Abstract: The tectonic setting of Eastern Jiangnan Orogenic Belt and its adjacent area is of great significance to the study on the evolution history and ore districts in south China. Since the electrical property may vary obviously between different tectonic units due to the special composition and structure, it is possible to obtain reliable tectonic boundary through the lithospheric electrical structure. Magnetotelluric method has an effective constraint on the vertical conductance of lithosphere. Based on the three-dimensional inversion result of magnetotelluric data and the Moho depth information from other geophysical observations (Li et al., 2018; Ouyang et al., 2014), the vertical conductance within a depth range of 50 km was calculated. The distribution of the vertical conductance shows that the southern part of the North China Block mainly have high conductivity characteristics (Fig. 1). The high resistive root underneath the Dabie Orogenic Belt (Fig. 2) indicates that the North China Block and the Yangtze Block collide and subside drastically under the Dabie Mountain. The whole Lower Yangtze Depression present slightly conductive, while the Jiangnan Uplift Belt and Zhegan Depression only have a large range of high conductivity area to the east of Jingdezhen (Fig. 1). The highly conductive region in the eastern part of Jiangnan Uplift Belt may result from the crustal melting due to increased subduction angle of the Pacific plate. In the highly conductive Huaiyu Terrain (Fig. 1), the North-Eastern Gan fault merged downward with Jiangshao fault in the shallow crust (Fig. 2). The south-eastern dipping listric structure in this area indicates that the Cathaysia Block obducted on the Yangtze Block during the late plate collision. Similarly, the Suichuan-Fuzhou fault also shows the characteristics of south-eastern dipping (Fig. 1, Fig. 3), indicating that the Jiangshao fault zone may extend to the southwest along the Suichuan-Fuzhou fault. The Jiangle-Jianyang-Longquan fault with the mantle scale (Fig. 3) may be the tectonic boundary of the eastern Cathaysia Block and western Cathaysia Block, which is consistent with the distribution of metamorphic rocks on the two sides of this fault (Lin et al., 2018).
According to the electrical structure in this work (Fig. 1) and the study on the ophiolitic melange belts (Zhang et al., 2013), Jiangle-Jianyang-Longquan fault and North-Eastern Gan fault should be the same fault in early Jinning period, then were separated by the stike-slip of Jiangshao fault. The understanding of the tectonic evolution of eastern Jiangnan Orogenic Belt and adjacent area still needs further study and verification.

Key words: eastern Jiangnan orogenic belt, tectonic boundary, electrical structure, magnetotelluric,

Acknowledgments: This work is granted by the Natural Science Foundation of China(Grant No. 41574068) and the National Key Research and Development Program of China (Grant No. 2016YFC0600201-4).

References

About the first author

WANG Gang, Male, born in 1990 in Jilin City, Jilin Province; Ph.D.; graduated from China University of Geosciences (Beijing); engineerer of Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences; He is now interested in the study on tectonics, magnetotellurics, inverse modeling. Email: wanggang01@igge.cn; phone: 18601029075.

About the corresponding author

FANG Hui, male, born in 1965 in Chengde City, Hebei Province; Ph.D.; graduated from China University of Geosciences (Beijing); senior engineerer of Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences. He is now interested in the study on tectonics, magnetotellurics, exploration geophysics. Email: fanghui@igge.cn; phone: 0316-2267762.