we conclude that the Late Triassic 
Bajiazi monzogranite and the Alingou granodiorite are 
high-K evolved I-type granites,  although they have a 
certain similarity to A-type granites. 

5.3  Petrogenesis  of  Triassic  high-K I-type  granitic 
rocks from the Chifeng area 

The origins of high-K calc-alkaline I-type granites are 
still debated (e.g., Roberts and Clemens, 1993; Liegeois et 
al.,  1998).  The  existing  models  include  1)  crustal 
assimilation  and  fractional  crystallization  of  mantle-
derived basaltic magma (e.g., DePaolo, 1981; Moghazi, 
2003),  2)  mixing  of  mantle-derived  and  crust-derived 
magmas (e.g., Dickinson, 1975; Yang et al., 2006, 2015; 
Clemens et al., 2009), and 3) partial melting of hydrous 
medium- to  high-K andesitic  to  basaltic  meta-igneous 
rocks under crustal conditions (e.g., Roberts and Clemens, 
1993; Sisson et al., 2005; Topuz et al., 2010). 

As discussed above, all three stages of Triassic granitic 
rocks from the Chifeng area are classified as high-K I-type 
granites. These rocks have high silica and alkali contents 
and  low  MgO,  TFe2O3,  CaO,  and  transition-element 
contents, as well as negative Nb, Ta, P, and Ti anomalies 
and positive Th, Zr, and Hf anomalies in a primitive 
mantle-normalized  diagram.  These  various  features 
suggest that the primary magma of these rocks originated 
from  partial  melting  of  continental  crust,  probably 

 

Fig. 10. Genesis diagram of the Late Triassic granites in Chifeng area. 
(a) FeOT/MgO versus Zr+Nb+Ce+Y; (b) (K2O+Na2O)/CaO versus 10,000Ga/Al; (c) K2O/MgO versus 10,000Ga/Al; (d) K2O+Na2O versus 10,000Ga/Al, 
modified from Whalen et al. (1987). A, A-type granite; FG, highly fractionated I-type; OGT, unfractionated I, S and M-type.  
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produced  by  chemical  differentiation  of  arc-derived 
magmas (Hofmann, 1988; Wu et al., 2007; Yu et al., 2013; 
Guo et al., 2014). However, the granite samples have 
moderate-strong negative Eu anomalies, indicating that 
plagioclase remained in the residue in the source or was 
fractionated during magmatic evolution. Moreover, all the 
samples contain relatively low Sr/Y ratios and high Yb 
and Y contents, precluding garnet in the residue (Rapp et 
al., 1991; Springer and Seck, 1997; Litvinovsky et al., 
2000), which is consistent with the REE characteristics. 
These geochemical features indicate that these Triassic 
high-K I-type granites were derived from partial melting 
of  a  lower-crustal  source  at  relatively  low-pressure 
conditions. 

 
5.4 Tectonic implications and geological significance 
5.4.1 Tectonic setting 
5.4.1.1 Early Triassic granites 

Early Triassic magmatic rocks in the northern margin of 
the  NCC  have  post-collision/post-orogenic  affinity  in 
terms  of  rock  association,  mineral  composition, 
geochemical  characteristics,  magmatic  evolution,  and 
isotope composition (Zhang et al.,  2010; Shao et al., 
2012). The studied Early Triassic syenogranites from the 
Chifeng area are high-K calc-alkaline I-type granites, with 
enrichment in LREEs and LILEs and depletion in HFSEs, 
Nb, Ti, and P, showing characteristics of post-collisional 
granites formed in a continental orogenic belt. Tectonic 
environment discrimination diagrams (Figs. 11a-c, 11e, 

11f) show that all of the Early Triassic granite samples 
plot in the post-collision granite domain. In an R1-R2 
diagram (Fig. 11d), the Early Triassic granites fall mostly 
in the post-orogenic A-type granite domain, indicating that 
these  rocks  formed  in  an  extensional  environment, 
possibly related to continental-margin crustal extension 
(Hong et al., 1994; Eby et al., 2002; Zhang et al., 2012; 
Zhang,  2013).  The  Early  Triassic  granites  and 
corresponding basalts (256–246 Ma; Miao et al., 2008; 
Jian et al., 2010; Chu et al., 2013; Song et al., 2016) in the 
study area formed bimodal volcanic rocks, all of which are 
distributed as an E-W-oriented strip along the northern 
margin of the NCC and the Xingmeng orogenic belt, 
further indicating an extensional environment for the Early 
Triassic granites in the study area. 

Based  on  the  abovementioned  research  results  and 
regional geological data, the Early Triassic granites in the 
Chifeng area are inferred to have been emplaced in an 
extensional  environment,  most  likely  induced  by slab 
break-off after final closure of the PAO along the SXCYS. 
 
5.4.1.2 Middle Triassic granites 

Our results show that the PAO in the Chifeng area 
closed during the Early Triassic  (~248 Ma)  and was 
followed by orogenesis. The Middle Triassic granodiorites 
in the Chifeng area are quasi-aluminous, medium-alkali, 
high-K calc-alkaline I-type granites. Tectonic environment 
discrimination diagrams (Figs. 11a-c, 11e, 11f) show that 
these rocks do not fall in the post-collision domain and 

 

Fig. 11. Identification diagram of tectonic setting for the Triassic granites in Chifeng area. 
(a) TFeO+MgO (wt%) versus CaO (wt%); (b) TFeO/(TFeO+MgO) versus SiO2 (wt%); (c) TFeO (wt%) versus MgO (wt%), IAG, island arc granite；CAG, 
continental arc granite；CCG, continental collision granite；POG, post- orogenic granite；RRG, rift related granite；CEUG, continental epeirogenetic uplift 
granite; (d) R2 versus R1, ① plagiogranite; ② active continental margin granite; ③ collisional-orogenic granite; ④ late orogenic granite; ⑤ unorogenic A-
type granite; ⑥ collision granite (S-type); ⑦ post-orogenic granite; (e) Rb versus Yb+Ta; (f) Rb versus Y+Nb, (after Pearce 1996), the fields are: ORG, 
oceanic ridge granites; syn-COLG, syn-collisional granites; VAG, volcanic arc granites; WPG, within-plate granites.  
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were therefore not formed in a post-collision extensional 
environment. In an R1-R2 diagram, the Middle Triassic 
granite samples plot in the domain of late orogenic granite 
(Fig.  11d),  which  indicates  that  the  Middle  Triassic 
granodiorite was produced during orogenesis. Therefore, 
the Middle Triassic granodiorites in the Chifeng area were 
probably  emplaced  in  a  compressive  orogenic 
environment  accompanied  by  collision  between  the 
Erguna-Xing’an-Songliao composite block and the NCC. 
The nearly E-W-oriented compressive ductile shear zone 
in the granodiorite pluton resulted in strong ductile shear 
deformation  of  the  rock  mass,  implying  N-S-directed 
compressive tectonic stress during the Middle Triassic. 

 
5.4.1.3 Late Triassic granites 

The Late Triassic rocks investigated in the study area 
consist  of  the Bajiazi  monzogranite  and the Ailingou 
granodiorite.  In (Yb+Ta)-Rb and (Y+Nb)-Rb diagrams 
(Figs. 11e, 11f), all the Late Triassic granite samples plot 
in the post-collision environment domain. Geochemical 
characteristics indicate that the Bajiazi monzogranite is a 
low-pressure  and  strongly  peraluminous  granite, 
suggesting that it formed in a post-collision environment. 
In an R1-R2 tectonic environment discrimination diagram 
(Fig. 11d), the Ailingou I-type granite is classified as a late 
orogenic type granite, whereas the Bajiazi I-type granite 
falls in the post-orogenic A-type granite domain. This 
difference  in  classification  indicates  that  the  tectonic 
environment  in  the  Chifeng  area  changed  from  a 
compressive  orogenic  to  a  post-orogenic  extensional 
environment  during  the  early  Late  Triassic,  and  then 
completely  entered post-orogenic  extension during the 
middle-late Late Triassic. 

 
5.4.2 Implications for the evolution of the PAO 
5.4.2.1  Early  Triassic:  PAO  final  closure  and 
subduction slab break-off 

The studied late Permian-Early Triassic granite rock 
association  consists  of  A2-subtype  granite  and  I-type 
granite,  with  the  geochemical  characteristics  of  the 
association indicating that its formation was related to 
crustal  extension  of  the  continental  margin  or  to 
intracontinental shear. These granites were formed in a 
post-collision  environment;  specifically,  an  extensional 
environment  caused  by  slab  break-off  after  the  final 
closure of the PAO along the SXCYS (Fig. 12). 

At present, there is strong evidence to support a late 
Permian-Early  Triassic  final  closure  of  the  PAO. 
Construction  types,  biota,  and  tectonic  activity  on 
opposing sides of the Xra Moron River fault during the 
Carboniferous-Permian  differed  markedly,  and  the 
paleogeographical fauna had a mixed occurrence until the 
middle or late Permian (Huang and Ding, 1998; Wang and 
Gao, 1999). In addition, the late Permian Linxi Formation 
and  the  Early  Triassic  Xinfuzhilu  Group  show  no 
intervening unconformity, suggesting that the late Permian
-Early  Triassic  was  characterized  by  a  continuity  of 
tectonic setting (Deng et al., 2009; Zhang Y.S. et al., 
2012;  Zheng  et  al.,  2013;  Zhang  et  al.,  2015). 
Furthermore, the terrestrial deposits and terrestrial animal 
and plant fossils of the upper Permian (Zhang et al., 2012) 

indicate that two major plates collided and amalgamated, 
generating sediments and forming the Linxi Formation 
(Han et al., 2011; Wang et al., 2016; Zhao et al., 2016). 
Radiolarians in the siliceous rocks of the Xra Moron River 
Formation are middle-late Permian in age (Wang, 2001). It 
is also thought that the final accumulation of the ophiolite 
belt  occurred  during  the  middle-late  Permian.  Both 
extinction events and paleomagnetic evidence indicate that 
closure of the PAO took place at the end of the late 
Permian (Li et al., 2006, 2009). 

Many intrusive rocks with emplacement ages ranging 
from 358 to 260 Ma and composed of continental-margin 
arc magma are present in the northern margin of the NCC 
(Ma et al., 2004; Zhang et al., 2004, 2010; Wang et al., 
2007; Zhang et al., 2007). The simultaneous appearance of 
Early Triassic post-collision A-type granites, production 
of bimodal volcanic rocks, and emplacement of ophiolite 
also indicates that the PAO disappeared and finally closed 
along West Lamur (Zhang et al., 2006; Miao et al., 2007; 
Wu et al., 2007; Peng et al., 2012; Jiang et al., 2014; Song 
et al., 2016). 

In summary, after the initial period of collision between 
the Xingmeng orogenic belt and the North China Plate 
during the middle Permian, the late Permian-Early Triassic 
was characterized by gravitational collapse, and eclogite-
facies metamorphism and slab break-off occurred as the 
subducting plate descended into the lithospheric mantle 
(Fig. 12a). An extensional environment developed after 
collision between the Xingmeng orogenic belt and the 
North China Plate, including in the Chifeng area, with 
associated underplating of the mantle source magma and 
upwelling of deep asthenosphere mantle. An increase in 
temperature and reduction in pressure occurred in the 
crust,  forming  the  late  Permian-Early  Triassic  post-
collision  A-type  granite,  bimodal  volcanic  rocks,  and 
ophiolite.  Simultaneously,  the  Linxi  Formation  was 
deposited in a lacustrine environment, as evidenced by 
freshwater bivalves and plant fossils in gray-black slate 
and shale (Han et al., 2011; Wang et al., 2016; Zhao et al., 
2016),  which,  along  with  the  disappearance  of 
paleontological geographical divisions, indicates that the 
Early Triassic PAO basin had disappeared and that the 
Changchun-Yanji suture had finally closed by the Early 
Triassic. 

 
5.4.2.2  Middle  Triassic:  continuous  collisional 
compression after closure of the PAO 

The Middle Triassic granodiorites in the Chifeng area 
formed as a result of extrusion that occurred during the 
late phase of orogenesis while the Xingmeng orogenic belt 
collided with the NCC. The northern margin of the North 
China  Plate  was  still  in  a  subduction  or  collision 
environment during the Middle Triassic. Sun (2013) dated 
a 245 Ma granite in the Aohanqi area, and Zhang (2004) 
dated a 245 Ma granite in the Yanji area, both of which 
are syn-collision granites, indicating that the two plates 
were still colliding during the Middle Triassic. Chen et al. 
(2001,  2002)  constrained  the  age  of  collision-related 
granite in Suzuoqi at 250–230 Ma, and it is speculated that 
the final suture zone of the PAO in that area occurred 
between 310 and 230 Ma (Chen et al., 2001). Accordingly, 
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collision between the Xingmeng orogenic belt and the 
North China Plate continued from the middle Permian to 
the Middle-Late Triassic. S-type granite that was formed 
by  young  crustal  re-melted  magma  during  the  Late 
Triassic  in  the  Shuangjingzi  area  of  eastern  Inner 
Mongolia has the same collisional granite geochemistry 
(Li et al., 2007), which suggests that they likely formed 
during the late stage of collisional orogeny in that area, 
meaning that the two plates began to collide at about 270 
Ma along the Xra Moron suture zone,  with collision 
ending at 230 Ma (Li et al., 2007). These various lines of 
evidence demonstrate that the process of collision and 
amalgamation of the Xingmeng orogenic belt and the 
North China Plate  was continuous during the Middle 
Triassic.  

The  Chifeng  area  remained  under  compressional 
collision after the final closure of the PAO during the 
Middle Triassic (Fig. 12b), during which both the Middle 
Triassic  syn-collisional  granodiorite  reported  in  the 
present  study  and  the  monzogranite  reported  by  Sun 
(2013) formed. 

 
5.4.2.3 Late Triassic: post-orogenic extension 

The record of Late Triassic magmatism in the Chifeng 
area  is  dominated  by  the  234  Ma  Liangjianggou 
monzogranite (Song et al., 2010), the 232 Ma Bajiazi 
monzogranite, the 230–227 Ma Ailingou monzogranite 

(Zhang, 2013), the 228 Ma Jinchanggouliang intermediate
-acidic dike (Fu et al., 2010), and the 216 Ma Xitaizi 
monzogranite (Duan et al., 2014). All these rocks display 
geochemical characteristics consistent with those of post-
orogenic granites (Fig. 12c). Late Triassic magmatism in 
the  northern  margin  of  the  North  China  Plate  was 
widespread, and high-K calc-alkaline granites in central 
and eastern Inner Mongolia have been dated at 235 to 222 
Ma (Chen et al., 2001; Luo et al., 2002, 2003; Li et al., 
2007; Shao et al., 2012; Yang et al., 2012; Zhang et al., 
2012;  Zhang X H et  al.,  2012;  Zhang et  al.,  2014). 
Granites formed in the Jilin-Yanbian area in the eastern 
part of the northern margin of the North China Plate at 235 
to 224 Ma (Miao et al., 2002; Jiang et al., 2007; Zhang et 
al., 2012; Liu et al., 2016). The northern margin of the 
North  China  Plate  hosted  mafic-ultramafic  intrusions, 
including the Huadian-Hongqiling intrusions (Cao, 2013), 
the Jilin Hongqiling and Piaohechuan intrusions (216–217 
Ma, Wu et al., 2004), and the Xiaozhangjiakou intrusion 
in Chicheng (220 Ma, Tian et al., 2007). Furthermore, a 
Late  Triassic  (233–216  Ma)  alkaline-complex  belt  is 
distributed as an E-W-trending strip along the northern 
margin of the North China Plate (Han et al., 2004; Wu et 
al., 2005, 2008; Ren et al., 2009; Liu et al., 2016). This 
alkaline-complex  belt  extends  westward  to  eastern 
Alashan (Zhang et al., 2010) and eastward to North Korea, 
and the time of emplacement (234–224 Ma; Wu et al., 

 

Fig. 12. A cartoon model for the tectonic evolution of the north margin of the NCC in Chifeng area 
during the Triassic. 
NCC, North China Craton; SB, Songliao Block.  
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2007) is very similar to that in the northern margin of the 
North China Plate. 

There are two different understandings of the tectonic 
setting of the extensive Late Triassic magmatic rocks 
distributed in the northern margin of the North China 
Plate: (1) Post-collision extension in the margin of the 
North China Plate (Hong et al., 2000; Sun et al., 2001, 
2005; Wu et al., 2002, 2004; Fu et al., 2010; Zhang X H et 
al., 2012; Zhang et al., 2012; Duan et al., 2014; Liu et al., 
2016);  and  (2)  post-collision  extension  under  the 
background  of  the  underlying  action,  causing  the 
destruction of the NCC (Shao et al., 2000, 2011, 2012; 
Yang and Wu, 2009; Yang et al., 2012). 

The  Late  Triassic  igneous  rock  assemblage  in  the 
northern margin of the North China Plate consists of 
bimodal volcanic rocks and an alkaline complex, similar 
to the typical assemblage of a post-orogenic extensional 
environment. Spatially, the Late Triassic igneous rocks 
show an east-west distribution and are in contact with the 
northeastern plateau and the Xingmeng orogenic belt (Wu 
et al., 2002, 2004; Zhang et al., 2009c). Furthermore, 
extensive  230–200  Ma  A-type  intrusive  and  volcanic 
rocks have been recognized in the Great Xing’an Range, 
the Zhangguangcai Range, and the northern margin of the 
NCC (Wu et al., 2011). Considering that A-type granitoids 
form at high temperature, it is proposed that these Late 
Triassic A-type granitoids in NE China were related to 
post-orogenic evolution of the CAOB, most probably as a 
result of lithospheric delamination after amalgamation of 
the  Erguna-Xing’an-Songliao composite  block and the 
NCC (Wu et al., 2002). 

 
6 Conclusions 

 
Our zircon U-Pb dating and whole-rock geochemical 

data for Triassic granitic intrusions in the Chifeng area, 
Inner Mongolia Autonomous Region, allow us to draw the 
following conclusions: 

(1) LA-ICP-MS zircon U-Pb data indicate three stages 
of Triassic granitic magmatism in the Chifeng area: ① an 
intrusive suite of syenogranites at 250–248 Ma, ② a suite 
of granodiorites at 244–243 Ma, and ③ an intrusive suite 
of monzogranites and granodiorites at 232–230 Ma. 

(2) The Chifeng Triassic granitic rocks are high-K I-
type granites that were derived from partial melting of a 
lower-crustal source at relatively low-pressure conditions 
and  subsequently  underwent  extensive  fractional 
crystallization. 

(3)  The  early  Mesozoic  tectonic  evolution  of  the 
Chifeng area can be divided into three stages: ① closure 
of the Paleo-Asian Ocean and extension related to slab 
break-off  during  the  Early  Triassic;  ②  continuous 
collisional compression during the Middle Triassic after 
closure of the Paleo-Asian Ocean; and ③ post-orogenic 
extension during the Late Triassic, most probably due to 
lithospheric  delamination  after  amalgamation  of  the 
Erguna-Xing’an-Songliao composite block and the NCC. 
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