1 Introduction

Granitic pegmatites are known for reserving rare minerals and are easy to exploit for economic interests (Yuan et al., 1987; Chen et al., 1990; Fu et al., 2015; Wang et al., 2016). Many studies indicate that pegmatite rare metal deposits tend to undergo complex ore-forming processes (e.g., Jahns and Burnham, 1969; Černý et al., 1991; Sirbescu and Nabelek, 2003; Rickers et al., 2006; Simmons and Webber, 2008; Thomas and Davidson, 2016; London, 2018). One potentially valuable means of understanding the ore-forming process is to examine the abundant fluid inclusions within pegmatite minerals (e.g., London, 1984, 1986, 2018; Lu et al., 1996; Fuertes-Fuente and Martin-Izard, 1998; Fuertes-Fuente et al., 2000; Sirbescu and Nabelek, 2003; Rickers et al., 2006; Li et al., 2007; Simmons and Webber, 2008; Thomas et al., 2005, 2016; Li and Chou, 2016, 2017). However, there are few studies on the ore-forming fluid properties and P–T path of the transition process. This may attribute to the fact that fluid inclusions rarely represent a magma-hydrothermal transition of pegmatite, because hydrothermal and/or metamorphism processes overprinted the fluid transition history. Spodumene, the host for ore-forming fluid inclusions, is susceptible to destruction by late hydrothermal alteration. A well-preserved spodumene specimen, with relatively complete differentiation, can solve this problem. Two types of fluid inclusions in spodumene can be distinguished from the zoned pegmatite (e.g., London, 2008; Stefanova et al., 2014). Previous studies on fluid inclusions in pegmatites revealed a transition process from magma to hydrothermal (e.g., London, 1984, 1986, 2018; Lu et al., 1996; Fuertes-Fuente and Martin-Izard, 1998; Fuertes-Fuente et al., 2000; Sirbescu and Nabelek, 2003; Rickers et al., 2006; Li et al., 2007; Simmons and Webber, 2008; Thomas et al., 2005, 2016; Li and Chou, 2016, 2017). Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.
The Zhawulong lithium deposit is located in Kayaji, 42 km away from Xiayi in Ganzi Autonomous Prefecture, Sichuan Province. The western part of this deposit is in Chenduo County in Yushu Autonomous Prefecture, Qinghai Province (Fig. 1). The outcropped strata are early Triassic sandstone interbedded with slates, which are moderately and shallowly metamorphic rocks such as biotite quartz schist, dimica quartz schist, andalusite, and cruciferous quartz schist formed by regional and thermocontact metamorphism. The orebody is predominantly controlled by the Kayaji anticline. The small well developed folds are distributed mainly on two flanks of the anticline. The fold axis is NW–SW–SEE (for east-southeast). The two flanks dip gently (approximately 15°–25°), while the northern flank dips steeply (approximately 36°–57°). The Yanshanian Kayaji two-mica granites intrude along the Kayaji anticline core. Well-developed pegmatites surround the granite body.

A total of 111 pegmatite dikes of various sizes have been identified in the Zhawulong deposit, with lengths of 2–10 km and widths of 0.5–80 m. Pegmatite veins are irregularly shaped, and occur mostly in veins and a few in lenticular shapes, with obvious horizontal zoning. Based on the characteristics of different typical minerals, pegmatite dikes can be divided into five types: microcline, microcline–albite, albite, albite–spodumene, and lepidolite (muscovite) types. These pegmatites have different degrees of differentiation. The microcline pegmatites are generally poorly differentiated with mostly reticulated, lenticular, or massive shape. In some cases, microclinepegmatites occur in a transitional relationship with two-mica granite as pegmatite-like rocks. The microcline–albite pegmatites are mainly composed of microcline and coarse, white quartz without mineralization. Moreover, a large number of tourmaline can be seen in the microcline–albite pegmatites without obvious differentiation characteristics. The albite–spodumene pegmatites generally had good differentiation characteristics, and some of the large ones had full differentiation characteristics. The lepidolite (muscovite) pegmatite veins are distributed on the margin or outside of the albite–spodumenealong with fine feldspar, quartz, and

in the pegmatite ore field of the Songpan-Ganzi rare metal metallogenic belt. They developed into various slates, phyllites, and schists by regional metamorphism and thermocontact. The two-mica granites of the early Triassic age are especially developed, having a close relation with mineralization, such as in Jiajika, Zhawulong, and Keeryin. The two-mica granite is mostly irregular with an exposed area ranging from several square kilometers to more than 100 square kilometers. During magmatism, the wall rocks underwent multistage metamorphism, which formed five distinct metamorphic zones surrounding the two-mica granite (from inner to outer): the diopside, staurolite, andalusite-staurolite, andalusite, and biotite zones. Later, pegmatite dikes developed surrounding the granite (Li et al., 2013; Wang et al., 2015; Hao et al., 2015).

3 Deposit Geology

The Zhawulong lithium deposit is located in Kayaji, 42 km away from Xiayi in Ganzi Autonomous Prefecture, Sichuan Province. The western part of this deposit is in Chenduo County in Yushu Autonomous Prefecture, Qinghai Province (Fig. 1). The outcropped strata are early Triassic sandstone interbedded with slates, which are moderately and shallowly metamorphic rocks such as biotite quartz schist, dimica quartz schist, andalusite, and cruciferous quartz schist formed by regional and thermocontact metamorphism. The orebody is predominantly controlled by the Kayaji anticline. The small well developed folds are distributed mainly on two flanks of the anticline. The fold axis is NW–SW–SEE (for east-southeast). The two flanks dip gently (approximately 15°–25°), while the northern flank dips steeply (approximately 36°–57°). The Yanshanian Kayaji two-mica granites intrude along the Kayaji anticline core. Well-developed pegmatites surround the granite body.

A total of 111 pegmatite dikes of various sizes have been identified in the Zhawulong deposit, with lengths of 2–10 km and widths of 0.5–80 m. Pegmatite veins are irregularly shaped, and occur mostly in veins and a few in lenticular shapes, with obvious horizontal zoning. Based on the characteristics of different typical minerals, pegmatite dikes can be divided into five types: microcline, microcline–albite, albite, albite–spodumene, and lepidolite (muscovite) types. These pegmatites have different degrees of differentiation. The microcline pegmatites are generally poorly differentiated with mostly reticulated, lenticular, or massive shape. In some cases, microclinepegmatites occur in a transitional relationship with two-mica granite as pegmatite-like rocks. The microcline–albite pegmatites are mainly composed of microcline and coarse, white quartz without mineralization. Moreover, a large number of tourmaline can be seen in the microcline–albite pegmatites without obvious differentiation characteristics. The albite–spodumene pegmatites generally had good differentiation characteristics, and some of the large ones had full differentiation characteristics. The lepidolite (muscovite) pegmatite veins are distributed on the margin or outside of the albite–spodumenealong with fine feldspar, quartz, and

in the pegmatite ore field of the Songpan-Ganzi rare metal metallogenic belt. They developed into various slates, phyllites, and schists by regional metamorphism and thermocontact. The two-mica granites of the early Triassic age are especially developed, having a close relation with mineralization, such as in Jiajika, Zhawulong, and Keeryin. The two-mica granite is mostly irregular with an exposed area ranging from several square kilometers to more than 100 square kilometers. During magmatism, the wall rocks underwent multistage metamorphism, which formed five distinct metamorphic zones surrounding the two-mica granite (from inner to outer): the diopside, staurolite, andalusite-staurolite, andalusite, and biotite zones. Later, pegmatite dikes developed surrounding the granite (Li et al., 2013; Wang et al., 2015; Hao et al., 2015).

3 Deposit Geology

The Zhawulong lithium deposit is located in Kayaji, 42 km away from Xiayi in Ganzi Autonomous Prefecture, Sichuan Province. The western part of this deposit is in Chenduo County in Yushu Autonomous Prefecture, Qinghai Province (Fig. 1). The outcropped strata are early Triassic sandstone interbedded with slates, which are moderately and shallowly metamorphic rocks such as biotite quartz schist, dimica quartz schist, andalusite, and cruciferous quartz schist formed by regional and thermocontact metamorphism. The orebody is predominantly controlled by the Kayaji anticline. The small well developed folds are distributed mainly on two flanks of the anticline. The fold axis is NW–SW–SEE (for east-southeast). The two flanks dip gently (approximately 15°–25°), while the northern flank dips steeply (approximately 36°–57°). The Yanshanian Kayaji two-mica granites intrude along the Kayaji anticline core. Well-developed pegmatites surround the granite body.

A total of 111 pegmatite dikes of various sizes have been identified in the Zhawulong deposit, with lengths of 2–10 km and widths of 0.5–80 m. Pegmatite veins are irregularly shaped, and occur mostly in veins and a few in lenticular shapes, with obvious horizontal zoning. Based on the characteristics of different typical minerals, pegmatite dikes can be divided into five types: microcline, microcline–albite, albite, albite–spodumene, and lepidolite (muscovite) types. These pegmatites have different degrees of differentiation. The microcline pegmatites are generally poorly differentiated with mostly reticulated, lenticular, or massive shape. In some cases, microclinepegmatites occur in a transitional relationship with two-mica granite as pegmatite-like rocks. The microcline–albite pegmatites are mainly composed of microcline and coarse, white quartz without mineralization. Moreover, a large number of tourmaline can be seen in the microcline–albite pegmatites without obvious differentiation characteristics. The albite–spodumene pegmatites generally had good differentiation characteristics, and some of the large ones had full differentiation characteristics. The lepidolite (muscovite) pegmatite veins are distributed on the margin or outside of the albite–spodumenealong with fine feldspar, quartz, and

in the pegmatite ore field of the Songpan-Ganzi rare metal metallogenic belt. They developed into various slates, phyllites, and schists by regional metamorphism and thermocontact. The two-mica granites of the early Triassic age are especially developed, having a close relation with mineralization, such as in Jiajika, Zhawulong, and Keeryin. The two-mica granite is mostly irregular with an exposed area ranging from several square kilometers to more than 100 square kilometers. During magmatism, the wall rocks underwent multistage metamorphism, which formed five distinct metamorphic zones surrounding the two-mica granite (from inner to outer): the diopside, staurolite, andalusite-staurolite, andalusite, and biotite zones. Later, pegmatite dikes developed surrounding the granite (Li et al., 2013; Wang et al., 2015; Hao et al., 2015).
The No.97, 100, and 108 veins are albite–spodumene pegmatite veins with a length of approximate 50 m and widths of 3–5 m. The veins are zoned to some extent. They can be divided, roughly, into an inner albite–spodumene belt and an outer microcline–albite belt. The main body is the albite–spodumene belt (approximately 90% of the whole pegmatite vein). The albite–spodumene belt is mainly composed of spodumene, quartz, albite, and muscovite (Fig. 2a). Spodumene is mainly divided into two generations in the albite–spodumene belt. The early stage I spodumene is light green or gray-white, 1–10 cm long and 0.5–1 cm wide, coexisting with quartz and albite with sharply contacting boundaries (Fig. 2b). The late stage II spodumene is coarse-grained as anhedral or subhedral crystals, approximately 0.5–2 mm wide and mostly filled in with albite and other minerals (Fig. 2c). The quartz in the albite–spodumene belt can be divided into two stages. In stage I, the quartz grows irregularly in the interstitial space of spodumene (Fig. 2a–c), which suggests the quartz at stage I is obviously younger than the spodumene at stage I. The quartz at stage II is massive, coexisting with feldspar and muscovite, and usually 2–5 cm in size (Fig. 2d).

4 Fluid Inclusion Petrography

In this study, the albite–spodumene belts in albite–spodumene pegmatite veins (veins 97, 100, and 108) were studied systematically. The sampling location is shown in Fig. 1.

Three different fluid inclusion assemblages (FIAs) have been distinguished: crystal-rich fluid inclusions (L+V+S), CO$_2$–NaCl–H$_2$O fluid inclusions {CO$_2$ (G)+CO$_2$ (L)+L}, and NaCl–H$_2$O fluid inclusions (L+V).

Crystal-rich fluid inclusions and CO$_2$–NaCl–H$_2$O fluid inclusions are the predominant fluid inclusion populations in the spodumene. The crystal-rich fluid inclusions are distributed as planar clusters on {110} and along fractures (Fig. 3a, b). The sizes of the crystal-rich fluid inclusions vary, up to 60 um. The solid phase in these fluid inclusions contains euhedral-granular crystals in circular, elliptical, or cubic shapes. The crystals typically occupy less than 20% of the fluid inclusions’ volume, and they are often found at the edges of the fluid inclusions. The fluid portions are mainly two- or three-phase, with the latter containing CO$_2$, as in CO$_2$–NaCl–H$_2$O. The CO$_2$ occupies 60–80 vol.%. Although not all inclusions show the same crystal/fluid ratio and CO$_2$ volume percentage, the fluid inclusions containing crystals usually have similar crystal/
fluid ratios and CO₂ volume percentages in the same inclusion (Fig. 3a, b). In addition, some CO₂–NaCl–H₂O fluid inclusions of similar shape and size are found to coexist with the crystal-rich fluid inclusions in spodumene (Fig. 3c). They may have formed either by necking down from the crystal-rich fluid inclusions (London et al., 1986; Anderson et al., 2001) or during cooling. They may be due to the absence of obvious crystals since the crystals precipitated on the walls of the fluid inclusions (Li and Chou, 2017). However, due to the large number of isolated primary fluid inclusions of CO₂–NaCl–H₂O in spodumene at stage II, CO₂–NaCl–H₂O fluid inclusions are likely to be captured as a primary origin fluid by spodumene at stage II (Fig. 3d, e), which formed later than the crystal-rich fluid inclusions. NaCl–H₂O fluid inclusions can be found as secondary origin, usually arranged in long strips along the spodumene fissures (Fig. 3f). The size is roughly between 5 and 15 µm, and the vapor volume is generally between 10% and 30%.

CO₂–NaCl–H₂O fluid inclusions were found in the quartz at stage I. CO₂–NaCl–H₂O fluid inclusions are distributed as clusters, mainly in circular or elliptical shapes, presenting primary characteristics (Fig. 3g). The size is generally 6–80 µm. At a room temperature (20°C), the CO₂ volume phase is between 10% and 90%, and most of them are more than 50%, with a vapor volume ratio between 10% and 30%. NaCl–H₂O inclusions can also occur in the quartz. The NaCl–H₂O fluid inclusions in the quartz at stage I are usually distributed, irregularly and distortedly, in an obvious orientation along cracks, presenting secondary characteristics (Fig. 3h). The size of the NaCl–H₂O fluid inclusions is mainly 3–5 µm with circular or elliptical shapes, and the vapor volume is generally between 10% and 30%. However, the NaCl–H₂O fluid inclusions in the quartz at stage II are usually distributed regularly in nearly circular or elliptical assemblages, presenting the characteristics of primary inclusions. The size of the inclusions is mainly 3–5 µm, and the vapor volume ratio is generally between 10% and 30% (Fig. 3i).

5 Analytical Methods

In this study, we selected some representative fluid inclusions from FIAS, with primary characteristics from typical pegmatite veins, in the Zhawulong deposit.

To understand the fluid inclusions’ compositions, Laser Raman Probe (LRM) analyses were carried out at the
Laboratory of the Institute of Mineral Resources in the Chinese Academy of Geological Sciences. An excitation wavelength of 633 nm was used, and the laser power at the sample surface was 20 mW. The beam spot diameter was 1 μm, and the scanning range was 100–4500 cm$^{-1}$. The spectrometer was calibrated with silica with an accuracy of ±0.2 cm$^{-1}$. The analysis sample was a double-sided, polished sheet with a thickness of approximately 300 mm.

The microthermometric data of fluid inclusions were collected by using the Linkam THMS600 heating and freezing stage at the Laboratory of the Institute of Mineral Resources, Chinese Academy of Geological Sciences, which was calibrated at the triple points of H$_2$O (0.0°C) and CO$_2$ (−56.6°C), with an estimated accuracy of ±0.1°C. Salinities for the CO$_2$–NaCl–H$_2$O fluid inclusions were calculated from the final melting temperatures of CO$_2$–
clathrate after Collins (1979). Salinities for the NaCl–H2O fluid inclusions were calculated from the final melting temperatures of ice after Bodnar (1993).

6 Results

6.1 Laser Raman analysis

The vapor, liquid, and solid phases of fluid inclusions were analyzed with Raman spectroscopy. The results show the characteristic peaks of cristobalite at 415 cm⁻¹ and zabuyelite (Li₂CO₃) at 96, 129, 157, 191, and 1098 cm⁻¹ (Figs. 6 and 7) (Li and Chou, 2016) after the host mineral spodumene peaks (1075, 1022, 707, 393, 355, 327, and 248 cm⁻¹) had been excluded. CO₂ was the main gas in the CO₂–NaCl–H₂O fluid inclusions. In addition, a small amount of CH₄ (2913–2919 cm⁻¹) (Fig. 8a, b) was found in the CO₂–NaCl–H₂O fluid inclusions. The gas in the NaCl–H₂O fluid inclusions is mainly H₂O (3310–3610 cm⁻¹).

6.2 Microthermometric data

It was very difficult to measure the complete homogenization temperature of the crystal-rich fluid inclusions because they would easily explode during heating. Therefore, only a few microthermometric data have been measured in range of 500°C to 580°C. The homogenization temperature in liquid phase of the crystal-rich ranges from 308°C to 420°C, which is similar to that of the CO₂–NaCl–H₂O fluid inclusions. The microthermometric experiments for crystal-rich fluid inclusions containing CO₂ show that the final melting temperatures were between −57.0°C and −60.0°C for solid CO₂, indicating the presence of a small amount of other gases. The CO₂–clathrate melting temperatures are between 5.3°C and 9.6°C, indicating a salinity of 3.0–8.5 wt% NaCl equivalent. The carbonic phase homogenized to the liquid phase between 16.5°C and 29.4°C, indicating that the bulk density of CO₂ is close to 0.70 g/cm³ (Sterner and Bodnar, 1991).

The total homogenization temperature of the CO₂–NaCl–H₂O fluid inclusions in the spodumene ranged from 278°C to 412°C, mainly concentrated between 300°C and 400°C with a peak value of 330°C (Fig. 4a). The microthermometric experiments for CO₂–NaCl–H₂O show that the final melting temperatures were between 57.0°C and 61.0°C for solid CO₂, indicating the presence of a small amount of other gases. The CO₂–clathrate melting temperatures were between 3°C and 6.5°C, indicating a

| Table 1 Microthermometric data of fluid inclusions from the Zhawulong lithium deposit |

<table>
<thead>
<tr>
<th>Minerals</th>
<th>FI</th>
<th>Pegmatite</th>
<th>N</th>
<th>Tm, CO₂</th>
<th>Tm, clath</th>
<th>Tm, ice</th>
<th>Th, TOT</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>spodumene Cristal-rich</td>
<td>No. 97</td>
<td>5</td>
<td>53.9–6.6</td>
<td>16.5–29.4</td>
<td>500–580</td>
<td>3.0–8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 108</td>
<td>12</td>
<td>57.0–60.0</td>
<td>16.5–29.4</td>
<td>500–600</td>
<td>0.8–8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 107</td>
<td>7</td>
<td>57.0–60.0</td>
<td>16.5–29.4</td>
<td>309–412</td>
<td>7.5–11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂–NaCl–H₂O</td>
<td>No. 100</td>
<td>15</td>
<td>37.3–61.0</td>
<td>16.5–29.4</td>
<td>292–402</td>
<td>6.5–10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 108</td>
<td>42</td>
<td>4.2–6.1</td>
<td>17.1–26.2</td>
<td>278–405</td>
<td>7.2–10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 97</td>
<td>39</td>
<td>57.0–60.0</td>
<td>15.8–27.9</td>
<td>287–419</td>
<td>5.9–9.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂–NaCl–H₂O</td>
<td>No. 100</td>
<td>27</td>
<td>57.0–61.0</td>
<td>15.3–28.1</td>
<td>294–419</td>
<td>5.0–9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 108</td>
<td>45</td>
<td>57.0–61.0</td>
<td>15.8–28.4</td>
<td>294–412</td>
<td>4.4–9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 97</td>
<td>68</td>
<td>57.0–60.0</td>
<td>15.8–28.4</td>
<td>294–412</td>
<td>4.4–9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 100</td>
<td>78</td>
<td>57.0–61.0</td>
<td>15.3–28.1</td>
<td>294–419</td>
<td>5.0–9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 108</td>
<td>45</td>
<td>57.0–61.0</td>
<td>15.8–28.4</td>
<td>294–412</td>
<td>4.4–9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 108</td>
<td>62</td>
<td>57.0–61.0</td>
<td>15.8–28.4</td>
<td>294–412</td>
<td>4.4–9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quartz</td>
<td>NaCl–H₂O</td>
<td>No. 97</td>
<td>78</td>
<td>9.1–2.0</td>
<td>203–293</td>
<td>3.4–13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 100</td>
<td>62</td>
<td>9.8–2.0</td>
<td>212–302</td>
<td>3.4–13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: FI=fluid inclusion, N=number of significant values, Tm, CO₂: final melting temperature of solid CO₂ (°C); Tm, clath: final melting temperature of CO₂–NaCl–H₂O clathrate (°C); Tm, ice: homogenization temperature of the CO₂ phases (°C); Th, ice: final melting temperature of ice (°C); Th, TOT: total homogenization temperature of fluid inclusions (°C); the unit of salinity is wt.% NaCl equivalent.
salinity of 6.5–11.9 wt% NaCl equivalent. The CO₂ in vapour phase homogenized to that in liquid phase between 16.5°C and 29.4°C (Fig. 5a).

The total homogenization temperature of the CO₂–NaCl–H₂O inclusions in quartz I ranged from 287°C to 419°C, mainly concentrated between 300°C and 360°C with a peak value of 340°C (Table 1; Fig. 4b). The microthermometric experiments for CO₂–NaCl–H₂O in quartz I show that the final melting temperatures were between 57.0°C and 61.0°C for solid CO₂, indicating the presence of a small amount of other gases. The CO₂–clathrate melting temperatures were between 4.7°C and 7.4°C, indicating a salinity of 3.3–9.4 wt% NaCl equivalent. The carbonic phase homogenized to the liquid phase between 15.3°C and 28.4°C (Fig. 5b).

In quartz II, the homogenization temperature ranged from 203°C to 302°C with a peak value of 260°C and the salinity ranged from 2.7 to 13.9 wt% NaCl equivalent (Fig. 5c; Table 1. The density was 0.83–1.05 g/cm³.

7 Discussion

7.1 Fluid inclusion characteristics

Previous studies have suggested that daughter minerals, crystallized from the fluids rather than trapped accidently, can reflect fluid properties. The early fluids were mainly trapped as crystal-rich fluid in the spodumene of the albite–spodumene pegmatite from the Zhawulong deposit. The following features indicate that crystal-rich fluid inclusions remain closed after their entrapment, and these crystals are not accidentally trapped but are actually daughter minerals: (1) the crystal-rich fluid inclusions have a uniform crystal/fluid proportion, and their total homogenization melting temperatures (400°C to 600°C) were similar; (2) zabuyelite and cristobalite only occurred in the solid phase of fluid inclusions and were absent from the pegmatite veins’ minerals; and (3) the crystals are euhedral and have similar grain sizes, indicating a system that was rich in H₂O during crystallization after capture (Li and Chou, 2017).

Crystal-rich fluid inclusions occur widely in rare granite pegmatite deposits, such as the Jiajika lithium deposits (Li et al., 2006; Li and Chou, 2016), the Keeryin lithium deposits in Western Sichuan (Li et al., 2007), the No. 3 pegmatite lithium deposits in Koktokay and Xinjiang (Lu et al., 1996; Zhu et al., 2000), and the Tanco lithium-beryllium deposits in Canada (Anderson et al., 2001). These inclusions may represent a kind of volatile-rich pegmatite fluid or melt which was captured at the pegmatite melt-fluid transition stage by the differentiation of granitic magma (London, 1986, 2018; Thomas et al., 2000; 2006). According to the microthermometric analyses, the fluid or melt of pegmatite in the Zhawulong...
deposit showed characteristics of a low salinity fluid, like other pegmatite lithium deposits (Foord, 1976; Taylor et al., 1979; London, 1986; Li et al., 2016; 2017). It may be because Li mainly occurred not with Cl but with CO$_3^{2-}$ (Li$_2$CO$_3$, Zabuyelite) in the ore-forming fluids (Anderson, 2001; Zhou, 2013; Li and Chou, 2013, 2016). Therefore, the pegmatite fluid (melt) in the Zhawulong deposit was formed under high temperature and low salinity conditions enriched in volatiles (CO$_2$ and CH$_4$), alkali metal elements (Na, Li, etc.), and carbonate.

Both crystal-rich fluid inclusions and CO$_2$–NaCl–H$_2$O inclusions were preserved in spodumene I. CO$_2$–NaCl–H$_2$O fluid inclusions, as secondary fluids, cut crystal-rich fluid inclusions as the primary fluid in spodumene I. Crystal-rich fluid inclusions formed at a higher temperature (more than 500°C) than CO$_2$–NaCl–H$_2$O fluid inclusions (278°C to 419°C). However, they share the same homogenization temperature and composition in the fluid phase. This indicates that the CO$_2$–NaCl–H$_2$O fluid might be the product of CO$_2$ differentiation after saturation in the crystal-rich fluid. Therefore, we propose the crystal-rich fluid inclusions represent the pegmatite-forming fluids, whereas the CO$_2$–NaCl–H$_2$O fluid inclusions post-date the crystal-rich fluid inclusions as the post-pegmatite fluids. In summary, the CO$_2$–NaCl–H$_2$O represents the hydrothermal stage, showing medium-high temperature (278°C to 419°C), low salinity (4.4–11.9 wt % NaCl equivalent), and volatile-rich components (CO$_2$ and CH$_4$).

The NaCl–H$_2$O fluid inclusions were hosted in quartz II. The total homogenization temperature ranged from 203°C to 302°C, and salinity ranged from 2.7 13.9 wt% NaCl equivalent. The fluids at this stage are characterized by low temperature, low salinity, and a relatively simple composition.

7.2 Physicochemical conditions of pegmatite crystallization

The capture conditions of the crystal-rich fluid inclusions represent the physical and chemical conditions of the pegmatite-forming melt or fluid. The crystal-rich fluid inclusions contained various kinds of crystals, indicating that at least one component was saturated during the capturing process. Once the fluid was captured, the components would have separated and precipitated immediately (London, 2008). The original melt or fluid in pegmatite underwent magmatic differentiation to form the zoning and coarse minerals of the pegmatite veins in the Zhawulong deposit at the early stage. Subsequently, lithium migrated and became enriched when the pegmatite melt or fluid separated from the granitic magma. The homogenization temperature of such an inclusion can also be regarded as its capture temperature. According to the microthermometric data (Table 1), the crystal-rich fluid inclusions were formed under salinity of 6 wt% NaCl equivalent, CO$_2$ occupation of 60–80 vol.%, density of 0.8 g/cm3 and temperature of 500°C to 580°C. By combining the PVT phase diagram of a CO$_2$–NaCl–H$_2$O system with the microthermometric data of this study (Fig. 9) (Brown and Lamb 1989), the minimum pressure range for capturing the crystal-rich fluid inclusions can be limited to 310–480 MPa (Fig. 10; range A).

The homogenization temperature of the CO$_2$–NaCl–H$_2$O fluid inclusions is equal to their capture temperature (Li et al., 2008). According to the microthermometric data,

![Fig. 7. The crystal-rich inclusions hosted in spodumene from the Zhawulong deposit.](image)

![Fig. 8. Laser Raman spectra of fluid inclusions in quartz (Qtz) from pegmatite veins in the Zhawulong deposit.](image)
the CO₂–NaCl–H₂O fluid corresponds to the isochore with salinity of 8 wt% NaCl equivalent, CO₂ filling degree of 70–80%, and density of 0.8 g/cm³ (Fig. 10; Brown and Lamb, 1989). The capture temperature of the CO₂–NaCl–H₂O fluid in spodumene I (350–400°C) is slightly higher than that in quartz I. As a result, the isochore and capture temperature of the CO₂–NaCl–H₂O fluid inclusions (300–400°C) limit the ranges of B and C in Fig. 10 (Brown and Lamb, 1989), representing the lower limits of capture pressure for the CO₂–NaCl–H₂O fluids in spodumene I and quartz I, respectively.

According to the homogeneous temperature data, the NaCl–H₂O fluid corresponds to the isochore of 10 wt% NaCl equivalent (Fig. 10; Roedder and Bodnar, 1980). Because nepheline and petalite are not found in the Zhawulong deposit, the boundaries of “spodumene+quartz/petalite+quartz” and “eucryptite+quartz/spodumene” delimit the NaCl–H₂O fluid’s physical and chemical conditions. The pressure range C of the CO₂–NaCl–H₂O fluid inclusions is the upper limit of the NaCl–H₂O fluid inclusions’ physical and chemical conditions. By considering these restrictions mentioned above, the pressure range D constrains the lower limit of capture pressure for the NaCl–H₂O fluid inclusions hosted in quartz (Fig. 10; Roedder and Bodnar, 1980).

The evolution of ore-forming fluids in the Zhawulong deposit can be described as follows (Fig. 10):

Pegmatite fluids or melts were separated from granite at approximately 550–700°C (Fig. 10). At the early stage of the pegmatite fluid or melt (Fig. 10; range A), the P–T condition was close to, or at the boundary of, the “lithium–feldspar–spodumene–quartz” phase at 500–600°C and 310–480 MPa, and the fluid was rich in water and boron-rich silicate and contained a small amount of CO₂.

Moreover, the pegmatite melt or fluid was saturated with the components of quartz, albite, and many other kinds of crystals. At this stage, the pegmatite melts or fluids, which were formed by differentiation and separation from granitic magma, occurred simultaneously with crystallization of spodumene in the pegmatite. This phenomenon is common in other typical pegmatite lithium deposits, such as the No. 3 pegmatite lithium deposit in Xinjiang (Lu et al., 1996) and the Tanco pegmatite Li-Be deposit in Canada (London, 1986). At approximately 400°C (Fig. 10; range B, C), the CO₂–NaCl–H₂O fluid inclusions formed after the formation of the crystal-rich fluid inclusions. The CO₂–NaCl–H₂O fluid inclusions were the product of crystal-rich fluid inclusions (pegmatite melt or fluid) by CO₂ differentiation after saturation (Fig. 10; range B, C), which represented the boundary between the magmatic–hydrothermal transition stage and the hydrothermal stage. At approximately 400–500°C, boron-rich fluids precipitated into tourmaline, albite, muscovite (lepidolite), quartz and ore minerals (such as spodumene). Next, the ore-forming fluids evolved into relatively low-density and low-salinity brine solutions. The phase separated from the CO₂–NaCl–H₂O fluids into the NaCl–H₂O fluids at approximately 300°C (Fig. 10; range D).

7.3 Comparison with typical lithium deposits in China

The ore-forming fluids of granitic pegmatite rare metal...
deposits are usually rich in volatile components (CO₂, H₂O, F, and B) and rare metal elements (Li, Rb, Cs, Be, Ta, Nb, Sn, and W) (Li et al., 2008). Petrology experiments have shown that volatile components play an important role in forming granite pegmatite rare metal deposits (Keppler, 1993; Thomas et al., 2005; Zhang et al., 2005). Volatile components can easily form various complexes or compounds with rare metals and could help with migration and enrichment of these metallogenic elements (Audétat and Keppler, 2004; Li et al., 2000).

During the crystallization and differentiation process, volatile-rich melts have a strong capacity to concentrate lithium in pegmatite deposits like the Jiajika and Zhawulong deposits. Consequently, the contents of rare metals in the melt phase are increased by several orders of magnitude (Xiong et al., 1998; Zhu et al., 2002; Jackson et al., 1989; Thomas et al., 2011c) and further enriched to form spodumene (Xiong et al., 1998; Zhu et al., 2002; Jackson and Helgeson, 1985; Keppler and Wyllie, 1991).

The ore-forming fluids in the Zhawulong deposit share some features with the famous pegmatite lithium deposits as follows (e.g., London, 1986, 2018; Lu et al., 1996; Thomas et al., 2005, 2016; Li et al., 2007; Li and Chou, 2016, 2017): (1) the same types of fluid inclusions, namely, crystal-rich fluid inclusions, CO₂-NaCl-H₂O fluid inclusions, and NaCl-H₂O fluid inclusion; (2) almost the same daughter minerals, such as albite, quartz, and zabuyelite; and (3) similar volatile-rich components (H₂O, CH₄, and CO₂). However, the P-T conditions in the Zhawulong deposit (Fig. 11; Table 2) were similar to the typical lithium deposits in China, but remarkably different from the Tanco deposit (Fig. 11; Table 2). This might be because petalite has not yet been found in the Zhawulong and other deposits in China, and the P-T history only evolved in the field of “spodumene-spodumene+2quartz” stable area of the phase diagram.

8 Conclusion

(1) The evolution process of pegmatite in the Zhawulong deposit can be classified into three stages from early to late: (1) crystal-rich fluids in high temperature, low salinity, silicate-rich, alkali-rich, and volatile-rich conditions; (2) CO₂–NaCl–H₂O fluids in medium-high temperature and low salinity conditions; and (3) NaCl–H₂O fluids in low temperature and low salinity conditions. (2) The P-T condition suggests that spodumene I crystallized at the early stage of about 310–480 MPa and 500–580°C, and then spodumene II and quartz I crystallized during decreasing in temperature and pressure. The crystallization of quartz was predominant till 200 MPa and 300°C. The crystallization conditions of pegmatite veins in the Zhawulong deposit were mainly confined to “spodumene-spodumene+2quartz” stable area. (3) The temperatures and pressure conditions of the ore-forming fluids from the Zhawulong deposit are similar to those of the Jiajika deposit in the Songfan-Ganzi metallogenic belt. The ore-forming fluids in the Zhawulong deposit not only have sufficient materials to crystallize rare metal minerals, such as spodumene, but also have proper temperature and pressure conditions to ensure the growth of spodumene. The Zhawulong deposit has good ore-forming conditions and prospecting potential.

Table 2 part of the metallogenic temperature in pegmatite lithium deposit

<table>
<thead>
<tr>
<th>Deposits</th>
<th>Host mineral</th>
<th>Types</th>
<th>(T_{\text{h}, \text{CO}_2})</th>
<th>(T_{\text{h}, \text{TOT}})</th>
<th>(T_{\text{m}, \text{clath}})</th>
<th>(T_{\text{m}, \text{ice}})</th>
<th>Salinity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhawulong</td>
<td>Spodumene</td>
<td>Crystal-rich</td>
<td>16.5–29.4</td>
<td>≥500</td>
<td>5.3–9.6</td>
<td>0.8–8.5</td>
<td>this work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quartz</td>
<td>NaCl-H₂O</td>
<td>15.3–28.4</td>
<td>287–419</td>
<td>4.1–7.4</td>
<td>4.4–9.6</td>
<td>Li and Chou, 2016; 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quartz</td>
<td>NaCl-H₂O</td>
<td>19.3–28.0</td>
<td>246–415</td>
<td>3.5–8.2</td>
<td>3.7–10.8</td>
<td>Li et al., 2015</td>
<td></td>
</tr>
<tr>
<td>Koktokay</td>
<td>Beryl</td>
<td>Crystal-rich</td>
<td>240</td>
<td>460</td>
<td>470</td>
<td>7.0</td>
<td>Li et al., 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quartz</td>
<td>NaCl-H₂O</td>
<td>145–255</td>
<td>720–830</td>
<td>470</td>
<td>6.0</td>
<td>Wu et al., 1995</td>
<td></td>
</tr>
<tr>
<td>Tanco</td>
<td>Petalite</td>
<td>Crystal-rich</td>
<td>260–330</td>
<td>5–8</td>
<td>3.5–8.2</td>
<td>3.7–10.8</td>
<td>Li et al., 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quartz</td>
<td>NaCl-H₂O</td>
<td>245</td>
<td>470</td>
<td>3.5–8.2</td>
<td>3.7–10.8</td>
<td>Li et al., 2007</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Physiochemical conditions of different pegmatites from Jiajika (Li and Chou, 2016), Zhawulong, Koktokay, and Tanco (modified after London, 1986). Among them, the lines of different colors represent P–T evolutionary tracers of the Jiajika (yellow) (Li and Chou, 2016), Zhawulong (red) and Koktokay (blue) (Lu et al., 1996), and Tanco (gray) (London, 1986) deposits.
Acknowledgements

We thank the editor and Prof. Chi Guoxiang of Regina University, Canada and one anonymous reviewer for their thorough reviews and constructive comments. We are grateful to Dr. Jian Wei and Dr. Zhu Qiaojiuo from the Chinese Academy of Geological Sciences for their advice and guidance. We also thank Engineer Chen Weishi from the Institute of Mineral Resources, Chinese Academy of Geological Sciences for her assistance on the microthermometric analyses. This study was funded by the National Natural Science Foundation of China (No.41703048, 41872096), the Chinese National Nonprofit Institute Research Grant of CAGS, CGS (YYWF201520, JYYWF201814) and the China Geological Survey (DD20160055, DD20190173).

Manuscript received May 6, 2018 accepted Oct. 20, 2018 associate EIC CHI GUOXING edited by FEI Hongcai

References

Rickers, K., Thomas, R., and Heinrich, W., 2006. The behavior of trace elements during the chemical evolution of the H₂O–B

Thomas, R., and Davidson, P., 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state - Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088–1101.

About the first author

XIONG Xin, female, born in 1989 in Shaowu City, Fujian Province; PHD; graduated from China University of Geosciences (Beijing); research assistant of Institute of Mineral Resources, Academy of Geological Sciences. She is now interested in the study on geochemistry and fluid inclusions. Email: XiongXin1989@163.com.

About the corresponding author

LI Jiankang, male, born in 1976 in Baoding City, Hebei Province; PHD; graduated from China University of Geosciences (Beijing); professor and doctoral supervisor of Institute of Mineral Resources, Chinese Academy of Geological Sciences. He is now interested in the study on rare metal ore deposit and fluid inclusions. Email: li9968@126.com.