High-precision Dating and Geological Significance of Chang 7 Tuff Zircon of the Triassic Yanchang Formation, Ordos Basin in Central China

ZHÚ Rukai, CUI Jingwei*, DENG Shenghui, LUO Zhong, LU Yuanzheng and QIÚ Zhen

Research Institute of Petroleum Exploration and Development, BeiJing 100083, China

Abstract: The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone-type uranium mineral resources. Chang 7 shale is not only the major source rock of the Mesozoic petroliferous system of the Basin, but is also crucial in determining the space-time distribution relationship of the shale section for the effective exploration and development of the Basin’s oil and gas resources. To obtain a highly precise age of the shale development section, we collected tuff samples from the top and bottom profile of the Chang 7 Member, Yishi Village, Yaqiu Town, Tongchuan District, on the southern margin of the Ordos Basin and performed high-precision chemical abrasion (CA)–isotope dilution (ID)–thermal ionization mass spectrometry (TIMS) zircon U-Pb dating on the basis of extensive laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating data. Our results show the precise ages of the top and bottom zircon in the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. We first obtained Chang 7 age data with Grade 0.1-Ma precision and then determined the age of the shale development in the Chang 7 Member to be the early-Middle Triassic Ladinian. This result is supported by palaeontological evidence. The deposition duration of the Chang 7 shale is 0.5Ma with an average deposition rate of the shale section being 5.3 cm/ka. Our research results provide time scale and basic data for further investigation of the basin–mountain coupling relation of the shale section, the sedimentary environment and volcanic ash and organic-matter-rich shale development relation, and the organism break-out and organic-matter enrichment mechanism.

Key words: Ordos Basin, Chang 7 Member, tuff, zircon U-Pb dating

* Corresponding author. E-mail: cuijingwei@petrochina.com.cn

1 Introduction

The Ordos Basin, as the second largest petroliferous basin of China, contains rich oil and gas resources, oil shale, and sandstone-type uranium mineral resources. The Changqing Oilfield, currently the largest oil and gas field in China, has achieved a high and stable yield with an oil and gas equivalent of over 50 million tons in the four consecutive years since 2013. As such, it plays a vital role in guaranteeing national energy security, regulating the national energy structure, and promoting economic and social development. The oil exploration target strata of the Triassic Yanchang Formation and the Jurassic crude oil of the Ordos Basin originate mainly from the major source rock of the Chang 7 Member (Zhang et al., 2009; Yang et al., 2013).

In the sedimentary period of the Triassic Yanchang Formation, the Ordos Basin, Chang 7-3 was subjected to rapid lake transgression, which sharply increased the lake depth and range. The lake area in the Chang 7-3 sedimentary period exceeds 10×104 km2, the deep lake water depth reaches 150 m, and the lake water salinity is generally less than 0.1%. As such, it provides a freshwater environment for breeding aquatic organisms and planktons. The temperature difference between the surface and underlying water in the deep lake causes cycles in which this water is suffocated. In these cycles, a large oxygen-deficient area forms in the deep lake, which promotes the development of organic-matter-rich shale. Very thick lake-facies dark-argillaceous sediment has developed such that this high-quality source rock is 20–60 m thick, its distribution range is 5×104 km2, and it mainly consists of dark gray-gray-black carbonaceous mudstone, gray-black mudstone, black shale, and oil shale. Overall, these formations are thin in the west, thick in the east, thin in the north, and thick in the south. The organic matter in the source rock is abundant, and the organic-matter type is good. The average total organic carbon content is 13.75%, and it is dominated by I, II1 type kerogen, which contains alginate and relatively fewer higher plants (Zhao et al., 1996; Andrew et al., 2007; Zhang et al., 2009). The Chang 7 Member represents the major development period of the Triassic lake transgression in the Ordos Basin and is an indication of the evolution of the Triassic basin deposition. What is its geological background and when did the events causing this Triassic sedimentary evolution occur? What is its relationship with Qinling tectonic coupling? Geologists have long focused on these major scientific questions, but

© 2019 Geological Society of China
differences in their understandings have produced different results and further disputes. Using zircon in-situ U-Pb dating with the help of laser ablation inductively coupled plasma mass spectrometry (LA–CIP–MS), Deng et al. (2009) obtained middle-upper and bottom ages for the Chang 7 Member of 221.8±2.0 Ma and 228.2±2.0 Ma, respectively. Zhang et al. (2009) performed dating for the Chang 7 oil shale thin-layered tuff zircon U-Pb and determined two age groups: 242–220 Ma and 220–205 Ma. Zhang et al. (2014) also used LA–CIP–MS in their dating analysis of the Chang 7 tuff zircon and found its age to be 234–236 Ma. Using a sensitive high-resolution ion microprobe (SHRIMP), Wang et al. (2014) determined the age of Chang 7 zircon U-Pb to be 239–241 Ma. Xie (2007) performed dating analysis of the stratum zircon underlying the Chang 8 section tuff in the Tongchuan District and obtained a Chang 8 age of 240.66±0.75 Ma. In summary, Chang 7 zircon dating data from the Ordos Basin has been obtained using secondary ion mass spectrometry (SIMS) and LA–ICP–MS, and the error range of the Chang 7 tuff data is about 2.0 Ma (Deng et al., 2009; Zhang et al., 2009; Wang et al., 2014; Zhang et al., 2014). The difference in the age data for the tuff zircon obtained by various researchers reaches 20 Ma, so it remains uncertain whether the Change 7 Member belongs to Late Triassic or Middle Triassic.

Zircon, with its stable physical and chemical properties, is currently the most important mineral in international isotope chronology research (Sun et al., 2017; Wang et al., 2017; Kang et al., 2018). The zircon dating method is widely applied in the field of earth sciences. Isotopic dilution–thermal ionization mass spectrometry (ID–TIMS) (which requires a Pb background of less than 1 pg in a super-clean laboratory) is deemed to have the highest precision (0.1% RSD), but the Pb and U isotopic spike is technically very difficult and time-consuming. In China, ID–TIMS technology is currently in the exploration stage yet (Landing et al., 2015; Li et al., 2015; Chu et al., 2016; Cox et al., 2018; Wotzlaw et al., 2018). The U-Pb chronological laboratory of the Massachusetts Institute of Technology (MIT) is recognized as having reduced its Pb background to 0.05%. To further investigate the basin–mountain coupling relation in the shale section, the sedimentary environment and the organic-matter-rich shale development relation, and the organism break-out and organic-matter-rich shale development mechanism, for this research, we selected the top and bottom tuffs of the Chang 7 profile in Yishi Village, Yaoqu Town, Tongchuan District on the southern margin of Ordos Basin and we performed zircon chemical abrasion (CA)–ID–TIMS dating at MIT to determine the development age of the Chang 7 shale section, the deposition duration of the shale section, the average deposition rate of the shale section, its time scale, and other basic data.

2 Geological Settings

The Ordos Basin, the second largest sedimentary basin of China, covering an area of 25×10^6 km², is a typical superimposed basin, with its marine–marine- and terrigenous-facies cratonic basin in the Paleozoic era and its continental-facies lake basin in Mesozoic era. The basin is located near Lyliang Mountain in the east, Qinling in the south, the Liupan and Helan Mountains in the west, and borders Daqing Mountain in the north (Fig. 1). The Triassic deposition has converted from Carboniferous-Permian marine–continental transitional facies into continental facies and the Yanchang Formation is generally in the greater lake basin period. Its stratum is divided into 10 oil reservoir groups: Change-1–Chang-10, and the Chang 7 oil reservoir group represents the lake basin’s greatest lake flooding period, with its sedimentary system dominated by deep-lake–semi-deep lacustrine facies in the south of the Ordos Basin wherein a large area of high-quality source rock is developed (Fig. 1). The lamina of thin-layered tuff in the Chang 7 shale is very developed, with a 182-layer intermediate acidic tuff lamina identifiable in about a 9-m core of the Zheng-8 well in the south of the Basin. This indicates frequent contemporaneous volcanic eruptions during the development of source rock (Zhang et al., 2009). The tuff thickness gradually reduces from the western and southwestern margins of the Basin to the east and northeast, with the tuff most developed in the southern and southwestern margins of the Basin. Contemporaneous eruption and aerial sedimentation are obvious. Chang 7 tuff comprises mainly crystal, vitric, and dual tuffs, and chemical composition analysis of this rock shows its SiO₂ content to be higher (53%), and its pH mainly neutral and acidic (Zhang et al., 2009; Qiu et al., 2009).

3 Samples and Methods

3.1 Samples

We obtained the sampling profile from the Yishi Village, Yaoqu Town, Tongchuan District on the southern margin of the Ordos Basin. Researchers have previously conducted much work on the oil shale resources in this region, thereby providing a basis for stratigraphic division and comparison with this profile. This profile is mainly outcropped with Chang 7 and Chang 8 stratum, in which the shale of the Chang 7 Member is completely outcropped and evenly distributed. The Chang 7 shale section profile of Yishi Village is 26.5 m thick, with our tuff samples taken from the top V13 and bottom V1 of the shale. Figure 2 shows this profile’s lithological column and zircon dating sampling position.

3.2 LA–ICPMS zircon U-Pb analysis

We performed LA–ICPMS zircon U-Pb analysis at the University of Arizona. Using the traditional methods of jaw crushing and pulverizing, we extracted zircon grains from whole rock samples, followed by density separation using a Wilfley Table and heavy liquids (methylene iodide). We then separated the resulting heavy mineral fraction using a Frantz LB-1 magnetic barrier separator to isolate the zircons. Then, we incorporated a representative split of the entire zircon yield of each sample into a 1-in epoxy mount along with multiple fragments of each of our four primary zircon standards (FC, SL-F, SL-mix, and R33). We sanded the mounts down ~20 microns, polished them progressively using 9-, 5-, 3-, and 1-micron...
polishing pads, and obtained cathodoluminescence (CL) or backscattered electron (BSE) images using a Hitachi S-3400N scanning electron microscope (SEM) equipped with a Gatan Chroma CL2 detector. Prior to isotopic analysis, we cleaned the mounts in an ultrasound bath of 1% HNO₃ and 1% HCl to remove any residual common
Pb from the surface of the mount.

We performed our analyses with a laser set at an energy density of ~5 J/cm², a repetition rate of 8 Hz, and an ablation time of 10 sec, with ablation pits ~12 microns in depth. The sensitivity of these settings is ~5,000 cps/ppm. Each analysis consists of 5 sec for peaks with the laser off (for backgrounds) and 10 sec with the laser firing (for peak intensities), with a 20 second delay to purge previous sample and save files. Prior to analysis, we obtained images of the grains as a guide for locating analysis pits in

Fig. 2. Profile lithological column in Yishi Village of Ordos Basin and zircon dating tuff sampling point.
0–21 m deep on the left, 21–42 m on the right, photos showing orthogonal light and plane-polarized light of the collected sample.
Following analysis, we performed data reduction using an in-house Python decoding routine and an Excel spreadsheet (E2agecalc). For the detrital analyses, we used the routines in Isoplot (Ludwig, 2008) to show the ages on a Hitachi 3400N SEM and a Gatan CL2 detector system.

Following analysis, we performed data reduction using an in-house Python decoding routine and an Excel spreadsheet (E2agecalc). For the detrital analyses, we used the routines in Isoplot (Ludwig, 2008) to show the ages on a Hitachi 3400N SEM and a Gatan CL2 detector system.

Following analysis, we performed data reduction using an in-house Python decoding routine and an Excel spreadsheet (E2agecalc). For the detrital analyses, we used the routines in Isoplot (Ludwig, 2008) to show the ages on a Hitachi 3400N SEM and a Gatan CL2 detector system.

Following analysis, we performed data reduction using an in-house Python decoding routine and an Excel spreadsheet (E2agecalc). For the detrital analyses, we used the routines in Isoplot (Ludwig, 2008) to show the ages on a Hitachi 3400N SEM and a Gatan CL2 detector system.

Following analysis, we performed data reduction using an in-house Python decoding routine and an Excel spreadsheet (E2agecalc). For the detrital analyses, we used the routines in Isoplot (Ludwig, 2008) to show the ages on a Hitachi 3400N SEM and a Gatan CL2 detector system.

Following analysis, we performed data reduction using an in-house Python decoding routine and an Excel spreadsheet (E2agecalc). For the detrital analyses, we used the routines in Isoplot (Ludwig, 2008) to show the ages on a Hitachi 3400N SEM and a Gatan CL2 detector system.
normal distribution and then sums all the ages from each sample into a single curve. We then generated composite-age probability plots using an in-house Excel program (see Analysis Tools for link) that normalizes each curve according to the number of constituent analyses, such that each curve contains the same area, and then stacks the probability curves.

For the igneous analyses, we again used Isoplot routines to generate the ages as Pb/U concordia and weighted mean diagrams (Ludwig, 2008). The weighted mean diagrams show the weighted mean (according to the square of the internal uncertainties), the uncertainty of the weighted mean, the external (systematic) uncertainty that corresponds to the ages used, the final uncertainty of the age (determined by the quadratic addition of the weighted mean and external uncertainties), and the mean-square weighted deviation (MSWD) of the data set.

3.3 ID–TIMS zircon U-Pb analysis

We performed this experiment at the MIT Isotope laboratory. We separated the zircon and other U-bearing silicates from bulk rock samples by the standard crushing, heavy liquid, and magnetic separation techniques, and subsequently handpicked them under a binocular microscope based on their relative clarity and crystal morphology. To overcome the effects of radioactive-decay-induced crystal defects and the associated lead loss, which would result in discordant analyses, we pretreated the zircon grains by the thermal annealing and chemical leaching method or by CA–TIMS (Mattinson, 2005). This method involves heating zircon in a furnace at 900°C for 60 hours. The annealed grains are subsequently loaded into FEP Teflon® microcapsules and leached in concentrated HF at 210°C in high-pressure vessels for 12 hours. The partially dissolved sample is then transferred into Savillex® FEP beakers for rinsing. The leached material is decanted with several milliliters of ultra-pure water and by fluxing successively with 4N HNO₃ and 6N HCl on a hot plate and/or in an ultrasonic bath. After a final rinse with ultra-pure water, zircon grains are loaded back into their microcapsules, spiked with a mixed ²⁰⁹Pb–²³⁵U–²³⁸U tracer solution and dissolved completely in concentrated HF at 210°C for 48 hours. Essentially, we preferentially remove the high-U parts of the zircon crystals that are associated with Pb-loss, leaving a residue of relatively low U content. After extensive testing, we have concluded that this method is the best possible way for obtaining the most concordant analyses.

4 Results

4.1 Result of LA–ICP-MS zircon U-Pb dating

The zircon yield for the top tuff sample V13 was sufficient for U-Pb laser analysis. These zircons are euhedral, inclusion free, and typically ~50–80 microns in length. We conducted U-Pb analyses with a 20-micron spot diameter, and we based our grain selection and spot placements on CL images that display typical oscillatory zoning (Fig. 3, Table 1). We determined the final age to be 243.2±3.2 Ma, 2-sigma, 0.75 MSWD.

The zircon yield for the bottom tuff sample V1 was also sufficient for U-Pb laser analysis. These zircons are euhedral, inclusion free, and typically ~200–250 microns in length. We conducted U-Pb analyses using a 20-micron spot diameter and our grain selections and spot placements were based on CL images that display typical oscillatory zoning. We determined the final age to be 239.7±2.7 Ma, 2-sigma, 0.7 MSWD (Fig. 4, Table 2).

4.2 Result of ID–TIMS zircon U-Pb dating

We conducted ID–TIMS Zircon U-Pb Dating analyses with six zircons In the V13 volcanic ash samples and four zircons In the V1 volcanic ash samples, respectively. In the V13 volcanic ash samples, we determined the ID–TIMS age of the zircon to be 241.06±0.12 Ma and the Z73 zircon age younger than the others five zircons may affect by the other reasons. (Fig. 5, Table 3). In the V1 volcanic ash samples, we determined the ID–TIMS age of the zircon to be 241.558±0.093 Ma.
5 Discussions

5.1 Age and attribution of Chang 7 shale section
Since 1936, when Professor Pan Zhongxiang determined the Yanchang Formation to have occurred in the Late Triassic Epoch, scholars have found significant differences in the characteristics of the sporopollen assemblage, sedimentary facies, and petrology of the Chang7–Chang1 and Chang10–Chang8 oil reservoir formations (Yong, 1984; Ji et al., 2006; Deng et al., 2009; Chen et al., 2011). Wang et al. (2014) recommended separating the Chang10–Chang8 oil reservoir sections from the Yanchang Formation and calling them the Tongchuan Formation, and attributed the Chang7–Chang1 oil reservoir sections to the range of the Late Triassic Yanchang Formation. We note that the result of U-Pb dating with ICP-MS for this time shows a profile age range of 239.7±2.7–243.2±3.2 Ma, which is basically the same as the previous age determined by the use of SHRIMP (Wang et al., 2014). Although Wang et al. (2014) obtained an age range of 239.7±1.7–241.3±2.4 Ma for the tuff at the bottom of Chang 7, they believed the sedimentary age of tuff to be extremely close to the boundary age of the Ladinian and Carnian Stages, with error consideration, and finally attributed Chang8–Chang10 only to the Middle Triassic Epoch while attributing Chang 7 to the Late Triassic Epoch. Based on a large number of ICP-MS dating results, the age of the tuff zircon at the bottom of the Chang 7 shale section obtained by ID–TIMS is 241.55±0.093 Ma, which is very close to the zircon age of 240.66±0.76 Ma of the Chang 8 section that was experimentally obtained at Washington State University by Xie (2007). According to the latest chronologcal scale released by the International Commission on Stratigraphy (2016/04), the age of the Chang 7 shale section is attributable to the Ladinian of the Middle Triassic Series (237–242 Ma). The age of the shale top at Yishi Village is 241.06±0.12 Ma. We consider that we have clearly determined the sedimentary age of the Chang 7 shale section of the Yishi Village profile in Yaqiu Town, Tongchuan to be Early Ladinian of the Middle Triassic Epoch.

The Chang 7 section in the Ordos Basin is 100–120 m thick and, if we eliminate event sedimentsations such as sedimentary sand bodies of gravity flow and tuff stratum, the average sedimentary thickness is about 100 m. The estimated sedimentary time of the Chang 7 Member is about 1.0 Ma, which accounts for only 10% of the Middle Triassic Epoch (10.1Ma) (Gradstein et al., 2012) (Table 2). The sedimentary time of the 26.5-m shale
section of the Yishi Village profile in Yanchang Formation. The study results for sporopollen are basically consistent with those of plant macrofossils and results published in recent years have further supported this conclusion (Wang et al., 2003; Jiang et al., 2006; Ji et al., 2006; Deng et al., 2009). Paleontological studies of plants and sporopollen have been conducted in the Yanchang Formation, with typical early-middle Jurassic lycopod fossils found in the Chang 8 and Chang 7 strata, including Pleuromeia and Annalepis. Globally and thus far, these two genera have been found to belong to the Middle and Lower Triassic Series (Fliche, 1910; Retallack, 1975; Wang et al., 1978; Wang et al., 1982; Kelber, 1990; Mader, 1990; Grauvogel-Stamm et al., 1983; Grauvogel-Stamm et al., 2001; Yu et al., 2008; Yu et al., 2010), which indicates that the age of the Chang 7 stratum and the strata below it will not be earlier than the Middle Triassic Epoch. Studies of several profiles in the region indicate that the evolution of the palynoflora can be divided into two stages. The Chang 8 stratum and the strata below it are very rich in sporopollen fossils, similar to the overall appearance of the Middle Triassic Zhifang Formation. Chang 7 is poor in fossils, but the diversity of cyclosporine is obviously increased, which indicates that the appearance of flora had begun to change. Chang 6 stratum and the strata above are rich in sporopollen, and appear to belong to the Late Triassic Epoch. Most of the

Table 3 CA-ID-TIMS experiment results for zircon samples

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>0.6</td>
<td>2.50</td>
<td>1.02</td>
<td>1324.8</td>
<td>0.324</td>
<td>0.038210</td>
<td>(11)</td>
<td>0.26888</td>
<td>(92)</td>
<td>0.50106</td>
<td>0.899</td>
<td>2.041</td>
<td>2.001</td>
<td>2.41173</td>
<td>2.41173</td>
<td>2.41173</td>
<td>2.41173</td>
<td>2.41173</td>
</tr>
<tr>
<td>z55</td>
<td>0.3</td>
<td>4.44</td>
<td>0.46</td>
<td>2689.8</td>
<td>0.145</td>
<td>0.038191</td>
<td>(99)</td>
<td>0.26916</td>
<td>(50)</td>
<td>0.50113</td>
<td>0.466</td>
<td>2.4161</td>
<td>2.4161</td>
<td>2.4161</td>
<td>2.4161</td>
<td>2.4161</td>
<td>2.4161</td>
<td>2.4161</td>
</tr>
<tr>
<td>z57</td>
<td>0.3</td>
<td>4.47</td>
<td>0.54</td>
<td>2644.4</td>
<td>0.171</td>
<td>0.038159</td>
<td>(70)</td>
<td>0.26830</td>
<td>(48)</td>
<td>0.50102</td>
<td>0.466</td>
<td>2.4141</td>
<td>2.4141</td>
<td>2.4141</td>
<td>2.4141</td>
<td>2.4141</td>
<td>2.4141</td>
<td>2.4141</td>
</tr>
<tr>
<td>z58</td>
<td>0.5</td>
<td>31.7</td>
<td>0.49</td>
<td>1907.4</td>
<td>0.156</td>
<td>0.038240</td>
<td>(21)</td>
<td>0.26892</td>
<td>(71)</td>
<td>0.50103</td>
<td>0.666</td>
<td>2.4191</td>
<td>2.4191</td>
<td>2.4191</td>
<td>2.4191</td>
<td>2.4191</td>
<td>2.4191</td>
<td>2.4191</td>
</tr>
<tr>
<td>z73</td>
<td>0.3</td>
<td>43.5</td>
<td>0.36</td>
<td>2703.5</td>
<td>0.114</td>
<td>0.038098</td>
<td>(88)</td>
<td>0.26819</td>
<td>(53)</td>
<td>0.50108</td>
<td>0.500</td>
<td>2.4030</td>
<td>2.4030</td>
<td>2.4030</td>
<td>2.4030</td>
<td>2.4030</td>
<td>2.4030</td>
<td>2.4030</td>
</tr>
<tr>
<td>z78</td>
<td>0.4</td>
<td>60.6</td>
<td>0.42</td>
<td>3703.1</td>
<td>0.132</td>
<td>0.038186</td>
<td>(12)</td>
<td>0.26858</td>
<td>(35)</td>
<td>0.50103</td>
<td>0.333</td>
<td>2.4158</td>
<td>2.4158</td>
<td>2.4158</td>
<td>2.4158</td>
<td>2.4158</td>
<td>2.4158</td>
<td>2.4158</td>
</tr>
<tr>
<td>V13</td>
<td>0.2</td>
<td>46.9</td>
<td>0.65</td>
<td>2704.6</td>
<td>0.204</td>
<td>0.038093</td>
<td>(87)</td>
<td>0.26838</td>
<td>(46)</td>
<td>0.50112</td>
<td>0.444</td>
<td>2.4100</td>
<td>2.4100</td>
<td>2.4100</td>
<td>2.4100</td>
<td>2.4100</td>
<td>2.4100</td>
<td>2.4100</td>
</tr>
<tr>
<td>z23</td>
<td>0.2</td>
<td>36.5</td>
<td>0.98</td>
<td>1941.4</td>
<td>0.310</td>
<td>0.038113</td>
<td>(70)</td>
<td>0.26959</td>
<td>(63)</td>
<td>0.50132</td>
<td>0.611</td>
<td>2.4133</td>
<td>2.4133</td>
<td>2.4133</td>
<td>2.4133</td>
<td>2.4133</td>
<td>2.4133</td>
<td>2.4133</td>
</tr>
<tr>
<td>z48</td>
<td>0.4</td>
<td>4.7</td>
<td>0.77</td>
<td>279.3</td>
<td>0.244</td>
<td>0.038133</td>
<td>(49)</td>
<td>0.27284</td>
<td>(45)</td>
<td>0.50191</td>
<td>0.442</td>
<td>2.4131</td>
<td>2.4131</td>
<td>2.4131</td>
<td>2.4131</td>
<td>2.4131</td>
<td>2.4131</td>
<td>2.4131</td>
</tr>
<tr>
<td>z49</td>
<td>0.9</td>
<td>2.3</td>
<td>0.61</td>
<td>150.5</td>
<td>0.193</td>
<td>0.038165</td>
<td>(73)</td>
<td>0.27941</td>
<td>(84)</td>
<td>0.50312</td>
<td>0.823</td>
<td>2.415</td>
<td>2.415</td>
<td>2.415</td>
<td>2.415</td>
<td>2.415</td>
<td>2.415</td>
<td>2.415</td>
</tr>
</tbody>
</table>

Note: (a) Thermally annealed and pretreated single zircon, (b) Total common Pb in analyses, (c) Measured ratio corrected for spike and fractionation only, (d) Radiogenic Pb, (e) Corrected for fractionation, spike, and blank. Also corrected for initial Th/U disequilibrium using radiogenic 208Pb and Th/U[magma] = 2.8

Fig. 5. Results of ID–TIMS dating of two samples for the lithology of the Yishi Village profile in Ordos Basin.
study results for lacustrine organisms in the strata below the Chang 7 stratum, including bivalves, conchostracans, and ostracods, support the view that it belongs to the Middle Triassic Epoch. The ichthyolite Hybodus youngi found in the Chang 7 oil shale also has the characteristics of the late middle Triassic Epoch. As such, the paleontological fossil evidences support the zircon age data result. That is to say, we attribute the Chang 7 stratum of the Yanchang Formation and strata below it to the Middle Triassic, and the strata above Chang 6 to the Upper Late Triassic.

5.2 Possible resources of tuff in Chang 7 Member

With the area of tuff in the Chang 7 Member being greater than 3×10^4 km2 and distributed in the Basin’s west and southwest, it has received much research attention with respect to stratigraphic division, determination of critical incident time, formation mechanism of organic-matter-enriched shale, and the relationship between the Ordos Basin and peripheral orogenesis. As such, as reference, it is important to study the genesis of the lake basin in the Ordos Basin, the supply of the provenance system, and the response to the tectonic sedimentation (Zhou et al., 1994; Deng et al., 2008; Zhang et al., 2009; Xie, 2007). The main provenances of the Yanchang Formation in the Ordos Basin derive from the south, southwest, and west. Also, the provenances at different periods were supplied in different ways (Deng et al., 2008; Xie, 2007). Although many studies have shown that the formation and evolution of the Triassic lacustrine basin in the Ordos Basin are associated with the collision and splicing of the North China Craton and the Yangtze Continental Block, as well as the Qinling orogenesis, recent studies have been unable to determine the source of the Chang 7 tuff. Based on its age (234–236 Ma), Zhang et al. (2014) speculated that Chang 7 may be associated with the closing of the Paleozoic Ocean Basin in the Mianlue Belt and the consequent subduction of the continental basement under the South Qinling Microplate. Zhang et al. (2009) believe the crater to have resulted from the Qinling Orogenic Belt adjacent to the south of the lake basin. Based on the distribution feature of the Chang 7 tuff, Wang et al. (2014) assumed that the crater may be located in the Qinling–Qilian Orogenic Belt situated on the southwest edge of the Basin. Based on clastic zircon dating results, Xie (2007) consider that Chang 8 to Chang 4+5 sedimentary parent sources from the Tongchuan Zone in the south and southwest of the Basin are Qilian–Qaidam terranes, so the Qinling Orogenic Belt had made a few contributions. The authors determined the U-Pb age of the Chang 7 tuff to be the Middle Triassic. On this basis, the magmatic-rock active region of the corresponding age may be the potential tuff source region.

Zhang et al. (2013) summarized 257 age data and found that the zircon TIMS U-Pb age of the Xiangrige granitic mass in the south of Xiangrige Town situated on the south edge of Qaidam Basin in the south of Qilianshan Tectonic Zone is between 251 Ma and 232 Ma, with an average of 242 Ma; the SHRIMP U-Pb age is 242±2 Ma; and the zircon TIMS U-Pb age of the Chahannuo rock mass is between 251±5 Ma and 232±5 Ma (Yin et al., 2013; Liu et al., 2004; Chen et al., 2007). Moreover, the discovery of a synchronous granite mass indicates that the above two regions are situated in the volcanic areas in the Middle Triassic, which may be one of the potential source regions of the Chang 7 tuff (Fig. 6).

Nevertheless, based on isotopic dating statistics for granite, metamorphic rock, and the polymetallic deposit in the Qinling Orogenic Belt, the age with most abundant activities has been found to be 210–224 Ma, followed by 198–206 Ma. Also, a few of these ages are distributed between 230 Ma and 238 Ma (Deng et al., 2009). In
addition, these rocks are mainly distributed in the north of the Mianlue stylolite, west of East Qinling, and in the West Qinling Region. Recently, the zircon U-Pb ages in West Qinling, Miba, Guangtou Mountain and East Jiangkou in the adjacent region were determined to be distributed in the range 206–220 Ma. The zircon age of Rilongguan granite is 195±6 Ma and 181±4 Ma. The age of Barkam granite is 188±2 Ma and 153±3 Ma (Rodge et al., 2004). Granite in the Qinling Region mainly developed in the Late Triassic, but that in the Middle Triassic is only sporadically distributed in the West Qinling Orogenic Belt (Fig. 6). The U-Pb dating of adakitic granites from Yeliguan and Xiahe in West Qinling indicates ages of 245±6 Ma and 238±4 Ma, Meiwu rock mass in the corporation region ranges from 245–242 Ma, and the ages of the gabbro diorite and hornblende andesite are 243.8±1.0 Ma and 242.1±1.2 Ma, respectively, which is close to the experimental result (Jin et al., 2005; Guo et al., 2011; Luo et al., 2012). Moreover, the U-Pb weighted average age of the granodiorite in the Ayi Mountain, Xiahe in the connection with the Qinling and Qilian Orogenic Belts in the north section in the west of the West Qinling Orogenic Belt is 241.6±4 Ma (MSWD = 0.44), which is closest to the dating result. Therefore, this confirms that the above regions are volcanic in the Middle Triassic, and may be a crater (Fig. 6).

Based on the age of the Triassic granite in the periphery of the Ordos Basin, we speculate that the two regions with stronger volcanic activities in the same period may be the source of tuff (namely, the adakitic granite from Yeliguan and Xiahe in West Qinling and the Xiangride granitic mass in the south of Xiangride Town situated on the southern margin of Qaidam Basin). In accordance with the precise age of the Chang 7 tuff in the profile of Yishi Village, we consider it unlikely that volcanic ash is from the Qinling Orogenic Belt in the south, but rather that it is likely from Yeliguan and Xiahe in the south of Gansu in the west of the Basin or the Xiangride region in the east of Qinghai.

6 Conclusions

In this study, we obtained the age of the Chang 7 Member profile with a precision of 0.1 Ma, first by performing tuff zircon U-Pb dating at the top and bottom of the sectional Chang 7 tuff in Yishi Village, Yaoqu Town, Tongchuan Region in the southern margin of the Ordos Basin.

We determined the precise ages of the zircons at the top and bottom of the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. The Chang 7 shale developed in the early Ladinian Stage of the Middle
Triassic and was continuously deposited for 50 Ma at an average sedimentary speed of 5.3 cm/ka.

On this basis, we determined that its crater may located in the adakite granite in Yeliguan and Xiahe in West Qinling or in the Xianggride granitic mass in the south of Xiangrige Town. Furthermore, with respect to the Qilian Orogenic Belt, the coupling relation between the Ordos Basin and its peripheral orogenic belt established the basin–range coupling pattern “Qinling Orogenic Belt–Qilian Mountain Orogenic Belt–Ordos Basin.”

Acknowledgements

This study was supported by the National Basic Research Program of China (973 Program) granted No. 2014CB239001. We are deeply grateful for Pecha, Mark E of Department of Geosciences, University of Arizona for assistance on the LA–ICPMS zircon U-Pb analysis and helpful comments. We also thank Dr Jahandar Ramezani of Massachusetts Institute of Technology for assistance on the CA-ID-TIMS zircon U-Pb analysis.

Manuscript received Aug. 1, 2018 accepted Dec. 20, 2018 associate EIC HAO Ziguo edited by LIU Lian

References

About the first author

ZHU Rukai, male, born in 1968 in Shaoyxing City, Hunan Province; doctor; graduated from Peking University; Professorate senior engineer of Research Institute of Petroleum Exploration and Development. He is now interested in unconventional petroleum geology. Email: zrk@petrochina.com.cn; phone: 010-83598216.

About the corresponding author

CUI Jingwei, male, born in 1980 in Hengshui City, Hebei Province; doctor; graduate from China University of Petroleum, Beijing; Senior engineer of Research Institute of Petroleum Exploration and Development. He is now interested in unconventional petroleum geology and geochemistry. Email: cuijingwei@petrochina.com.cn; phone: 010-83595344.