New Morphological Structures Revealing the Phylogenetic Affinity of Problematic Fossil Chuarids from the Early Ediacaran Lantian Biota

WAN Bin1, *, WANG Xiaopeng1, 2, PANG Ke1, NIU Changtai1, 2, GUAN Chengguo1, CHEN Zhe1 and YUAN Xunlai1, 3

1 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.
2 University of Chinese Academy of Sciences, Beijing 100039, China
3 Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China

Abstract: The Lantian biota, hosted in the lower black shale of the Ediacaran Lantian Formation of South China, provides a unique window revealing the complex multicellular life in early Ediacaran Period. As the most abundant taxon of the Lantian biota, the problematic fossil chuarids have two different preservational modes that most of the specimens are preserved as discoid carbonaceous compressions while rare specimens preserved as three-dimensionally pyritized internal molds. Although the pyritized chuarids had ever been interpreted as eukaryotic megacysts based on the medial split excystment structures (Yuan et al., 2001), the carbonaceously compressed chuarids are still ambiguous in their phylogenetic affinity, which hampers our ability to fully evaluate their paleobiological and paleoecological significance. Here we report some new morphological structures of the carbonaceously compressed chuarids in the Lantian biota, which could provide new insight into their phylogenetic affinity. Most of the carbonaceously compressed...
Chuarids are preserved as millimeter-sized discoidal, and distributed individually (Fig. 1a, d). In contrast, several chuarid discoidal could form regular chain-like (Fig. 1a–c) or irregular agglomerate (Fig. 1d–e) clusters. The chuarid discoidal are always connected or separated slightly in the chain-like clusters (Fig. 1b–c), and connected closely but never overlapped in the agglomerate clusters (Fig. 1e). We inferred that the chuarid discoidal were spherical shells originally, and have outer gelatinous covering. Thus, the discoidals were connected by the gelatinous covering to form the chain-like or agglomerate clusters, and the slight separations between discoidals could be caused by the degradation of gelatinous covering. These morphological structures of the chain-like and agglomerate chuarid clusters resemble some typical Nostoc or Chroococcus of cyanobacteria (Castenholz, 2001; Lee, 2008). Thus, the chuarid fossils in the Lantian biota may therefore represent a polyphyletic group of diverse floating eukaryotic and prokaryotic organisms, which are different from the typical Precambrian Chuaria–Tawuia assemblages (Steiner, 1996; Sharma et al., 2009; Tang et al., 2017) in both phylogenetic affinity and stratigraphic range.

Key words: Chuaria, early Ediacaran, Lantian biota, cyanobacteria

Acknowledgments: This work was supported by grants from Jiangsu Provincial Department of Science and Technology (BK20161615), Chinese Academy of Sciences (XDB26000000, QYZDJ–SSW–DQC009), National Natural Science Foundation of China (41502010).

References

About the corresponding author
WAN Bin, male, born in 1985 in Weinan City, Shaanxi Province; doctor; graduated from Northwest university; associate research professor of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. He is now interested in the study on Ediacaran palaeobiology and stratigraphy. Email: binwan@nigpas.ac.cn; phone: 025-83282211, 15250980708.