Electrical conductivities of minerals and rocks in the Earth crust, upper mantle, mantle transition zone and subduction zone

Lidong Dai¹, He ping Li¹, Haiying Hu¹ and Wenqing Sun¹,²

¹Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, dailidong@vip.gyig.ac.cn
²University of Chinese Academy of Sciences, Beijing, China

Magnetotelluric results have confirmed that there are many high conductivity anomalies in the deep Earth interior. To explain these available cases of high conductivity anomalies, we have undertaken in-situ measured electrical conductivities for a series of representative minerals and rocks occurring in the deep Earth by virtue of a multi-anvil press and a Solartron-1260 impedance spectroscopy analyzer (e.g. albite and granite in the deep Earth crust [1-2], olivine, pyroxene, garnet and peridotite in the upper mantle [3-10], wadsleyite in the mantle transition zone [11], and as well as eclogite, epidote, mudstone, gneiss and amphibole in the subduction zone [12-16]) at high-temperature and high-pressure conditions. Some crucial conclusions are summarized as follows: the pre-exponential factor of hydrogen-assisted electrical conductivity of Fe-bearing silicate minerals and rocks dependence on water content was determined as r = 0.6–1.0; the main conduction mechanisms for anhydrous and hydrous Fe-bearing silicate minerals are small polaron and hydrogen-related defects, respectively; Geophysical observations for the high conductivity anomaly in the asthenosphere and mantle transition zone can be explained by a high water content or high electrical conductivity anisotropy; However, dry natural eclogite with different oxygen fugacities cannot explain the high conductivity anomaly in the region of the Dabie–Sulu ultrahigh-pressure metamorphic belt. Furthermore, the dehydration reaction and dehydrogenation effects of some representative hydrous minerals and rocks such as Fe-bearing epidote, Fe-bearing amphibole and mudstone can be used to reasonably explain the high conductivity anomaly in a subduction zone.

This research was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB 18010401), Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-DQC009), “135” Program of the Institute of Geochemistry of CAS, Hundred Talents Program of CAS, NSF of China (Grant Nos. 41474078, 41774099 and 41772042).

References