The Tanzanian Craton has been an island of stability within eastern Africa, despite the fact that it was surrounded by continent-continent collision belts during the East African Orogeny and is currently surrounded by the East African Rift. Archean crust within the Mozambique Belt to the east of the craton underwent high-grade metamorphism associated with the Pan-African amalgamation of Gondwana, yet ancient craton-like mantle lithosphere presently underlies this belt (Burton et al., 2000), and there appears to have been no loss of mantle lithosphere associated with the orogeny. This may be due to the fact that the Tanzanian Craton lies in the footwall of the collision (much like India in the present-day Himalayan orogen) (Fritz et al., 2009). The presence of thick, strong Archean mantle lithosphere below the Mozambique Belt may be the reason that the rift changes from a well-defined rift valley in southern Kenya to a region of widespread extension in northern Tanzania. The East African Orogeny had little affect on the present-day craton, where thermochronology of lower crustal feldspars shows that even the deep crust remained below ~600°C since the Late Archean (Bellucci et al., 2011). By contrast, complete metamorphic recrystallization occurred in the Archean crust of the Mozambique Belt during the East African Orogeny, where crustal thicknesses of up to 80 km were attained (Blondes et al., 2013). Thermochronology of deep-seated xenoliths from the Mozambique Belt show that the crust cooled differentially following the East African Orogeny, with the lowermost crust cooling extremely slowly (≤1°C/Ma), whereas the middle crust of the orogen (present-day upper crust) cooled more quickly (~7°C/Ma). This differential cooling is likely related to the westward emplacement of nappes onto cratonic lithosphere (Blondes et al., 2013).

By contrast, the eastern block of the North China Craton underwent a fundamental transformation from a thick, stable craton to a thinned, tectonically active region during the Mesozoic (Griffin et al., 1998) (Menzies et al., 1993). Not only did the lithosphere thin, but the original Archean cratonic lithospheric mantle was removed and replaced with more fertile lithosphere (e.g., Gao et al., 2002) (Wu et al., 2003) (Chu et al., 2009). The composition of unusual high Mg andesites and high Mg# basalts and picrites suggest a role for foundered cratonic lower crust in their formation (Gao et al., 2004, Gao et al., 2008). While the mechanism for lithosphere replacement beneath the North China Craton is the subject of debate, the fact that the craton was on the hanging wall during multiple collisions (Yangtze Craton to the south, Solonker Suture to the north) may explain the fundamentally different in behavior compared to the Tanzanian Craton.

Acknowledgements

The work described in this abstract was done in collaboration with a large number of people listed here: Gao Shan, Fuyuan Wu, Rich Walker, Liu Jingao, Rick Carlson, Xu Wenliang (NCC) and Cin-Ty Lee, John Chesley, Madalyn Blondes, Sam Bowring, Jeremy Bellucci, Shukrani Manya, Adam Mansur and Bill McDonough for Tanzania.

References


