Fluid Evolution and Ore-forming Processes of the Jiama Cu Deposit, Tibet: Evidence from Fluid Inclusions

YAO Xiaofeng1,2, *, LIU Jiajun1, TANG Juxing3, ZHENG Wenbao3 and ZHANG Zhi4

1 China University of Geosciences, Beijing 100083, China
2 Development and Research Center, China Geological Survey (CGS), Beijing 100037, China
3 Key Laboratory of Metallogeny and Mineral Resources Assessment MLR, Institute of Mineral Resources, Chinese Academy of Geological Sciences (CAGS), Beijing 100037, China
4 Chengdu Institute of Geology and Mineral Resources, China Geological Survey, Chengdu 610082, Sichuan, China

Abstract: The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.

Key words: fluid inclusion, fluid evolution, ore-forming processes, Jiama deposit, Tibet

1 Introduction

Numerous large and ultra-large mineral deposits have been discovered recently in the Gangdese Metallogenic Belt, Tibet. These include, for example, the Xiongcun, Qulong and Jiama deposits. The Jiama deposit is a large-scale Cu resource, and includes other metals such as Mo, Pb, Zn, Au and Ag (Tang Jvxing et al., 2010). Its origin has been proposed as a post-magmatic hydrothermal deposit related to calc-alkaline and high-K calc-alkaline magmatism (Ying Lijuan et al., 2009; Tang Jvxing et al., 2010; Qin Zhipeng et al., 2011). The Jiama deposit contains three main types of mineralization, including porphyry, skarn and hornfels, and is characterized by elemental zonation from the center outward: Mo→Mo (Cu)→Cu (Mo)→Cu (Pb + Zn + Mo)→Cu (Pb + Zn)→Pb + Zn (Au) (Tang Jvxing et al., 2010; Zheng Wenbao et al., 2010; Yao Xiaofeng et al., 2014a).

A previous study was conducted on the Jiama deposit using a synchrotron radiation X-ray fluorescence microprobe to investigate individual melt inclusions from quartz phenocrysts in the porphyries (Zhou Yun et al., 2011a). The results revealed that Cu, Pb, Zn and other metallic elements were enriched in the vapor phase of inclusions (Zhou Yun et al., 2011a). Another study of fluid inclusions in both quartz phenocrysts and quartz veins within the granite porphyries, garnet, wollastonite and quartz veins in the skarns reconstructed the fluid...
evolution process that led to the formation of the skarn-type orebodies (Zhou Yun et al., 2011b). These studies provided the basis for resolving whether the deposit was to be classified as a submarine exhalative deposit or a magmatic-hydrothermal deposit (Zhou Yun et al., 2011a, 2011b).

However, two issues regarding the ore-forming processes of the Jiama deposit remain unresolved: the history of fluid evolution processes for the entire porphyry system, and the relationship between fluid evolution and ore-forming processes. Recent exploration efforts have revealed a number of different orebody types and an increased diversity of veins. These provide an ideal opportunity for more comprehensive study of the fluid evolution of the deposit. Based on detailed drill core logs, numerous veins within the porphyries, hornfels and skarns are identified and assigned to different mineralization stages. Fluid evolution is examined by studying fluid inclusions from different mineralization stages, and the spatial distribution of fluids is analyzed using gangue minerals of the same stage from different locations within the deposit. This work aims to further develop understanding of the entire fluid evolution of mineralization and its relationship with ore-forming processes in the Jiama deposit.

2 Geological Setting

2.1 Regional geology

The Jiama deposit occurs within the south-central segment of the Gangdese Metallogenic Belt, located in the northern area of the Yarlung Zangbo Suture (YZS) (Fig. 1). Previous studies have shown that the major metallogenic series in the southern Gangdese Metallogenic
The first type is the Jurassic porphyry Cu-Au metallogenic series related to island arc magmatism, as represented by the Xiongcun deposit. This deposit is 175–160 Ma in age (Lang et al., 2014; Tang et al., 2015). The second type is the Cretaceous skarn Fe(-Cu) metallogenic series that occurs in a back-arc extensional setting (Zheng et al., 2015), as represented by the Nixiong skarn Fe deposit. This deposit has a mineralization age of 112 Ma (Yu Yushuai et al., 2012).

The third type consists of the Paleocene-Eocene granitoid-related polymetallic metallogenic series that developed in a collisional setting. This type, represented by the Yaguila, Chagele, Jialong, Sharang, Bangbu, Leqingla and Niumatang deposits, mineralized in the 71–45 Ma age range (Gao Yiming et al., 2011; Wang Baodi et al., 2012; Xinga’guo deposits, mineralized in the 71–45 Ma age range (Gao Yiming et al., 2011; Wang Baodi et al., 2012; Huang Yong et al., 2017)). Only a small amount of Quaternary sediments occur in Niumatang (Fig. 1). Intrusive rocks typically occur as dikes, and consist of granite, monzonitic granite, granodiorite, quartz diorite and diorite porphyries, as well as spessartite and proterobase (porphyrite). Intrusion of the granite porphyry is closely related to mineralization, and typically occurs at depths by exploratory lines 8 and 36 (Fig. 1). Mineralization mainly occurs as polymetallic Cu in the skarn, Cu-Mo in the hornfels and Mo (Cu) in the porphyry (Yao Xiaofeng et al., 2014a, 2014b).

2.2.1 Orebodies and veins in skarns
Skarn orebodies are primarily hosted in the interlayered structural zones between sandy slate/hornfels (roof) and limestone/marble (floor). They mainly occur in stratoid and stratiform forms that extend for 4200 m along strike (NE 30°) and almost 2500 m along dip (Ying et al., 2014). The orebodies dip steeply (50–70°) at shallow depths, but more moderately (10–20°) at greater depths (Fig. 2). Ore minerals occur as disseminations, massive bodies and veins. The main economic ore minerals are molybdenite, chalcopyrite, bornite, tetrahedrite, chalcocite, galena and sphalerite. Gangue minerals include garnet, wollastonite, diopside, tremolite, chlorite, epidote, quartz and calcite.

Four types of veins are found in the skarns: quartz + sulfide (type I), wollastonite + quartz + sulfide (type II), quartz + garnet ± wollastonite ± epidote ± sulfide (type III) and quartz ± garnet ± sulfide (type IV) (Fig. 3e–h). Type I veins have clear wall rock contacts, and mainly dip at less than 40°. Widespread irregular occurrences of type I veins are evident in drill cores from the deposit. Type II, III and IV veins are primarily found close to the porphyry center and have regular morphology, and some veins dip steeply (>70°). Garnet, wollastonite, chlorite and epidote are observed in the outer edges of type II, III and IV veins. Type I veins in the skarns are transected by type II, III or IV veins (Fig. 3e).

2.2.2 Orebodies and veins in hornfels
Hornfels within the deposit area is a product of thermal metamorphism induced by intrusions, and covers a maximum area of about 40 km² (Wang Denghong et al., 2011). Hornfels orebodies, related to the porphyry system, are mainly found above the porphyry intrusions (Fig. 2) close to the center of the deposit. The main orebodies occur as massive, irregular and vertically-orientated cylindrical forms in the roof of skarns. The main orebody is 1.2 km long and about 0.8 km wide (Fig. 1) with a maximum thickness of about 900 m (Tang Juxing et al., 2010; Leng Qiafeng et al., 2014). Ores typically occur in veins or stockworks, similar to the main ore structures of the Upper Jurassic Duodigou Formation (J₂d).
Economic ore minerals include chalcopyrite and molybdenite, and gangue minerals include quartz, feldspar, biotite and chlorite.

Three types of veins have been identified in hornfels orebodies from core logs: quartz + biotite halo/chlorite halo/silicified halo ± pyrite ± pyrrhotite ± chalcopyrite (type a); quartz + biotite halo/chlorite halo/silicified halo + pyrite ± chalcopyrite ± molybdenite (type b) and quartz ± pyrite ± chalcopyrite ± molybdenite (type c) (Fig. 3c–d). Type a veins, which are widespread in the deposit area, are typically developed along bedding and are parallel to each other, with irregular morphology and diffuse wall rock contacts. Alteration halos prevail in the exterior of the veins. Type b veins transect bedding and have regular morphology and diffuse wall rock contacts. Alteration halos are commonly found along the vein walls. Type b veins are mainly found close to the intrusion center. Type c veins occur with regular morphology and distinct wall rock contacts with no alteration halos developed on the outer vein edges. Type c veins transect type a and b veins (Fig. 3c–d), and are most abundant near the intrusion center.

2.2.3 Orebodies and veins in porphyries

Porphyry orebodies are developed across the entire, deeply-buried granite porphyry between lines 8 and 32. The orebodies appear as long shuttle-shaped bodies in plane projection. The projection of the main orebody is 0.8 km long and 0.2 km wide (Fig. 1), and occurs in an irregular or forked form at depth. The proven thickness of the orebody from the drill logs is in the 14.1–361.1 m range. However, its extension at depth has not been controlled by exploration yet (Fig. 2). The ores occur primarily in veins or stockworks, and the main ore minerals include molybdenite and chalcopyrite, with gangue minerals of quartz, feldspar, biotite, sericite and chlorite.

Most porphyry Cu deposits have at least four groups of veins (Dilles and Einaudi, 1992; Gustafson, 1995; Cannell, 2005; Sillitoe, 2010), with the first group involving early sulfide-free quartz veins with actinolite/biotite (EB veins). These veins show no sign of alteration boundaries. The second group of veins involves sub-early quartz sulfide veining (type A veins) with irregular boundaries. Quartz occurs in these veins in granular form, and biotite or K-feldspar alteration boundaries are developed. The third group involves sub-late quartz sulfide veining (type B veins) with relatively regular boundaries, granular quartz, and alteration halos of biotite, chlorite or sericite. The fourth group are latest quartz sulfide veins that have straight boundaries (type D veins), with well-crystallized quartz veins and no alteration halos.

Based on these criteria, type EB, A, B and D veins are identified in the Jiama deposit. Early biotite veins with thin and irregular morphology are the type EB veins. The irregular veins with diffuse wall rock contacts are the type
Fig. 3. Features and crosscutting relationships of various types of veins in porphyries, hornfels and skarns from the Jiama deposit

(a), Type A vein (quartz + sericite + chalcopyrite + pyrite) are cut by type B vein (quartz + biotite halo + chlorite halo) in granite porphyry, from drill core J3212 at 658.5 m; (b), Type B veins (quartz + molybdenite) in granite porphyry are cut by type D veins (barren quartz vein), from drill core J3212 at 650.2 m; (c), Along-bedding type A veins (quartz + biotite halo + chalcopyrite + pyrite, quartz + chalcopyrite + pyrite) in hornfels are cut by type B veins (quartz + chalcopyrite + pyrite), from drill core J024 at 223.6 m, while type B veins are cut by type C veins (quartz + molybdenite); (d), Type B veins (quartz + biotite halo + chalcopyrite + pyrite, quartz + chlorite halo) are cut by type C veins (barren quartz), from drill core J4012 at 251.3 m; (e), Type I veins are cut by type IV in skarn, from drill core J024 at 394.8 m; (f), Type II veins (quartz + wollastonite + bornite) in marble are cut by type III veins (quartz + almandite + wollastonite + bornite), from drill core J1218 at 616.4 m; (g), Two forms of type III veins (quartz + almandite + bornite) in garnet wollastonite skarn, from drill core J3212 at 631.8 m; (h), Type III veins (quartz + almandite + bornite) are cut by type IV veins (barren quartz vein) in skarn, from drill core J024 at 443.5 m; (i), Skarn is cryptoexplosively brecciated, from drill core J2016 at 740.6 m; (j), Stockwork structure in hornfels, from drill core J1217 at 475.3 m.
A veins that contain albite, K-feldspar and sericite halos at the outer vein edges. The halos are primarily in the form of quartz + K-feldspar and quartz + sericite (± chalcopyrite ± pyrite) (Fig. 3a). The latter are the most common. The irregular morphology veins with relatively clear boundaries are the type B veins. These contain biotite and chlorite halos at the outer vein edges, primarily in the form of quartz + biotite (± chalcopyrite ± pyrite), quartz + chlorite (± chalcopyrite ± pyrite), quartz ± anhydrite + chalcopyrite + molybdenite and quartz + molybdenite (Fig. 3a–b). The latter are the most common ore-hosting form in the porphyry orebodies. Type D veins are rare, occurring only as regular-shaped tabular veins that contain quartz + molybdenite and barren quartz veins (Fig. 3b).

2.2.4 Hydrothermal mineralization stages

Crosscutting relationships of type A, B and D veins in porphyries, type a, b and c veins in hornfels and type I, II, III and IV veins in skarns provide important information with which to sub-divide the stages of mineralization in the Jiama deposit. Skarn mineralization is commonly divided into three stages: prograde skarn stage, retrograde alteration stage and sulfidization stage. For the skarn in the Jiama deposit, garnet, diopside and wollastonite formed during the prograde stage, while epidote and chlorite formed during the retrograde alteration stage. Quartz, sulfides and different type of veins formed during the sulfidization stage. However, more orebodies and veins are evident in the porphyries and hornfels of the Jiama deposit, and so these hydrothermal products need to be taken into consideration. Brecciated zones mainly occur in the skarn and granite porphyries, and consist of fragments of garnet skarn, wollastonite skarn and marble cemented by quartz. Above the brecciated zone, type II/III/IV veins in the skarn and type b/c veins in the hornfels are more abundant close to the brecciated zone. Conversely, type B/D veins are more developed under the brecciated zone in the granite porphyry, close to the brecciated zone. It can be inferred that these types of veins formed synchronously or later than brecciation, and prograde skarn and retrograde alteration minerals and type a veins formed before brecciation. As proposed by Sillitoe (2010), type A veins in porphyries are commonly considered to be products of plastic deformation prior to brecciation. As proposed by Sillitoe (2010), type A veins in porphyries are commonly considered to be products of plastic deformation prior to brecciation that occurs during magmatic-epithermal evolution. This study is mainly focused on the evolution of hydrothermal fluids after the magmatic-hydrothermal transition. The hydrothermal mineralization process can be divided into two stages: early hydrothermal (Stage 1) and late hydrothermal (Stage 2) (Fig. 4).

3 Samples and Methods

Two groups of samples were collected: the first group from the central part of the deposit and the second from type a and type I veins in different locations. The first group contains garnet, wollastonite and quartz from

<table>
<thead>
<tr>
<th>Mineralization stage</th>
<th>pre-hydrothermal stage</th>
<th>early hydrothermal stage</th>
<th>late hydrothermal stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>porphyry</td>
<td></td>
<td>type A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>type B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>type D</td>
<td></td>
</tr>
<tr>
<td>skarn</td>
<td>prograde skarn minerals</td>
<td></td>
<td>type I</td>
</tr>
<tr>
<td></td>
<td>retrograde alteration minerals</td>
<td></td>
<td>type II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>type IV</td>
<td></td>
</tr>
<tr>
<td>hornfels</td>
<td>type a</td>
<td></td>
<td>type b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type c</td>
<td></td>
</tr>
<tr>
<td>brecciation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Paragenetic sequence of the mineral assemblages and veins of the Jiama deposit, based on crosscutting and brecciation relationships.
different stages and from different host rocks (porphyries, skarns and hornfels). Samples from the type a veins in skarns were collected from the center of the deposit (lines 7–40) outwards, from drill holes J4012, J3214, J2415, J1217, J024, J721, J1521, J2315, J3110 and J3906 (Fig. 1). Samples from the type I veins in skarns were collected from drill holes ZK721, ZK719 and ZK714 in the central part of the deposit, and from ZK708, ZK705 and ZK703 in the outer part (Fig. 1).

Petrographic and microthermometric studies on fluid inclusions were conducted using a THMSG600 system (Linkam Scientific Instruments, Surrey, United Kingdom). The cooling-heating stage was calibrated using standard synthetic fluid inclusions provided by FLUID Inc, with an accuracy of ±2°C for the 0–600°C interval and ±0.5°C for the −196–0°C interval. The fluid inclusion microthermometry workflow was as follows: photography → freezing → heating. The fluid inclusions were generally cooled to between −70°C and −120°C at a rate of 20°C/min until frozen. The re-heating rate was 15°C/min, and was adjusted to 2–5°C/min when the temperature reached −30°C. The warming rate was reduced to 0.1–0.5°C/min, and the freezing temperature was duly recorded. After the freezing process was completed, the temperature was continuously increased at a rate of 25°C/min. When the temperature reached 100°C, the heating rate was adjusted to 10°C/min. When the temperature was close to the point of homogenization (or the solid phases disappeared), the heating rate was reduced to 2–3°C/min. The inclusions were heated continuously until the solid phases or the vapor disappeared, and the respective temperatures were recorded. The salinities of the fluid inclusions were calculated using the formula of Hall et al. (1988), but some inclusions did not yield freezing temperatures because of their small size. All salinities are reported as wt% NaCl eq. unless otherwise stated.

4 Results

4.1 Fluid inclusion petrography

Based on the phase assemblages at room temperature, the fluid inclusions from the Jiama deposit can be divided into two types: type i and type ii. Type i inclusions are composed of liquid and/or vapor, without solid phases, whereas type ii inclusions contain solid phases in addition to fluid phases.

Type i inclusions are divided into two sub-types, type i-1 and type i-2. The type i-1 inclusions consist of liquid and vapor with vapor contents of 5–60% (Fig. 5a, c), and homogenize into the liquid phase. These inclusions are typically 5–25μm in size and are circular, elliptical, rice-shaped or irregular in shape. They account for 40–60% of the total fluid inclusion population. Type i-2 fluid inclusions have vapor percentage of 60–100% (Fig. 5a, d), and homogenize into the vapor phase. They are 10–50μm in size and are elliptical or irregular in shape. They account for 10–20% of the total fluid inclusion population.

Type ii inclusions have at least three phases (liquid, vapor and solid) at room temperature. They are 5–40μm in size (mostly 15–30μm) and are elliptical or irregular in shape. The most common solid phase is halite, although sylvite and sulfides are also observed in some inclusions. Halite crystals are mostly cubic in shape, light green in

Fig. 5. Petrographic features of different types of fluid inclusions from gangue minerals in porphyries, skarns and hornfels, Jiama deposit.

(a) Two-phase and three-phase inclusions with different vapor/liquid ratios in type B vein, J3214-616.4, granite porphyry; (b) Multiphase inclusions with halite and sylvite crystals in type a quartz veins, J024-127, hornfels; (c) Two-phase and three-phase inclusions within wollastonite, J4012-743.5, skarn; (d) Two-phase and three-phase inclusion groups in type I veins, J708-196.3, skarn; V, Vapor; L, Liquid; H, Halite solid phase; S, Sylvite solid phase.
color, and normally <10 μm in size. Sylvite crystals are typically circular or rectangular in shape, while the sulfides are generally very small, and occur in irregular or triangular shapes. Some of the type ii inclusions have only one solid phase (Fig. 5c, d), whereas some may have multiple solid phases (Fig. 5b). The type ii inclusions can also be divided into two subtypes: type ii-1 inclusions, in which the solid phases dissolve before the vapor phase disappears during heating, and type ii-2 inclusions, in which the vapor phase disappears before the solid phases dissolve.

The fluid inclusion assemblage (FIA) concept of Goldstein and Reynolds (1994) was used to verify the consistency of the microthermometric data. Fluid inclusion assemblages in vein quartz are distributed within crystal growth zones (Fig. 6c, e, g) and occur as trails along healed fractures which do not cut across quartz crystal boundaries (Fig. 6i). Some are clustered, isolated or scattered inclusions (Fig. 6a) that are interpreted to be of pseudo-secondary or primary origins, and were mainly chosen for investigation in this study. Fluid inclusion assemblages in wollastonite occur along growth zones and are of primary origin (Fig. 6b). Most of the fluid inclusions studied in garnet are isolated or distributed in intracrystal healed fractures. These are interpreted to be of primary or pseudo-secondary origins. Only potential primary or pseudo-secondary inclusions were examined, with secondary fluid inclusions (those distributed along long, intercrystal fractures) being excluded. Further, microthermometric data with a difference of homogenization temperature (T_h) values >15°C within a small area were not adopted, even if they could be unambiguously defined as an FIA (Chi Guoxiang and Lu Huanzhang, 2008).

The coexistence of type i-1, i-2 and ii fluid inclusions within individual fluid inclusion assemblages, found in all veins types close to the center of the deposit (Fig. 6) is interpreted to indicate fluid boiling. This is commonly observed in quartz of type 1 veins throughout line 7 in the deposit, but for type a veins in hornfels, boiling is only evident in the center of the deposit. Additionally, fluid inclusions in type a veins decrease significantly in abundance and size toward the periphery, and very few inclusions < 2 μm were found in type a veins in drill cores J3110 and J3906.

4.2 Homogenization temperature and salinity

Overall, the studied fluid inclusions have homogenization temperatures in the 201–459°C range, and salinities in the 1.1–43.4 wt% NaCl eq. range (Table 1). In porphyries, fluid inclusions in gangue minerals from different stages have homogenization temperatures in the 249–392°C range, with salinities in the 3.1–36.5 wt% range. In hornfels, fluid inclusions in gangue minerals from different stages have homogenization temperatures in the 240–459°C range, with salinities in the 2.1–43.3 wt% range. In skarns, fluid inclusions from garnet and wollastonite have homogenization temperatures in the 308–455°C range, with salinities in the 4.3–43.4 wt% range. Fluid inclusions from quartz in different veins have homogenization temperatures primarily in the 224–404°C range, with salinities in the 1.1–36.9 wt% range. These data are presented in Table 1 and Fig. 7.

Within gangue minerals of the early hydrothermal stage, type i fluid inclusions have T_h values in the 245–455°C range, with salinities in the 2.6–22.5 wt% range. Type ii fluid inclusions have T_h values in the 240–410°C range, with salinities in the 30.2–43.4 wt% range. Within gangue minerals of the late hydrothermal stage, type i fluid inclusions have T_h values in the 237–453°C range, with salinities in the 2.1–20.5 wt% range. Type ii fluid inclusions have T_h values in the 237–459°C range, with salinities in the 31.1–43.0 wt% range. These data are presented in Table 1 and Fig. 8. Generally, for fluid inclusions from early to late stages, the homogenization temperatures gradually decrease and the salinities change diversely because of boiling, cooling and dilution (Fig. 8).

Fluid inclusions from type a veins in the center of the deposit (lines 7–40) have homogenization temperatures in the 240–413°C range and salinities in the 2.6–43.3 wt% range. On the periphery of the deposit, no reliable inclusion data were acquired from type a veins in J3110 and J3906 drill holes. Fluid inclusions in samples from J2315 and J1521 drill holes have homogenization temperatures in the 244–348°C range and salinities in the 0.9–2.4 wt% range (Table 1, Fig. 9). Fluid inclusions from type 1 veins in the center of the deposit have homogenization temperatures in the 224–379°C range and salinities in the 1.1–34.1 wt% range, while those from type 1 veins on the periphery are in the 210–386°C range and 1.4 to 34.9 wt% range, respectively (Table 1, Fig. 10).

5 Discussions

5.1 Fluid evolution

The magmatic-hydrothermal transition stage can be considered the initial stage of fluid evolution. Generally, unidirectional solidification texture (UST), quartz eyes, cavities and other similar microstructures within intrusions are considered as geological records, while melt inclusions that coexist with fluid inclusions in early quartz veins or quartz phenocrysts can give more direct information about magmatic-hydrothermal transition (Harris et al., 2003, 2004). Zhou Yun et al. (2011a) found that homogenization
temperatures of melt inclusions were in the 734–1080°C range within quartz phenocrysts of 14 porphyry samples, which gives some indication of the temperature of the pre-hydrothermal stage. Nevertheless, no microthermometric data of coexisting fluid inclusions was reported. It is usually considered that porphyry systems initially exsolve a single phase of low to moderate salinity liquid (Fournier, 1999; Rusk et al., 2004, 2008; Sillitoe, 2010). This single phase may evolve into a two-phase fluid system consisting of hypersaline liquid (brine) and low-density vapor in most typical porphyry deposits at shallow depths (<4 km) (Fournier, 1999). This occurs as the single-phase liquid decompresses, cools or intersects its solvus (Henley and McNabb, 1978; Burnham, 1979; Cline and Bodnar, 1991; McNabb, 1978; Burnham, 1979; Cline and Bodnar, 1991).

Table 1 Fluid inclusion microthermometric data for the Jiama deposit

<table>
<thead>
<tr>
<th>Stage</th>
<th>Location</th>
<th>Mineral Type</th>
<th>Type</th>
<th>Vapor (%)</th>
<th>T_h (°C)</th>
<th>T_m (°C)</th>
<th>T_s (°C)</th>
<th>T_s (°C)</th>
<th>Salinity (%NaCl eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periphery</td>
<td>type c quartz vein</td>
<td>i-1</td>
<td>10–30</td>
<td>249–363</td>
<td>395–371</td>
<td>-9 to -10.1</td>
<td>304–286</td>
<td>12.9–14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>60–80</td>
<td>310–392</td>
<td>-2.6</td>
<td>218–277</td>
<td>32.8–36.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–30</td>
<td>265–309</td>
<td>364–345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>50–70</td>
<td>389–417</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>315–389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>10–20</td>
<td>367–401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>269–413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>60–90</td>
<td>245–387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>240–410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>20–40</td>
<td>262–410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>type a quartz vein</td>
<td>i-1</td>
<td>5–15</td>
<td>243–341</td>
<td>-0.5 to -1.4</td>
<td>13.4–20.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>30–40</td>
<td>249–363</td>
<td>-1.8 to -4.1</td>
<td>3.1–6.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>70</td>
<td>277–365</td>
<td>-2.1 to -2.9</td>
<td>3.6–4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–30</td>
<td>275–322</td>
<td>184–204</td>
<td>31.1–32.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>10–30</td>
<td>274–371</td>
<td>-2.4 to -3.7</td>
<td>4.0–6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>290–453</td>
<td>-2.8 to 12.3</td>
<td>4.7–16.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>70–80</td>
<td>295–341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>269–459</td>
<td>204–356</td>
<td>32.1–43.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>20–40</td>
<td>264–356</td>
<td>-1.2 to -4.2</td>
<td>2.1–6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>271–385</td>
<td>246–272</td>
<td>34.5–36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>60</td>
<td>241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>15</td>
<td>336</td>
<td>286</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>60</td>
<td>241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–30</td>
<td>260–389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>60–70</td>
<td>307–386</td>
<td>-0.9 to -2</td>
<td>1.6–3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–30</td>
<td>268–377</td>
<td>178–272</td>
<td>30.8–36.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>5–40</td>
<td>237–378</td>
<td>-6.8 to 17.4</td>
<td>10.2–20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>70</td>
<td>286–360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>20–40</td>
<td>237–350</td>
<td>191–252</td>
<td>31.5–34.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>20–40</td>
<td>297–336</td>
<td>189–215</td>
<td>31.4–32.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>5–40</td>
<td>224–389</td>
<td>-1.2 to 21.2</td>
<td>2.1–23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>50–70</td>
<td>240–386</td>
<td>-0.6 to -2</td>
<td>1.1–3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>10–40</td>
<td>237–377</td>
<td>173–272</td>
<td>30.6–36.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>10–40</td>
<td>259–351</td>
<td>154–230</td>
<td>29.9–33.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>type I quartz vein</td>
<td>i-1</td>
<td>5–40</td>
<td>210–379</td>
<td>-1.5 to -20.1</td>
<td>2.6–22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>50–70</td>
<td>225–386</td>
<td>-0.8 to -3.1</td>
<td>1.4–5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-1</td>
<td>20–40</td>
<td>332–371</td>
<td>221–234</td>
<td>33.0–33.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i-2</td>
<td>10–30</td>
<td>266–346</td>
<td>199–254</td>
<td>31.8–34.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: T_h-Homogenization Temperature; T_m-Final ice melting temperature; T_s-Solid dissolution temperature for type i-1 fluid inclusions; T_v-Vapor disappearance temperature for ii-2 fluid inclusions.
that took place in the hydrothermal stages.

In the early hydrothermal stage, the first boiling took place, inferred from the coexistence of liquid- and vapor-dominated fluid inclusions in wollastonite of the skarns, type A quartz veins in the porphyries and type a veins in the hornfels (Fig. 6a–b, g–h). Fluid evolution led to development of a vapor phase in the 245–417°C temperature range, a low to moderate salinity (0.9–22.5 wt%) liquid phase in the 243–455°C temperature range, and a high-salinity (30.2–43.4 wt%) liquid phase in the 240–418°C temperature range (Table 1, Fig. 8). The second boiling event took place in the late hydrothermal stage, inferred from the coexistence of liquid- and vapor-dominated fluid inclusions in type B quartz veins in the porphyries, type I veins in the skarns and type c veins in the hornfels (Fig. 6c–f, i–j). This boiling event is also inferred from the brecciated skarns and stockwork structures in the hornfels (Fig. 3i–j), which are consistent with sudden release of over pressured fluid. Fluid evolution in this late hydrothermal stage led to development of a vapor phase in the 225–386°C temperature range, a low to moderate salinity (2.1–23.2 wt%) liquid phase in the 210–453°C temperature range, and a high-salinity (29.9–43.0 wt%) liquid phase in the 237–459°C temperature range (Table 1, Fig. 8). Guo Wenbo et al. (2014) made a H-O isotope study of quartz in three types of veins in hornfels and skarns, corresponding to type a, type b/c and type I veins in this paper. The δD and δ¹⁸O H₂O data show a trend of groundwater mixing with
magmatic fluid in the late hydrothermal stage (Fig. 11), suggesting that the second boiling event was accompanied by groundwater mixing.

Fluid inclusion microthermometry can be used to indicate fluid flow direction and potentially the sources of ore-forming fluids. For porphyry systems, the trend of decreasing fluid inclusion homogenization temperatures away from the magmatic intrusions is apparent (Chi Guoxiang, 2015). The two boiling events in the Jiama deposit appear to differ spatially in terms of fluid temperature and salinity. The first boiling event recorded by type a veins occurred mostly within lines 7–0–40, and shows a tendency of decreasing fluid inclusion abundance and salinity from the center to the periphery of the deposit (Fig. 9). The second boiling event, recorded by type I veins, occurred along the interlayered structural zones between hornfels and marble, with similar homogenization temperature and salinity characteristics from the center to the periphery (Fig. 10). The second boiling event does not show the common trend of porphyry systems as discussed above, and may be related to depressurization that caused rapid outward fluid flow, similar to ore-forming fluids within the 4000 m vertical interval of the Sanshandao deposit (Jiang Xiaohui, et al., 2011; Wen et al., 2016).

5.2 Ore-forming mechanism

The resources presently identified in the Jiama deposit are distributed primarily in skarns (57%) and hornfels (40%) with only 3% hosted in porphyries. Core logs show that type B and D veins contribute to more than 2% of the mineralization in porphyries, type b and c veins contribute to more than 35% the mineralization in hornfels, type I veins contribute to more than 45% of the mineralization in skarns and type II, III and IV veins contribute to approximately 15% of the overall mineralization. As discussed above, the fluid inclusions in quartz from these veins indicate that fluid boiling took place in the second hydrothermal stage, and the H-O isotopes of quartz from different types of veins in hornfels and skarns suggest that magmatic fluid mixed with groundwater. The second fluid boiling, together with groundwater mixing, led to a temperature and salinity decrease, and an increase in pH,

Fig. 9. Longitudinal section with temperature-salinity comparison between center and periphery for type a veins.
all of which resulted in precipitation of ore minerals.

Ore-forming elements display a zonation from the deposit center to its periphery: Mo → Mo (Cu) → Cu (Mo) → Cu (Pb + Zn + Mo) → Cu (Pb + Zn) → Pb + Zn (Au) (Tang Jvxing et al., 2010; Zheng Wenbao et al., 2011; Yao Xiaofeng et al., 2014a). Fluid inclusions from the late hydrothermal stage demonstrate that mineralization was mainly related to the second boiling event, as commonly recorded from the center to the periphery. This suggests that the mineral zonation was determined by the position to which elements migrated during boiling. The migration patterns of metallic elements are key factors in the formation of porphyry systems, and previous studies have confirmed that Au and Cu are preferentially partitioned into the vapor phase (Heinrich et al., 1999; Baker et al., 2004; Williams-Jones and Heinrich, 2005; Nagaseki and Hayashi, 2008; Lu Huanzhang and Shan Qiang, 2015). In the liquid phase, Fe, Zn, Pb and some Cu probably migrated in the form of Cl$^-$ complexes (Heinrich et al., 1999; Nagaseki and Hayashi, 2008; Lu Huanzhang and Shan Qiang, 2015). Molybdenum probably migrated in the form of MoO$_2$Cln$_{2-n}$ complexes or MoO$_4^{2-}$ anions (Ulrich and Mavrogenes, 2008). The second boiling event led to local decomposition of complexes that migrated to different positions, and variable complexes precipitated in different temperature ranges, resulting in zonation of the
ore-forming elements.

6 Conclusions

Based on the study presented regarding fluid inclusions and ore-forming processes in the Jiama deposit, the following conclusions can be drawn:

(1) Fluid evolution of the Jiama deposit involved at least two fluid boiling events. The first boiling event took place in the early hydrothermal stage, as recorded in type A veins in porphyries, type a veins in hornfels and wollastonite grains in skarns. The second boiling event occurred in the late hydrothermal stage, as recorded in type B and D veins in porphyries, type I, II, III and IV veins in skarns and type b and c veins in hornfels.

(2) The second fluid boiling event, and associated meteoric water mixing, is closely related to mineralization, contributing to more than 90% of the reserves in the deposit. The inclusions entrapped in type I veins from the center to the periphery within skarns indicate that the second boiling occurred along the interlayered structural zones between hornfels and marble. Moreover, variable element migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag resulted in ore-element zonation.

Acknowledgements

This work was funded by the third subject of National Natural Science Foundation of China (41302060), Geological Survey Project (12120114001304, 12120100400150012). We thank Tibet Huatailong Mining Development Co., Ltd. for support during the field studies. We thank Ding S. and Lin B. for their assistance in the field. We thank Warwick Hastie, PhD, from Liwen Bianji, Edanz Group China, for editing the English text of a draft of this manuscript. Thanks are also due to an anonymous reviewer and Prof. Chi Guoxiang of the University of Regina for critical and constructive comments which greatly improved the manuscript.

Manuscript received Dec. 2, 2016 accepted Apr. 19, 2017 edited by Fei Hongcai

References

About the first author:
YAO Xiaofeng, male, born in 1986, doctor, graduated from China University of Geosciences (Beijing); post-doctor in China University of Geosciences (Beijing), senior geologist in the Development and Research Center, China Geological Survey (CGS), majoring in ore genesis and metallogeny. E-mail: 289332792@qq.com.