A New Approach of Unspiked K-Ar Dating Using Laser Fusion on Microsamples

WANG Fei 1,*, SHI Wenbei1, GUILLOU Hervé2, ZHANG Weibin 3, YANG Liekun 1, WU Lin 1, WANGYinzhi1 and ZHU Rixiang 1

1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2 Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Avenue de la Terrasse, Bat.12, 91198 Gif sur Yvette Cedex, France
3 Institute of Geology and Seismology, Seismological Bureau of China, Beijing 100029, China

Abstract: Issues induced by neutron irradiation makes 40Ar/39Ar dating inapplicable in some cases. The first issue is 37Ar and 39Ar recoil effects during irradiation that affect fine-grained minerals (<50mm), such as lunar rocks, glassy groundmass, supergene minerals (e.g. illite, glauconite, Mg-oxide etc.). The second issue from neutron irradiation is high radioactivity gain of iron-rich samples such as pyrite. The third issue is the production of interference nuclides during irradiation. Inherent drawbacks of conventional K-Ar and current unspiked K-Ar dating make it difficult to assess the reliability of age results. A new approach is proposed using well-calibrated 40Ar/39Ar standard minerals to directly quantify 40Ar, 38Ar and 36Ar. FCs sanidine, B4M muscovite and MMhb-1 hornblende, the widely-used international standard minerals, were analyzed as unknowns to test the approach. Argon isotope analyses were carried out on a noble-gas mass spectrometer using laser fusion on microsamples ($n \times 0.01$ to $n \times 0.2$ mg). A new isochron - an “inverse isochron” for K-Ar dating - is designed. FCs and B4M yielded apparent inverse isochron ages of 28.1 ± 0.1 and 28.0 ± 0.3Ma, 18.2 ± 0.1 and 18.2 ± 0.5Ma, which are consistent with the recommended ages, while the MMhb-1 presented lower apparent and inverse isochron ages (510.8 ± 4.8 and 512.3 ± 17.0Ma) than the recommended ones. The initial argon compositions for the three standard minerals are 299.2±205.3 (FCs), 294.0 ± 16.4 (B4M) and 290.9 ± 203.1 (MMhb-1) agreeing with that of air. The approach potentially overcomes the issues of 40Ar/39Ar rising from irradiation and drawbacks of K-Ar. By using laser fusion on multiple microaliquots from a same sample, this approach can produce accurate and precise K-Ar ages and give an inverse isochron. The new approach may provide an alternate dating method of geochronology based on argon isotopes.

Keywords: a new approach, unspiked K-Ar dating, laser fusion, microsample, inverse isochron

Acknowledgments: This work was supported by the Ministry of Science and Technology of the People's Republic of China (2016YFC0600109) and the Natural Science Foundation of China (41673015).

References

© 2019 Geological Society of China