The end-Permian mass extinction has been universally documented as the largest extinction during the Phanerozoic. In the immediate aftermath the marine ecosystem is prevailed by microbial and monotonous communities dominated by disaster taxa. Recent plausible scenarios include an extremely fast, explosive release of methane or other gases such as carbon dioxide and hydrogen sulfide. Siberia flood volcanism has been suggested as the most possible mechanism to trigger the massive release of greenhouse gases from volcanic eruptions and carbon from thick organic-rich deposits or rapid venting of coal-derived methane or massive combustion of coal. $\delta^{13}C$ isotopic excursion, rapid disappearance of carbonate benthic communities and $\delta^{18}O$ excursion based on conodont apatite suggest rapid global warming.

The end-Permian mass extinction has been universally documented as the largest extinction during the Phanerozoic. In the immediate aftermath the marine ecosystem is prevailed by microbial and monotonous communities dominated by disaster taxa. Recent plausible scenarios include an extremely fast, explosive release of methane or other gases such as carbon dioxide and hydrogen sulfide. Siberia flood volcanism has been suggested as the most possible mechanism to trigger the massive release of greenhouse gases from volcanic eruptions and carbon from thick organic-rich deposits or rapid venting of coal-derived methane or massive combustion of coal. $\delta^{13}C$ isotopic excursion, rapid disappearance of carbonate benthic communities and $\delta^{18}O$ excursion based on conodont apatite suggest rapid global warming.