Evaluating the Precise $^{39}\text{Ar}/^{40}\text{Ar}$ Dating of Multiple Mineral Potassic Phases in Ultra-alkaline Rocks: Applications to Mantle Systematics

Simon A. WILDE1,*, Fred JOURDAN1, Lynda FREWER2 and Monika A. KUSIAK1,3,4

1 Department of Applied Geology, Western Australian School of Mines, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
2 Diatech Pty Ltd, 6 Sandra Place, Welshpool, Western Australia 6106, Australia
3 Swedish Museum of Natural History, 40 Frescativagen, Stockholm 11418, Sweden
4 Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza Str. 01-452, Warsaw, Poland

Abstract: A suite of potassium-bearing minerals from the Walgidee Hills lamproite intrusion in the Kimberley region of Western Australia was selected for $^{39}\text{Ar}/^{40}\text{Ar}$ dating. These included wadeite, jeppeite, priderite, potassium richterite, and phlogopite. All recorded excellent plateau ages, with the mean age of the combined data set being $17.3±0.3$ Ma. Phlogopite recorded the largest uncertainty, whereas, of the other minerals, wadeite gave the best precision. Although rare to absent in common magmatic rocks, these minerals are widely distributed in alkaline complexes and in lamproite, kimberlite and orangeite intrusions. The results indicate this suite of minerals is excellent for $^{39}\text{Ar}/^{40}\text{Ar}$ dating and that they can be used singly or in combination to obtain the precise magmatic crystallization ages of ultra-alkaline rocks. Because of the stability of potassium richterite at mantle depths, $^{39}\text{Ar}/^{40}\text{Ar}$ dating of MARID (mica-amphibole-rutile-ilmenite-diopside) xenoliths should be a more widely-applied technique to investigating mantle geodynamics.

Key words: $^{39}\text{Ar}/^{40}\text{Ar}$ dating, potassium-bearing minerals, ultra-alkaline rocks, MARID xenoliths

Acknowledgments: We acknowledge the John de Laeter Centre for Mass Spectrometry at Curtin University to which the Argon facility is affiliated. We also thank the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia for access to the electron microprobe.

About the author and corresponding author
Simon A. WILDE, male, born in 1945 in Much Wenlock, Shropshire, United Kingdom; John Curtin Distinguished Professor at Curtin University, Perth, Western Australia. He applies fieldwork, petrography, geochemistry and geochronology to the origin and evolution of continental crust, especially on the early Earth; he is a Clarivate Analytics highly-cited researcher. Email: s.wilde@curtin.edu.au; phone: +61 8 9266 3580.

* Corresponding author. E-mail: s.wilde@curtin.edu.au

© 2020 Geological Society of China
https://onlinelibrary.wiley.com/journal/17556724