Structural analysis of compactive deformation in the incoming sedimentary section of the
Hikurangi Subduction Margin, New Zealand: results from IODP 375 expedition

Maomao Wang 1, Philip Barnes 2, Julia Morgan 3, Rebecca E Bell 4, Ake Fagereng 5, Heather M Savage 6,
Demian M Saffer 7, Laura M Wallace 8, Katerina E Petronotis 9, Shipboard Scientists 10

1 Hohai University, College of Oceanography, Nanjing, China, wangmm@hhu.edu.cn
2 Philip Barnes, National Institute of Water & Atmospheric Research, Wellington, New Zealand
3 Rice University, Houston, TX, United States
4 Imperial College London, London, SW7, United Kingdom
5 Cardiff University, School of Earth and Ocean Sciences, Cardiff, United Kingdom
6 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
7 Pennsylvania State University, University Park, PA, United States
8 GNS Science, Lower Hutt, New Zealand
9 Texas A&M University, International Ocean Discovery Program, College Station, TX, United States
10 IODP Expeditions 372 and 375

The International Ocean Discovery Program (IODP) Expedition 375 carried out ocean scientific drilling
at the Hikurangi Subduction Margin, New Zealand, with the purpose of revealing the mechanisms that
may control shallow slow slip events. This expedition collected core samples from site U1520 within the
incoming subducting plate. Here we report on the structure and evolution of early deformation associated
with sedimentary basin compaction on the incoming subducting plate of the Hikurangi Margin. By
interpreting a 2D grid of seismic reflection profiles that image the sedimentary basins covering the
Hikurangi Trough and analyzing core data, we find widely developed normal faults within specific
horizons above the volcanic basement. These normal faults are densely spaced and are usually confined to
specific marl horizons, and the offsets of the faults are generally small. The dip angle of the fault planes is
generally steep, but a listric normal fault network can also be observed locally. These faults are covered
by a Plio-Pleistocene clastic section, generally found in the Miocene and older sections, suggesting that
these faults may have developed during the late Miocene when the section was away from the present
trench site where turbidites have been deposited. We interpret that these normal faults were caused by
basin compaction through possible dehydration reactions between rock and fluid in sedimentary basins and
generally formed as compactive structures. The porosity of the section hosting the compactive structures
is generally reduced compared to sections above and below, and thus these compactive structures appear
to significantly modify the permeability of the sedimentary section, which may have a certain impact on
fault slip at subduction zones. These precursory deformation features will eventually be carried into the
accretionary wedge and become overridden by later forming structural development in lower parts of the
wedge. Thus, we infer that compactive deformation that is found in the incoming sedimentary section of
the Hikurangi Subduction Margin will have an important impact on permeability and structural evolution
during subsequent subduction processes.