Abstract: The Pan-African event is widely distributed in East Antarctica craton. Many terranes or outcrops of the craton bear more or less signs of the event. From characteristics of the shear zones, granites, pegmatites, feature and time of high grade metamorphism and detrital zircon ages peaks of the downflowing sediments from the plateau, the Pan-African event in the East Antarctica and adjacent areas in the Gondwana reconstruction, like SE Africa, southern India and SW Australia, was distributed as special zones or areas in many localities, including both the coastal regions and interior of the East Antarctica. In geochemistry, the granites are generally anorogenic, occasionally with some gabbros or dolerite dykes, showing sign of bi-modal feature. The water or fluid available along the shear zones were responsible for retrogression of the earlier, e.g., Grenville age, high grade outcrops to later Pan-African amphibolite facies metamorphism. Meanwhile, the Pan-African event has influenced most isotopic systems, including the U-Pb, Sm-Nd, Rb-Sr and Ar-Ar systems, giving younger apparent ages. Manifestation of the Pan-African event is distributed from possibly locally granitic magmatism, to wider medium-high grade metamorphism, and mostly widespread in resetting for some isotope systems, suggesting the prevailing thermal effect.

© 2020 Geological Society of China
https://onlinelibrary.wiley.com/journal/17556724
Before Gondwana formation, local depressions in the East Antarctica could be filled with sediments, implying the initial breakup period of the Rodinia. The later Pan-Gondwana counterrotating cogs shaped the interstitial fold belts between continent blocks and formed a set of shear zones. The mafic underplating in the Gondwana may be responsible for the widespread granites, pegmatites and more or less isotopic resetting due to strong thermal effect from the deep. That is, the Pan-African event is a possible response of the plate movement surrounding the continent swarms in the non-stable interior of the yet consolidated Gondwana. The Pan-African event may be an overwhelmingly extensional and transcurrent tectonics in mechanism.

Key words: Pan-African event, distribution, granite, metamorphism, East Antarctica

Acknowledgments: This work is granted by the National Natural Science Foundation of China (Grant Nos. 41472172, 41530209) and a project from the Chinese Polar Environment Comprehensive Investigation and Assessment Programme (Grant No. CHINARE2015-02-05).

References

About the author and corresponding author
REN Liudong, male, born in 1965 in Puyang City, Henan Province; doctor; graduated from Chinese Academy of Geological Sciences (CAGS); research fellow of Institute of Geology, CAGS. He is now interested in the metamorphic geology and Antarctic geology. Email: ldren@cags.ac.cn; phone: 010-60999727, 13691188156.