Climate warming induced permafrost melting has begun to exert considerable impact on watershed hydrology, including water quality. The concentration and characteristics of dissolved organic carbon (DOC) in stream water are expected to respond or may even be sensitive indicators of such changes. Optical properties of the light absorbing or chromophoric fraction of DOC can provide information on the amount, source, and quality of chemically distinct moieties within the DOC pool. Recent research has demonstrated that combined measurements of ultraviolet–visible (UV–Vis) and fluorescence spectra with multivariate statistical techniques have transformed our understanding of biogeochemical dynamics in aquatic systems. Such methods were employed in this study to provide a preliminary assessment of DOC characteristics in a low latitude alpine watershed with an area of 25 km2 in the northeastern part of the Qinghai-Tibetan Plateau (Fig. 1). Water samples ($n=22$, Table 1) were collected from streams, flow seepage from shallow soils, and thermokarst ponds in July, 2012.

DOC concentration was determined through measuring the non-purgable organic carbon (NPOC) fraction for all samples using a TOC-5000 Analyzer (Shimadzu). UV-vis absorbance was measured by obtaining broad range spectra on an Agilent 8453 UV-Vis spectrophotometer with a 1 cm path length quartz cuvette. Carbon-specific UV absorbance (SUVA; Table 1) was calculated as the UV absorbance at 254 nm (UV254) normalized to the DOC concentration (L m$^{-1}$ mg$^{-1}$). Excitation emission matrices (EEMs) were collected for filtered liquid samples by scanning over an excitation range of 240 to 460 nm at 10 nm increments, and an emission range of 350 to 550 nm at 2 nm increments on a JY-Horiba Fluoromax-3 spectrofluorometer with instrument-specific corrections, Raman normalization, inner filter correction, and blank subtraction applied. To minimize inner filter effects prior to fluorescence measurements, samples were diluted to UV254 absorbance less than 0.2 (Miller et al., 2009). The fluorescence index (FI, Table 1) as calculated as the ratio of intensities emitted at 470 and 520 nm at 370 nm excitation (Cory and McKnight, 2005). The EEMs were fit to a parallel factor analysis (PARAFAC) model developed by Cory and McKnight (2005), which resolves the EEMs into 13 components including quinone-like, protein-like, and other undetermined components. The percentage of protein-like fluorescence is calculated as the ratio of tryptophan-like and tyrosine-like components to the total components (Cory and McKnight, 2005). The components can be grouped to assess the redox state of the DOC or fulvic acids, with four components representing semi-quinones and hydroquinone-like compounds or reduced DOC and another three representing quinones or oxidized DOC (Miller et al., 2006). A redox index (RI) is calculated as the percentage of the four reduced components.

For samples collected within the boundary of the watershed (Fig. 1), the mean concentrations of DOC are 14.2, 0.6 and 0.14 mg/L for thermokarst water, seepage and stream waters, respectively (Table 1). The FI provides information on organic matter source (McKnight et al., 2001), with a value of 1.8-1.9 for microbially-derived fulvic acids and a value of 1.2-1.4 for terrestrial-derived fulvic acids. SUVA determined at 254 nm is strongly correlated with percent aromaticity determined by 13C NMR (Weishaar et al., 2003). The thermokarst water, with high DOC content and SUVA values, displayed the lowest FI values with a mean close to 1.40 - characteristics indicative of terrestrially-sourced DOC. The increasing FI

* Corresponding author. E-mail: yzheng@coe.pku.edu.cn
values of the stream water collected within the watershed suggests increasing degree of influence of DOC from microbial processing (Table 1). The pH, SUVA, DOC levels are comparable for seepage and stream waters (Table 1), suggesting that they are of similar sources. However, seepage water had higher FI, suggesting that microbial processing of DOC that influenced stream and seepage water may have occurred in the subsurface. The high RI values observed support our assumption that the DOC in the stream and seepage waters are influenced by subsurface biogeochemical processes, because hyporheic exchange has likely brought reduced fulvic acids into the stream.

A limitation of this dataset is that no shallow groundwater samples representing the hyporheic zone were collected hence the biogeochemical processes responsible for the range of DOC characteristics observed could not be assessed. Nevertheless, the data suggest the permafrost melt water not only has high concentrations of DOC but also displays a unique chemical signature. Further work combined with stable isotope analysis will help to illuminate the processes and to resolve the contribution of water and DOC from permafrost melting to streams.

Key words: dissolved organic carbon (DOC), UV-Vis absorbance, fluorescence, permafrost, alpine, low latitude, Qinghai-Tibet Plateau, Heihe River Basin

References:
Natalie Mladenov, Diane M. McKnight, Piotr Wolski, Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango delta, Botswana, Wetlands, Vol.25, No.3
Amanda M. Grannas, Rose M.Cory, Penney L.Miller, The role

Table 1 Characteristics of DOC in Hulogou watershed, July 2012

<table>
<thead>
<tr>
<th>Location (n)</th>
<th>SUVA L. mgC⁻¹m⁻¹</th>
<th>DOC mgCL⁻¹</th>
<th>spCond uSmm</th>
<th>pH</th>
<th>FI</th>
<th>MaxEm mm</th>
<th>RI</th>
<th>Protein %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside (4)</td>
<td>1.36±0.29</td>
<td>0.56</td>
<td>194.3±1.17</td>
<td>7.89±0.04</td>
<td>1.57±0.04</td>
<td>489</td>
<td>0.77</td>
<td>21-49</td>
</tr>
<tr>
<td>Outside (2)</td>
<td>3.11±0.03</td>
<td>3.79±1.13</td>
<td>348.5±2.2</td>
<td>8.19±0.04</td>
<td>1.47±0.01</td>
<td>466</td>
<td>0.76</td>
<td>7-13</td>
</tr>
<tr>
<td>Thermokart Inside (1)</td>
<td>3.87±0.17</td>
<td>13.8±7.1</td>
<td>308.9±40</td>
<td>7.52±0.44</td>
<td>1.41±0.13</td>
<td>469</td>
<td>0.73</td>
<td>6-9</td>
</tr>
<tr>
<td>Outside (1)</td>
<td>10.55</td>
<td>6.19</td>
<td>383</td>
<td>7.25</td>
<td>1.48</td>
<td>424</td>
<td>0.71</td>
<td>11</td>
</tr>
<tr>
<td>Seepage water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside (2)</td>
<td>0.97±0.04</td>
<td>6.20±0.14</td>
<td>398.5±1</td>
<td>8.09±0.06</td>
<td>1.67±0.00</td>
<td>454</td>
<td>0.7</td>
<td>20-39</td>
</tr>
<tr>
<td>Outside (2)</td>
<td>2.51±0.05</td>
<td>2.12±1.4</td>
<td>319.5±90</td>
<td>7.79±0.17</td>
<td>1.53±0.01</td>
<td>462</td>
<td>0.75</td>
<td>11-18</td>
</tr>
</tbody>
</table>

For each property, values are mean and 1 standard deviation, respectively.

Fig. 1 Location of Hulugou watershed
of dissolved organic matter in arctic surface waters in the photolysis of hexachlorobenzene and lindane. Journal of geophysical research, Vol.117, G01003

Colin A. Stedmon, Stiig Markager, Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis, Limnol, Oceanogr., 50(2), 2005, 686-697

Robert G.M. Spencer, Lucy Bolton, Andy Baker, Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations, water research 41(2007)2941-2950

G.R. Aiken, D.M. McKnight, K.A. Thorn, Isolation of hydrophilic organic acids from water using nonionic macroporous resins, Org. Geochem, Vol.18, No.4

Rose M. Cory, Louis A. Kaplan, Biological lability of streamwater fluorescent dissolved organic matter, Association for the Sciences of Limnology and Oceanography

Eran Hood, Mark W. Williams, Diane M. McKnight, Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes

Boris P. Koch, Mathias Witt, Ralph Engbrodt, Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry