Objective

The Yanyuan and Sichuan Basins, located at the southwestern margin of the Yangtze Block, are separated by the Kangdian Oldland. The provenance of the Upper Triassic sediments deposited in the Sichuan Basin has been extensively studied much based on detrital zircon U-Pb geochronology (Zhang et al., 2016; Zhu et al., 2017; Yan et al., 2019). However, the provenance of the Upper Triassic Boda Formation in the Yanyuan Basin still remains unresolved. In order to constrain the paleogeographic evolution of the western margin of the Yangtze Block during the Triassic, this work conducted detrital zircon dating on two Triassic sandstone samples collected from the Yanyuan Basin.

Methods

Two sandstone samples, collected from the Lower Triassic Qingtianbao Formation and Upper Triassic Boda Formation in the Yanyuan Basin, were selected for detrital zircon U-Pb analysis. Analysis was made by LA-ICP-MS using the facilities at the London Geochronology Centre, University College London, based on a New Wave NWR193 excimer laser ablation system and an Agilent 7700x quadrupole mass spectrometer. The laser was set to produce ~2.5 J/cm² energy density at 8 Hz repetition rate for 25 seconds. Data reduction was processed using the GLITTER software package.

Results

In total, 219 (including 196 concordant points) detrital zircons from two detrital samples were analyzed. The U-Pb data for each sample is presented in Appendix 1. The sample YY02 (101°20′37.14″ E, 27°38′49.94″N) was collected from the Lower Triassic Qingtianbao Formation in the Yanyuan Basin. Among the 108 single zircon grains of the sample YY02, 91 zircon grains yield concordant ages ranging from ca. 226±2.77 Ma to 947±11.83 Ma, with 93% lying between 240 Ma and 280 Ma, showing a dominant mode at ~262 Ma (Fig. 1a). In contrast to the Lower Triassic sample, detrital zircon ages of the Middle Triassic sample from the Yanyuan Basin show a main peak at ~534 Ma, and three minor peaks at ~257 Ma, ~764 Ma and ~968 Ma, respectively (Zhu et al., 2017). Moreover, the detrital zircon ages of the Lower Triassic samples from the adjacent areas, with a prominent peak at ~810 Ma (Yan et al., 2019), are significantly different from those of the sample YY02.

The sample YY04 (101°18′52.25″ E, 27°23′52.11″N) was collected from the Upper Triassic Boda Formation in the Yanyuan Basin. Among the 111 single zircon grains of the sample YY04, 105 zircon grains gave concordant ages ranging from ca. 265±3.51 Ma to 2425±18.31 Ma, with 92% lying between 760 Ma and 885 Ma, showing a dominant mode at ~792 Ma (Fig. 1b). The detrital zircon U-Pb age spectrum of the Boda Formation is significantly different from the overlying Donggualing Formation in the Yanyuan Basin. The Donggualing Formation gave multiple age peaks at ~210 Ma, ~271 Ma, ~431 Ma, ~760 Ma, ~1860 Ma and 2400 Ma (Zhu et al., 2017), which is similar to the Upper Triassic samples from the Sichuan Basin (Zhang et al., 2016; Zhu et al., 2017; Yan et al., 2019).

Conclusion

The Triassic sandstones in the Yanyuan Basin record different detrital zircon geochronology signals. Integration of the published detrital zircon data from the Yanyuan Basin indicates that the most likely source area is the Kangdian Oldland during the Early-Middle Triassic and the early stage of Late Triassic time, whereas the sandstones that contain a more diverse range of zircon ages, sourced from the Songpan-Ganze terrane during the late stage of Late Triassic. This change reflects a major drainage adjustment in response to the closure of the Paleo-Tethys Ocean and significant shortening in the western margin of the Yangtze Block. In addition, the marked change in provenance (i.e., the initiate of foreland basin) of the Yanyuan Basin is later than that of Sichuan Basin during the Late Triassic, which reflects that the orogeny...
Fig. 1. Concordance plots and Kernel Density Estimation (KDE) plots of the detrital zircon U-Pb data for the sample YY02 (Lower Triassic Qingtianbao Formation) and the sample YY04 (Upper Triassic Boda Formation).

proceeded from north to south along the western margin of the Yangtze Block during the Late Triassic.

Appendix 1 Detrital zircon U-Pb dating results of the selected samples in the Yanyuan Basin

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Isotope ratio</th>
<th>Age (Ma)</th>
<th>preferred age</th>
<th>Discardance</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY02_001</td>
<td>0.05544</td>
<td>0.0028</td>
<td>2.28</td>
<td>0.15</td>
</tr>
<tr>
<td>YY02_002</td>
<td>0.09733</td>
<td>0.0485</td>
<td>6.00E-04</td>
<td>0.0555</td>
</tr>
<tr>
<td>YY02_003</td>
<td>0.05298</td>
<td>0.0548</td>
<td>0.0002</td>
<td>0.05295</td>
</tr>
<tr>
<td>YY02_004</td>
<td>0.02892</td>
<td>0.01235</td>
<td>0.0415</td>
<td>0.00706</td>
</tr>
<tr>
<td>YY02_005</td>
<td>0.02893</td>
<td>0.00714</td>
<td>0.04124</td>
<td>0.00509</td>
</tr>
<tr>
<td>YY02_006</td>
<td>0.02977</td>
<td>0.00501</td>
<td>0.04104</td>
<td>0.00526</td>
</tr>
<tr>
<td>YY02_007</td>
<td>0.032855</td>
<td>0.01815</td>
<td>0.04246</td>
<td>0.00945</td>
</tr>
<tr>
<td>YY02_008</td>
<td>0.02702</td>
<td>0.00462</td>
<td>0.03573</td>
<td>0.00486</td>
</tr>
<tr>
<td>YY02_009</td>
<td>0.02894</td>
<td>0.00476</td>
<td>0.04135</td>
<td>0.00507</td>
</tr>
<tr>
<td>YY02_010</td>
<td>0.02962</td>
<td>0.00975</td>
<td>0.04036</td>
<td>0.00334</td>
</tr>
<tr>
<td>YY02_011</td>
<td>0.029581</td>
<td>0.00688</td>
<td>0.04181</td>
<td>0.00334</td>
</tr>
<tr>
<td>YY02_012</td>
<td>0.03227</td>
<td>0.00637</td>
<td>0.04167</td>
<td>0.00526</td>
</tr>
<tr>
<td>YY02_013</td>
<td>0.03083</td>
<td>0.00608</td>
<td>0.04067</td>
<td>0.0055</td>
</tr>
<tr>
<td>YY02_014</td>
<td>0.02998</td>
<td>0.00777</td>
<td>0.04112</td>
<td>0.00582</td>
</tr>
<tr>
<td>YY02_015</td>
<td>0.03066</td>
<td>0.00655</td>
<td>0.04152</td>
<td>0.00539</td>
</tr>
<tr>
<td>YY02_016</td>
<td>0.03097</td>
<td>0.00494</td>
<td>0.04128</td>
<td>0.00511</td>
</tr>
<tr>
<td>YY02_017</td>
<td>0.03034</td>
<td>0.00691</td>
<td>0.04197</td>
<td>0.00524</td>
</tr>
<tr>
<td>YY02_018</td>
<td>0.02801</td>
<td>0.00534</td>
<td>0.04057</td>
<td>0.00564</td>
</tr>
<tr>
<td>YY02_019</td>
<td>0.02804</td>
<td>0.00651</td>
<td>0.04052</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_020</td>
<td>0.02801</td>
<td>0.00651</td>
<td>0.04052</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_021</td>
<td>0.02804</td>
<td>0.00651</td>
<td>0.04052</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_022</td>
<td>0.027563</td>
<td>0.00509</td>
<td>0.03942</td>
<td>0.00573</td>
</tr>
<tr>
<td>YY02_023</td>
<td>0.02703</td>
<td>0.00262</td>
<td>0.00126</td>
<td>0.004695</td>
</tr>
<tr>
<td>YY02_024</td>
<td>0.028834</td>
<td>0.00637</td>
<td>0.00479</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_025</td>
<td>0.029011</td>
<td>0.00453</td>
<td>0.04191</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_026</td>
<td>0.028155</td>
<td>0.00505</td>
<td>0.04004</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_027</td>
<td>0.03047</td>
<td>0.00734</td>
<td>0.04121</td>
<td>0.00536</td>
</tr>
<tr>
<td>YY02_028</td>
<td>0.02906</td>
<td>0.00602</td>
<td>0.04115</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_029</td>
<td>0.03015</td>
<td>0.00123</td>
<td>0.02412</td>
<td>0.00519</td>
</tr>
<tr>
<td>YY02_030</td>
<td>0.03079</td>
<td>0.00586</td>
<td>0.04168</td>
<td>0.00505</td>
</tr>
<tr>
<td>YY02_031</td>
<td>0.03122</td>
<td>0.00157</td>
<td>0.01499</td>
<td>0.00588</td>
</tr>
<tr>
<td>YY02_032</td>
<td>0.028916</td>
<td>0.00571</td>
<td>0.04104</td>
<td>0.00512</td>
</tr>
<tr>
<td>YY02_033</td>
<td>0.029668</td>
<td>0.00462</td>
<td>0.02247</td>
<td>0.00509</td>
</tr>
<tr>
<td>YY02_034</td>
<td>0.028003</td>
<td>0.00958</td>
<td>0.04165</td>
<td>0.00487</td>
</tr>
<tr>
<td>YY02_035</td>
<td>0.029895</td>
<td>0.00935</td>
<td>0.02035</td>
<td>0.00517</td>
</tr>
<tr>
<td>YY02_036</td>
<td>0.029814</td>
<td>0.00557</td>
<td>0.04037</td>
<td>0.00358</td>
</tr>
<tr>
<td>YY02_037</td>
<td>0.029108</td>
<td>0.00481</td>
<td>0.04054</td>
<td>0.00521</td>
</tr>
<tr>
<td>YY02_038</td>
<td>0.032197</td>
<td>0.00871</td>
<td>0.04197</td>
<td>0.00567</td>
</tr>
<tr>
<td>YY02_039</td>
<td>0.031077</td>
<td>0.00833</td>
<td>0.04228</td>
<td>0.00534</td>
</tr>
<tr>
<td>YY02_040</td>
<td>0.029772</td>
<td>0.00485</td>
<td>0.04258</td>
<td>0.00504</td>
</tr>
<tr>
<td>YY02_041</td>
<td>0.028755</td>
<td>0.00777</td>
<td>0.04262</td>
<td>0.004896</td>
</tr>
</tbody>
</table>

Acknowledgments

This research was financially supported by the Sichuan Science and Technology Program (grants No.2019YJ0004, the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology (grants No. PLC201604, PLC20180505) and the National Natural Science Foundation of China (grants No. 41502116 and 41372114).

References

