Origin of the Dulong Sn-Zn Polymetallic Deposit, SE Yunnan Province: Constrains from Sulfides S and Pb Isotopes Study

LI Piyou¹, YAN Yongfeng¹, * , TIAN Zhendong², ³, YANG Guangshu¹ and JIA Fuju¹

¹ Faculty of Land Resource Engineering, Kunming University of Science and Technology Kunming 650093, Yunnan, China
² State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
³ University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: The Dulong Sn-Zn polymetallic deposit, located in Maguian county of Yunnan Province, is the third largest tin polymetallic deposit in China. This deposit consists of five ore blocks, including Tongjie, Manjiazhai, Lazhizhai, Wukoudong and Nandangchang. The exposed strata in the ore district comprise Neoproterozoic to Low Cambrian Xinzhaiyan Formation, Middle Cambrian Tianpeng Formation and Longha Formation, of which the Tianpeng Formation is the ore-bearing strata. The Laojunshan granite complex is distributed at the northern part of the deposit. Zircon dating results indicate that this complex was formed at 96 – 87 Ma (Lan et al., 2016; Xu et al., 2015). Previous studies have conducted series of researches on the geological characteristic, source of ore-forming materials, evolution of ore-forming fluid, and the geochemistry of ore-related intrusions (He et al., 2014; 2015; Xu et al., 2015; Ye et al., 2016). Nonetheless, the origin of this deposit remains highly controversial. Some researchers classified the deposit as magmatic hydrothermal deposit (Song, 1989; Ye et al., 2016), whereas others argued that the deposit was typical sedimentary exhalative (sedex) deposit (Zhou et al., 1998). In addition, minor workers proposed that this deposit was composite origin that formed by sedex ore bed superimposed with regional metamorphism and magmatic hydrothermal activity (Liu, 1998).

In this study, we present new sulfur (S) and lead (Pb) isotopes data to constrain the origin of this deposit.

Our studies show that S isotopic compositions of sulfides from the Dulong Sn-Zn polymetallic deposit have narrow range of variation and mainly concentrate upon 0‰ ~ 5‰. They are consistent with the characteristics of magmatic sulfur, but are different from the Precambrian seawater and pyrites from Precambrian stratigraphy (He et al., 2014). Pb isotopic compositions of sulfides from the Dulong Sn-Zn polymetallic deposit are in good agreement with the feldspar from Laojunshan granite complex. But that are inconsistent with the wall rock of marble, schist and the basement of gneiss (He et al., 2015), suggesting that the ore-forming materials were derived from Laojunshan granite intrusions. Integration of previous published geological, geochemistry, and geochronology, we support that the Dulong Sn-Zn polymetallic deposit is of a magmatic hydrothermal deposit.

Key words: Dulong Sn-Zn deposit, S isotope, Pb isotope, ore genesis

Acknowledgements: This work is supported by the National Natural Science Foundation of China (Grant No.41373050)

References

About the first author
LI Piyou, female; born in 1992 in Hani-Yi autonomous prefecture of Honghe, Yunnan Province; Master; graduated from Kunming University of Science and Technology. PhD

* Corresponding author. E-mail: lyf701018@vip.sina.com

© 2019 Geological Society of China
student in Kunming University of Science and Technology. She is now interested in the genesis of skarn W-Sn deposit in Yunnan Province and the formation of Carlin-type Au deposit at Youjiang basin. Email: 710447834@qq.com; phone: 18213889253.

About the corresponding author
YAN Yongfeng, male, born in 1970 in Nanyang City, Henan Province; PhD; graduated from Kunming University of Science and Technology; Professor in Faculty of Land and Resource Engineering, Kunming University of Science and Technology. He is now interested in the study of mathematical geology, and W-Sn deposits ore prospecting. Email: lyy7701018@vip.sina.com; phone: 13888612688.