The Archean North China Craton is composed of the Western Block, Eastern Block and the intervening Central Orogenic Belt. A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic mélange is documented in the Zanhuang Massif of the Central Orogenic Belt, separating the Eastern Block from an Archean arc terrane in the Central Orogenic Belt. The mélange belt contains a structurally complex tectonic mixture of metapelites, metapsammites, marbles and quartzites mixed with exotic tectonic blocks of volcanic, mafic and ultramafic rocks, metabasalts that locally include relict pillow structures, and TTG gneisses. The Zanhuang tectonic mélange marks the suture of an arc-continent collisional zone between the Western Zanhuang Massif in the Central Orogenic Belt and Eastern Block of the North China Craton, and is one of the best-preserved Archean tectonic mélanges in the world. Here we show, using zircon U-Pb dating of various types of blocks from the Zanhuang mélange, that the formation and associated deformation of the Zanhuang mélange occurred in the Neoarchean (circa 2.5 Ga). High-precision (1:20-1:200) litho-structural mapping of three key outcrops reveals details of the internal fabrics and kinematics of the mélange and regional structural relationships along the arc-continent collisional zone. A synthesis of studies on the tectonic evolution of the North China Craton coupled

Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton

The Archean North China Craton is composed of the Western Block, Eastern Block and the intervening Central Orogenic Belt. A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic mélange is documented in the Zanhuang Massif of the Central Orogenic Belt, separating the Eastern Block from an Archean arc terrane in the Central Orogenic Belt. The mélange belt contains a structurally complex tectonic mixture of metapelites, metapsammites, marbles and quartzites mixed with exotic tectonic blocks of volcanic, mafic and ultramafic rocks, metabasalts that locally include relict pillow structures, and TTG gneisses. The Zanhuang tectonic mélange marks the suture of an arc-continent collisional zone between the Western Zanhuang Massif in the Central Orogenic Belt and Eastern Block of the North China Craton, and is one of the best-preserved Archean tectonic mélanges in the world. Here we show, using zircon U-Pb dating of various types of blocks from the Zanhuang mélange, that the formation and associated deformation of the Zanhuang mélange occurred in the Neoarchean (circa 2.5 Ga). High-precision (1:20-1:200) litho-structural mapping of three key outcrops reveals details of the internal fabrics and kinematics of the mélange and regional structural relationships along the arc-continent collisional zone. A synthesis of studies on the tectonic evolution of the North China Craton coupled

Fig. 1 Three-dimensional kinematic framework of C, S and C' fabrics in mélange (Modified from Kusky and Bradley, 1999). C represents the main shearing plane; S represents preferred shape orientation of clasts or secondary foliation; C' represents extensional shearing plane. Black arrows: direction of shearing or transportation; Blue line: boundary of C'surface; Brown line: boundary of C'surface; Black line: boundary of S surface; Purple dot: intersection line between S and C'; Red dot: intersection line between C and C'; Green dot: intersection line between S and C.

* Corresponding author. E-mail: wangjp@cug.edu.cn
with our new fabric and kinematic analysis of the Zanhuang mélange further constrains the initial amalgamation timing and geometry of an arc-continent collision between the Fuping arc terrane in the Central Orogenic Belt and the Eastern Block with a northwest-dipping subduction polarity. The asymmetric structures and mixture of different blocks and matrices with folding and thrusting events in the Zanhuang mélange record kinematic information that is consistent with a tectonic setting of an accretionary wedge that was thrust over the passive margin of the Eastern Block by 2.5 Ga. Litho-structural mapping shows that the classic mélange and fold-and-thrust structures along the Neoarchean arc-continent collisional zone are broadly similar to Phanerozoic collisional belts.