Introduction

A porphyry deposit is one of the most economically important classes of mineral deposits of nonferrous metal resources (Gustafson, 1978; Sillitoe, 1979, 2010; Seedorff et al., 2005; Halter et al., 2005). They are also the main repositories of copper, molybdenum, and gold in the world (Richards, 2003; Cooke et al., 2005; Singer, 2008; Kesler and Wilkinson, 2008; Sillitoe, 2010; Eliopoulos et al., 2014). They contain 80% of copper, 95% of molybdenum and more than 10% of gold in the world (Singer, 1995; Sinclair, 2007; Sun et al., 2013, 2015). Most of these deposits are parallel to magma arcs or orogenic belts and form in clusters (Richards, 2003; Sillitoe, 2010), such as the Canadian Cordillera belt (Logan and Mihalynuk, 2014), the Andes belt in South America (Sillitoe and Perelló, 2005), and the Apuseni-Banat-Timok-Srednogorie belt (Zimmerman et al., 2008). The Bangonghu Lake-Nujiang metallogenic belt, which is located in central
Tibet (Fig. 1a), is the third porphyry Cu(Au) belt (Li et al., 2011a, 2011b; Li et al., 2012; Qu Xiaoming et al., 2015) to be discovered after the Yulong (Hou et al., 2003, 2007; Jiang et al., 2008; Liang et al., 2009) and Gangdese belts (Hou et al., 2009; Tang et al., 2015; Zheng et al., 2015) (Fig. 1b). Many copper, iron, and gold deposits that are associated with porphyry are distributed to the north and south along this belt. Since the Duobuza and Bolong super-large porphyry Cu(Au) deposits (which together are called the Duolong deposit) were discovered in 2000, the No.5 Geological Team of the Bureau of Tibetan Geology and Exploration has found the Naruo large porphyry Cu deposit and the Rongna large porphyry-epithermal Cu(Ag-Au) deposit (which is also called the South Tiegelong deposit) in China recently (Tang Juxing et al., 2014; Yang Chao et al., 2014; Fang Xiang et al., 2015; Li Guangming et al., 2015). Together, these discoveries contain more than 2000 Mt of copper and over 300 t of gold (Duolong: 5.5 Mt of Cu and 180 t of Au; Rongna: 8.58 Mt of Cu and 28 t of Au; Naruo: 2.51 Mt of Cu and 82 t of Au; the characteristics of these deposits are listed in Table 1). The area is recognized as a giant metallogenic belt that is comparable to the Andes mineral belt in South America.

However, in contrast to the widely accepted opinion that the Yulong and Gangdese metallogenic belts formed in a post-collisional orogenic environment (Hou et al., 2007, 2009, 2013; Liang et al., 2006,2009; Zheng et al., 2015; Qu Huanhuan and Sun maoyu, 2016), the formation and origin of the Cu(Au) deposits in the Duolong area are still disputed. Previous detailed studies of the geochronology and geochemistry about these deposits resulted in different interpretations, including (1) these deposits formed during crustal uplift after the closure of the Bangong Lake-Nujiang Ocean basin, which was the product of thickened crustal melting (Qu Xiaoming et al., 2006, 2012, 2015; Qu et al., 2012; Xin Hongbo et al., 2009); (2) the island arc environment of the subduction zone of the Bangong Lake-Nujiang Tethys Ocean contain ore-bearing magma from the partial melting of the oceanic crust (Li Jinxiang et al., 2008; Li et al., 2011b, 2013; She Hongquan et al., 2009; Chen Huaan et al., 2013; Zhu...
Table 1 Geological characteristics of the deposits in the Duolong area

<table>
<thead>
<tr>
<th>Deposit type</th>
<th>Typical deposit</th>
<th>Element (Cu, Au)</th>
<th>Reserves (Mt)</th>
<th>Grade</th>
<th>Ore body type</th>
<th>Associate porphyry and age</th>
<th>Alteration</th>
<th>Ore minerals</th>
<th>Gangue minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porphyry deposit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naruo</td>
<td>Cu(Au)</td>
<td>Cu 2.51</td>
<td>0.38%</td>
<td>veinlet, disseminated and breccia</td>
<td>Early Cretaceous granodiorite porphyry (119.32–120.6 Ma)</td>
<td>potassic, sericite, propylite, chlorite, epidote, calcite</td>
<td>pyrite, chalcopyrite, bornite, covellite, magnetite, molybdenite, galena, sphalerite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au 82 t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca 0.19</td>
<td>g/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duobuza</td>
<td>Cu(Au)</td>
<td>Ca 3</td>
<td>0.5%</td>
<td>veinlet, disseminated and breccia</td>
<td>Early Cretaceous granodiorite porphyry (116.1–121.6 Ma)</td>
<td>potassic, sericite, propylite, intermediate argillic</td>
<td>chalcopyrite, pyrite, bornite, magnetite, molybdenite, native gold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au 0.2</td>
<td>g/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolong</td>
<td>Cu(Au)</td>
<td>Ca 2</td>
<td>0.47%</td>
<td>veinlet, disseminated and breccia</td>
<td>Early Cretaceous granodiorite porphyry and quartz diorite porphyry (117.5–121.1 Ma)</td>
<td>potassic, sericite, propylite, intermediate argillic</td>
<td>chalcopyrite, pyrite, bornite, magnetite, molybdenite, native gold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au 0.13</td>
<td>g/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-sulphidation epithermal deposit</td>
<td>Cu(Au/Au)</td>
<td>Ca 5.6</td>
<td>0.5%</td>
<td>veinlet, disseminated and breccia</td>
<td>Early Cretaceous granodiorite porphyry and quartz diorite porphyry (120.2 Ma)</td>
<td>potassic, phyllic, advanced argillic, quartz-alunite</td>
<td>chalcopyrite, pyrite, bornite, magnetite, molybdenite, native gold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au 0.17</td>
<td>g/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-sulphidation epithermal deposit</td>
<td>Au(Cu)</td>
<td>Ca 0.3</td>
<td>0.7%</td>
<td>veinlet, breccia</td>
<td>Early Cretaceous granodiorite porphyry and quartz diorite porphyry (113–119 Ma)</td>
<td>sericite, argillic, quartz-chalcedony-adularia-carbonates</td>
<td>chalcopyrite, pyrite, electrum, galena, sphalerite, bornite, cinabar, withenite, cuprobismutite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au 1.7</td>
<td>g/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Geological Background and Ore Deposit

The Duolong area is located to the north of the Bangong-Nujiang suture zone junction in the Zapug-Nujiang volcanic arc. The Duolong area is associated with the Early Cretaceous calc-alkali porphyry-Cu deposits, which form a significant ore belt. The Duolong area is characterized by a series of volcanic and intrusive rocks, including the Early Cretaceous calc-alkali porphyry, quartz diorite porphyry, and granodiorite porphyry. These rocks are associated with the formation of the Bangong-Nujiang suture zone during the Late Jurassic and Early Cretaceous periods.

The ore deposits in the Duolong area are associated with the Bangong-Nujiang suture zone and are distributed along a series of deep faults. The ore deposits are enriched in Cu, Au, and Ag, and are associated with the formation of the Bangong-Nujiang suture zone.

The Duolong area is located to the north of the Bangong-Nujiang suture zone, and is characterized by a series of volcanic and intrusive rocks, including the Early Cretaceous calc-alkali porphyry, quartz diorite porphyry, and granodiorite porphyry. These rocks are associated with the formation of the Bangong-Nujiang suture zone during the Late Jurassic and Early Cretaceous periods.

The ore deposits in the Duolong area are associated with the Bangong-Nujiang suture zone and are distributed along a series of deep faults. The ore deposits are enriched in Cu, Au, and Ag, and are associated with the formation of the Bangong-Nujiang suture zone.
the rocks and the structure. Magma emplacement and the formation of the ore deposit occurred at the junction between the two groups of faults.

2.2 Ore deposit geology

The Naruo Cu(Au) deposit is located east of the Duolong deposits approximately 8 km from the southwestern Duolong super-large porphyry Cu(Au) deposit (Fig. 2a). It is a newly discovered large porphyry Cu(Au) deposit (Cu: 2.51 Mt @ 0.38%, Au: 82 t @ 0.19 g/t). The stratigraphy of this area is relatively simple; the main components are feldspar quartz sandstone and slate of the Middle-Late Jurassic Sewa Group and dacite and andesite of the Late Cretaceous Meiriqiecuo Group. In addition, a small amount of granodiorite porphyry is exposed in the northeast and southwest parts of the deposit (Fig. 2b), which have branch-like or vein-like shapes and intrude into the feldspar quartz sandstone of the Sewa Group. The granodiorite porphyry can be divided into two phases according to whether they bear ores. The early phase is exposed in the middle of the deposit and is the main ore-bearing porphyry for mineralization and alteration and has a zonal distribution around this intrusion (Fig. 2c). The late phase is exposed in the southwestern and northwestern parts of the deposit and does not show significant mineralization and alteration. The northeast-trending F10 and F11 faults pass through this area, with the F10 being the main ore-controlling structure.

The ore body in the Naruo deposit can be classified into three types, which are veinlet-disseminated in granodiorite porphyry, veins-stockwork in feldspar quartz sandstone, and cryptoexplosion breccia (Fig. 2c). The veinlet-disseminated ore body is located in the center of the deposit. The sulfides form star-like patterns in the
granodiorite porphyry with accompanying quartz sulfide veinlets (Fig. 3a,b). The vein-stockwork ore body in the sandstone is distributed around the porphyry and resulted from filling and metasomatism of hydrothermal fluid along gaps. The veins vary in width from 0.3 cm to 3 cm and are filled with several sulfides, such as pyrite, molybdenite, and chalcopyrite (Fig. 3c,d). The cryptoexplosion breccia ore body is located in the southwest part of the deposit and forms an upright cylinder. This body is 200 m long, 150 m wide and 30–150 m thick and may have formed because of deep magmatic activity. The main components of the breccia are feldspar quartz sandstone and granodiorite porphyry with triangular, platy, elliptical, or irregular shapes. The size of the breccia ranges from 0.5 cm to 10 cm, and it accounts for 50%–70% of the total volume of the breccia ore body (Fig. 3e). The matrix is mainly composed of quartz, calcite, chlorite, epidote, sericite and pyrite.

Fig. 3. Photographs of rocks, ore minerals, veins, and alterations in the Naruo porphyry Cu(Au) deposit.
(a) Porphyry ore body; (b) Disseminated minerals in granodiorite porphyry; (c) Vein-stockwork ore body in arkosic sandstone; (d) Sulphide-bearing quartz vein; (e) Breccia ore body; (f) Minerals between breccia clasts; (g) Ore-bearing granodiorite porphyry; (h) Ore-bearing granodiorite porphyry with little potassic alteration (Z0-278 sample was used for LA-ICP-MS zircon U-Pb and Hf isotope dating); (i) Ore-bearing granodiorite porphyry under polarized light; (j)Ore-bearing granodiorite porphyry under polarized light; (k)Barren granodiorite porphyry with little propylitic alteration (Z15-255 sample was used for LA-ICP-MS zircon U-Pb and Hf isotope dating). Py, Pyrite; Mt, magnetite; Cp, chalcopyrite; Bn, bornite; Cov, covellite; Sup, Sulphide; Q, quartz; Kfs, K-feldspar; Pl, plagioclase; Bi, biotite; Ep, epidote; Rut, rutile.
The metallic minerals in this deposit are chalcopyrite, pyrite, magnetite, hematite with small amounts of molybdenite, galena, sphalerite, covellite, and associated gold. The mineralization of these minerals is related to potassic alteration, silicification, sericitic alteration, chlorite, and epidotization. In addition, different types of alteration have converted the porphyry body at the center gradually from potassic zone to phyllic alteration, and shallow propylitization zone. However, argillization is not present in this deposit. Four periods of mineralization were identified based on the mineral compositions; from early to late, the periods are quartz-feldspar-biotite-chalcopyrite-pyrite-magnetite, quartz-pyrite-sericite-chalcopyrite, quartz-chlorite-epidote-pyrite-hematite, and quartz-molybdenite.

3 Sampling and Petrography

Fresh ore-bearing granodiorite porphyry samples were collected from boreholes of lines 0, 7 and 8 in the Naruo deposit (No. Z01-125, Z01-278, Z07-263, Z07-301, and Z08-239). Barren granodiorite porphyry samples were collected from borehole of line 15 (Z15-179 and Z15-255). ZK01-278 and ZK15-255 were selected as representatives of the ore-bearing and barren granodiorite porphyry for the zircon U-Pb dating and Hf isotope analysis.

All of the samples have porphyritic textures (Fig. 3g). The phenocrysts of ore-bearing granodiorite porphyry are composed of 22%–28% quartz, 30%–40% plagioclase, 7%–15% K-feldspar, 15%–20% biotite, and 5%–8% amphibole (Fig. 3h, i, j). The main components of the matrix are fine-grained feldspar, quartz, chlorite, epidote, sericite, and some accessory minerals of apatite, sphene, zircon, rutile, and magnetite. Strong potassic alteration and weak chloritization occurred (Fig. 3h, i, j). In contrast to the ore-bearing granodiorite porphyry, K-feldspar and magnetite were very rare (3%–5%) in the barren granodiorite porphyry. The formation of chlorite and epidote is strong, while potassic alteration is weak (Fig. 3k).

4. Analytical Methods

4.1 Major and trace element analysis

The whole-rock major and trace elements were measured at the Southern Institute of Metallurgy and Geological Testing. The major elements were tested using an X-ray fluorescence spectrometer. After being crushed, shrunk, and weighed, the samples were melted with anhydrous lithium tetraborate. Ammonium nitrate was used as the oxidant, and lithium fluoride and a small amount of lithium bromide were used as the flux and mold-release agents. The samples were then made into glass slices. Finally, the samples were measured using an Axios X-ray fluorescence spectrometer (PANalytical Company, Netherlands). The measurement error of each element was less than 1%. The trace elements were measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The ground samples were melted by tetraborate and then analyzed using a NexION 300x plasma mass spectrometer (PE Company, USA). The measurement error of each element was less than 1%.

4.2 Zircon U–Pb

The granodiorite porphyry samples that were used for the zircon U-Pb dating and Hf isotope analysis were sent to the lab to select the zircons and make the targets. The selection of single zircons was conducted in the Institute of Regional Geological Survey, Hebei Institute of Geological Survey, Langfang, Hebei, China. Crystalline zircons were selected from each sample under a binocular microscope and then stuck in double-faced adhesive tape and stabilized with colorless, transparent epoxy resin. After the epoxy resin was fully hardened, the surfaces of the target zircons were polished, and the interiors were fully exposed. The target zircons were sent to the Institute of Mineral Resources at the Chinese Academy of Geological Sciences for cathode luminescence with a JXA2800 Electron microprobe. The zircons with good crystals and well-developed zones were selected and sent to the Isotope Testing Laboratory at the Tianjin Institute of Geology and Mineral Resources for U-Pb dating using the LA-ICP-MS method (Fig. 4). The instruments for the U-Pb dating included a Neptune Mass Spectrometer (Thermo Fisher, USA) and a UP193-FX Ar F Excimer laser (ESI Company, USA) with a laser beam spot diameter of 35 μm, a frequency of 8–10 Hz, and a laser energy density of 13–14 J/cm². To ensure that U-Pb with large differences in mass would be simultaneously accepted, the isotope testing laboratory used a dynamic zooming and dispersion method. A single point erosion method was used to collect the samples. After the completion of sample testing and age calculation for every 4–5 samples, TEMORA was used as an age standard for the exterior of the zircons. The Isoplot programs (Ludwig, 2003) were used for the data processing. Common lead correction was conducted following the data processing method of Andersen (2002). After the testing was complete, NIST612 was used as an external standard to calculate the Pb, U, and Th contents of the zircon samples to guarantee that the results were accurate and reliable.
4.3 Hf isotope analysis

The zircon in-situ isotope analysis was performed based on the U-Pb dating and tested the same dating points (Fig. 4). The testing was performed in the Key Laboratory of Metallogeny and Mineral Assessment at the Institute of Mineral Resources, Chinese Academy of Geological Sciences, with a Neptune Laser Ablation ICP-MS. He gas was used as the carrier gas for the erosion substances, and the diameter of the laser beam spot was 55 μm. The international GJ1 standard zircon was used as the reference standard. The instrument settings and the detailed testing procedures followed those of Hou Kejun et al. (2007). In the data analysis, the decay constant for \(^{176}\text{Lu}\) was \(1.867 \times 10^{-11} \text{ a}^{-1}\) (Söderlund et al., 2004). The chondrite ratios \(n(176\text{Hf})/n(177\text{Hf}) = 0.282772\) and \(n(176\text{Lu})/n(177\text{Hf}) = 0.0332\), which were recommended by Bouvier et al. (2008), were adopted to calculate the value of \(\varepsilon_{\text{Hf}}(t)\). Depleted mantle ratios of \(n(176\text{Hf})/n(177\text{Hf}) = 0.28325\) and \(n(176\text{Lu})/n(177\text{Hf}) = 0.015\) were used to calculate the Hf ages (Amelin et al., 1999). The weighted average of \(^{176}\text{Hf}/^{177}\text{Hf}\) for the GJ1 zircon standard is 0.282003 ±0.000018 (n = 7), and the error is consistent with values from the literature (Hou Kejun et al. 2007).

5 Results

5.1 Zircon U-Pb age

Based on their cathode luminescence images, many of the granodiorite porphyry samples that were used for dating had long columnar shapes, and a few had granular and irregular shapes. The particle sizes ranged from 50 μm to 150 μm. Many particles had a good degree of self-formation and had relatively well-developed cylinders and cones. They also had clear oscillatory zoning, no internal residuals, and no metamorphosed edges (Fig. 4). The Th/U values were high (Table 2), which suggests that they were magmatic zircons (Belousova et al., 2002), therefore, the ages that were measured by the zircon U-Pb dating represent the ages of magmatic crystallization.

Zircon particles from 12 sites in the ore-bearing granodiorite porphyry were tested (Table 2). The \(^{206}\text{Pb}/^{238}\text{U}\) ages ranged from 122.1 Ma to 118.79 Ma, and the weighted average age was 120.63±0.55 Ma (MSWD=1.16)(Fig. 5a,b), which is consistent with a previous study that reported a zircon U-Pb age of 120.2±1.4 Ma (Zhu Xiangping et al., 2015). In addition, zircon particles from 11 sites in the barren granodiorite porphyry were tested (Table 2). The \(^{206}\text{Pb}/^{238}\text{U}\) ages were between 117.96 Ma and 121.21 Ma (Table 2), and the weighted average age was 119.32±0.72 Ma (MSWD=1.4) (Fig. 5c,d), which is consistent with the age of 119.8±1.3 Ma that was obtained by Zhu Xiangping et al. (2015) and little younger than the age of the ore-bearing granodiorite porphyry. Therefore, the ore-bearing granodiorite porphyry and barren granodiorite porphyry belong to different phases of the same period.

5.2 Major and trace elements

Table 3 shows the results of the geochemical analysis of the granodiorite porphyry in the Naruo deposit. These magmatic rocks were generally enriched in silicon (SiO2=63.91–65.54wt%) and potassium (K2O = 2.25–4.6wt%) but were deficient in magnesium (MgO = 1.57–1.74wt%), titanium (TiO = 0.32–0.39wt%), phosphorus (P2O5 = 0.1–0.15wt%), and peraluminous (A/CNK = 1.69–2.3). The K2O-SiO2 and A/NK-A/CNK diagrams...
Table 2 LA-ICM-MS zircon U–Pb isotope data of the granodiorite porphyry from the Naruo Cu(Au) deposit

<table>
<thead>
<tr>
<th>Sample spots</th>
<th>Pb Th U ppm</th>
<th>Sample spots</th>
<th>Pb Th U ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z01-01</td>
<td>5 162 255 0.63</td>
<td>Z15-01</td>
<td>10 387 503 0.77</td>
</tr>
<tr>
<td>Z01-02</td>
<td>9 265 469 0.57</td>
<td>Z15-02</td>
<td>6 219 297 0.74</td>
</tr>
<tr>
<td>Z01-03</td>
<td>10 293 505 0.58</td>
<td>Z15-03</td>
<td>8 301 429 0.70</td>
</tr>
<tr>
<td>Z01-04</td>
<td>7 227 321 0.71</td>
<td>Z15-04</td>
<td>6 170 286 0.60</td>
</tr>
<tr>
<td>Z01-05</td>
<td>3 82 164 0.50</td>
<td>Z15-05</td>
<td>10 145 521 0.28</td>
</tr>
<tr>
<td>Z01-06</td>
<td>6 186 304 0.61</td>
<td>Z15-06</td>
<td>11 450 528 0.85</td>
</tr>
<tr>
<td>Z01-07</td>
<td>5 123 233 0.53</td>
<td>Z15-07</td>
<td>5 150 251 0.60</td>
</tr>
<tr>
<td>Z01-08</td>
<td>9 308 413 0.75</td>
<td>Z15-08</td>
<td>4 109 214 0.51</td>
</tr>
<tr>
<td>Z01-09</td>
<td>4 113 205 0.55</td>
<td>Z15-09</td>
<td>8 301 429 0.70</td>
</tr>
<tr>
<td>Z10-10</td>
<td>5 124 229 0.54</td>
<td>Z15-10</td>
<td>6 170 286 0.60</td>
</tr>
<tr>
<td>Z10-11</td>
<td>8 193 391 0.49</td>
<td>Z15-11</td>
<td>14 565 689 0.82</td>
</tr>
<tr>
<td>Z10-12</td>
<td>3 98 159 0.62</td>
<td>Z15-12</td>
<td>10 387 503 0.77</td>
</tr>
</tbody>
</table>

Note: use the 206Pb/238U age when the age < 1000 Ma, rather than using 207Pb/206Pb age.

Fig. 5. Zircon U-Pb concordia diagrams and weighted mean 206Pb/238U ages of the granodiorite porphyry from the Naruo Cu(Au) deposit.
indicate that most of the samples belong to a high potassium calc-alkaline and peraluminous rock series (Figs. 6a, b). However, the ore-bearing granodiorite porphyry had higher SiO$_2$, K$_2$O, and A/CKN contents, which is consistent with early data from the Duolong and Naruo deposits and suggests that the mineralization may be closely related to SiO$_2$, K$_2$O, and A/CKN contents, which is consistent with early data from the Duolong and Naruo deposits and suggests that the mineralization may be closely related to
potassic alteration and silicification. All of the rocks were relatively enriched in light rare earth elements (SLREE/SHREE = 5.48–6.95) and large-ion lithophile elements (LILEs; e.g., Rb, K, Sr) and low in heavy rare earth elements (HREEs; LaN/YbN = 5.53–8.54) and high field strength elements (HFSEs; e.g., Nb, Ta, Ti, P). In addition, the rocks had a weakly negative Ce anomaly and no Eu anomaly (Figs. 6c, d). Compared with early studies of the Duolong and Naruo deposits, this study showed that the ore-bearing granodiorite porphyry had a higher HREE than the barren granodiorite porphyry, but all had the geochemical characteristics of arc magmas in a subduction zone setting (Rollinson, 1993; Stolz et al., 1996; Grove et al. 2003).

5.3 in-situ Hf isotope analysis of zircon

Table 4 shows the results of the zircon Hf isotope analysis of the granodiorite porphyry in the Naruo deposit. Of the nine samples of the granodiorite porphyry that were tested (Z01), the initial values of 176Hf/177Hf varied between 0.282863 and 0.282906, $\varepsilon_{Hf(t)}$ ranges from 5.77 to 7.37 (Fig. 7a), and the two-stage model ages (TDMC) were between 707 Ma and 808 Ma. The barren granodiorite porphyry had lower values of 176Hf/177Hf and $\varepsilon_{Hf(t)}$, which were 0.28274–0.28286 and 1.38–5.63 (Fig. 7b), respectively. The two-stage model ages were between 816 Ma and 1086 Ma, which is consistent with previous reports and suggests that much more crustal material was mixed during the late period of the formation of the barren granodiorite porphyry (Zhu Xiangping et al., 2015).

6 Discussions

6.1 Magmatic event in the Duolong area

The zircon U-Pb age of the granodiorite porphyry measured is 19–120 Ma in this research. In addition, the Re-Os model ages of two molybdenite crystals are 116.6 ± 2.6 Ma and 118.5 ± 2.2 Ma (another article), the metallogenic age corresponds to the emplacement timing of granodiorite porphyry, which indicates that the formation of

Fig. 6. Geochemical diagram of granodiorite porphyry from the Naruo porphyry Cu (Au) deposit.
(a) SiO$_2$ versus K$_2$O; (b) A/CNK (mole [Al$_2$O$_3$/(CaO+Na$_2$O+K$_2$O)]) versus A/NK (mole [Al$_2$O$_3$/(Na$_2$O+K$_2$O)]) (after Peccerillo and Taylor, 1976); (c) CI-chondrite-normalized rare earth element patterns; (d) primitive mantle-normalized trace element spidergrams. CI-chondrite and primitive mantle values are taken from Boynton (1984) and Sun and McDonough (1989), respectively. The data for the ore-bearing and barren granodiorite porphyry in the Duobuza and Bolong deposit are from Li et al. (2013); Chen Huaan et al. (2013). The data for the published granodiorite porphyry are from Zhu Xiangping et al. (2015).
the Naruo deposit was related to the magmatic hydrothermal activity that resulted from the emplacement of the granodiorite porphyry. Combined with previously published ages for U-Pb analyses of zircons, the Re-Os age of molybdenite and 40Ar/39Ar analyses (She Hongquan et al., 2009; Li Jinxiang et al., 2008; Li et al., 2011a, 2011b, 2013; Fang Xiang et al., 2015; Chen Huaan et al., 2013; Zhu et al., 2015; Wang Qin et al., 2015). She Hongquan et al. (2009) reported 120.9±2.4 Ma for the ore-bearing granodiorite porphyry and an isochron age 118.0±1.5 Ma of molybdenite from the Duobuza deposit. Li et al. (2011) reported the 40Ar/39Ar age of 115.2±1.1Ma from the hydrothermal K-feldspar and 115.2±1.2 Ma from the sericite, which show a close temporal relationship of the ore-bearing granodiorite porphyry in the Duobuza deposit. Furthermore, Chen Huaan et al. (2013) reported a 119–120 Ma zircon age for the Bolong deposit, Zhu Xiangping et al. (2015) reported a zircon U-Pb age of 120 Ma from the Naruo deposit, and Fang Xiang et al. (2015) obtained 120±1.0 Ma for ore-bearing porphyry and an isotopic model age of 118.45±0.76 Ma of molybdenite in the Rongna deposit. All the data indicate that the large-scale intermediate-felsic magmatic activity during the Early Cretaceous (124–114 Ma) was the major factor in the formation of the porphyry-epithermal Cu(Au) deposit in the Duolong area, and the magmatic activity in this area was concentrated in three phases (Fig. 8). The granodiorite porphyry contains the major intrusive rocks of the first phase that are related to mineralization. The second and third phases were marked by large amounts of volcanic rocks (including andesite, basaltic andesite) that covered the early intrusive rocks at 113–108 Ma and 107–104 Ma, respectively.

6.2 Tectonic implication

Although many researchers believe that the large-scale magmatic activity in the Duolong area was related to the subduction of the Bangong Lake-Nujiang Tethys ocean basin (Liao Liugen et al., 2005; Cao Shenghua et al., 2006; Geng Quanru et al., 2011; Li et al., 2014), there are still many controversial issues about this theory, such as did it form during subduction (Li et al., 2011b, 2013; Fang Xiang et al., 2015; Zhu et al., 2015) or after the collision of the Lhasa and Qiangtang terranes (Qu Xiaoming et al., 2006, ...
2012, 2015; Qu et al., 2012; Xin Hongbo et al., 2009)? Did the island arc environment form by intra-ocean subduction (Liu et al., 2014) or in a continental margin arc environment above an ocean-continent subduction (Li et al., 2011b, 2013, 2014; Zhou Jinsheng et al., 2013)? The key question is the evolution of the Bangong Lake-Nujiang Tethys Ocean in the Early Cretaceous. Previous studies have shown that the Bangong Lake-Nujiang Tethys Ocean started to subduct to the north during the Middle-Late Jurassic (177.1–150 Ma) (Shi Rendeng, 2007; Qu Xiaoming et al., 2009), and was accompanied by intra-ocean and ocean-continent subduction, which formed island arc magmatic rocks in the Bangong Lake-Nujiang River (Matte et al., 1996; Liu et al., 2014) and continental margin arc magmatic rocks to the south of Qiangtang (Li et al., 2014; Liu et al., 2012; Guynn et al., 2006; Schwab et al., 2004). However, there are several opinions about the timing of the closure of the Bangong Lake-Nujiang Tethys Ocean. Qu et al. (2012) obtained an age of 109.6–113.7 Ma for A-type granite in the middle of the Bangong Lake-Nujiang River and defined the timing of the closure of the ocean basin as the Early Cretaceous at approximately 145 Ma, which is consistent with the results of previous studies (Kapp et al., 2003; Yin and Harrison, 2000). Therefore, some researchers believed that the magmatic rocks in the Duolong area formed after the collision of the Lhasa and Qiangtong terranes (Qu Xiaoming et al., 2006, 2012, 2015; Qu et al., 2012; Xin Hongbo et al., 2009).

However, a lot of excellent research has been carried out on the strata structure and magmatic activities at the South Qiangtang terrane in recent years and more scholars believe that the closure time of the Bangong Lake-Nujiang Tethys Ocean may extend to the late Early Cretaceous (Liu et al., 2014; Li et al., 2015; Zhou Xiong et al., 2015). For example, Zhu Diche et al. (2006) point out that the Bangong Lake-Nujiang Tethys oceanic crust has not yet completely closed in the late Early Cretaceous of about 110 Ma based on the zircon age of oceanic island basalt from the Doima and Tarenben area in the Bangong-Nujiang suture belt. Li Dewei. (2008) considered that the unconformable strata of the late Early Cretaceous Jingjishan and Yuduo group are a sign of Tethys ocean-land conversion. Moreover, Zhang Shuo et al. (2014) and Fu Jiajun et al. (2015) discovered intermediate-felsic intrusions rocks that represented the post-collision environment both south and north of the Bangong-Nujiang suture belt. Li Dewei. (2008) considered that the unconformable strata of the late Early Cretaceous Jingjishan and Yuduo group are a sign of Tethys ocean-land conversion. Moreover, Zhang Shuo et al. (2014) and Fu Jiajun et al. (2015) discovered intermediate-felsic intrusions rocks that represented the post-collision environment both south and north of the Bangong-Nujiang suture belt. However, these data show that the closure of the Bangong Lake-Nujiang Tethys Ocean may have extended to late Early Cretaceous at approximately 100 Ma (Liu et al., 2014; Li et al., 2015).

Therefore, the late Early Cretaceous magma in the Duolong area should not be formed by a collision between Lhasa and Qiangtang terrane. Recall, this paper measured the granodiorite porphyry in the Naruo deposit and found that it belongs to a high potassium calcium alkaline and peraluminous rock series and is relatively enriched in...
LREEs and LILEs but low in both HREEs and HFSEs (Fig. 6c,d); in the Ta-Yb, Rb-Y+Nb diagrams, the major intrusive rocks, including those in the Duolong area, lie within the volcanic arc granite field (Fig. 9a,b), which are different from the granite formed in the post-collision environment, and show the characteristics of arc magmas above a subduction zone (Rollinson, 1993; Stolz et al., 1996; Grove et al. 2003). Moreover, in the Th/Ta and Ta/Yb-Th/Yb diagrams (Fig. 9c, d), all of the samples fall into the active continental margin regions. Yet, in the continental margin arc region of the Th-Co-Zr/10 and Th-Sc-Zr/10 diagrams (Fig. 9e, f), which reflects the characteristics of rocks in continental margin arc environments. In addition, the rocks in this area are
granodiorite porphyry + granite porphyry + andesite (lower Cretaceous Meiriqiecuo group), which are different from intra-ocean arc rocks that are mainly composed of quartz diorite + island arc basalt + andesite (Singer et al., 2005). In contrast to an island arc environment, the porphyry components are slightly acidic (Misra, 2000). In conclusion, the magmatic activity in this area indicated that the formation of the magmatic rocks were closely related to the subduction of the Bangong Lake-Nujiang Tethys Ocean to the south of the Qiangtang terrace, which is similar to the continental margin arc environment of the ocean-continent subduction setting of the Andes metallogenic belt in South America (Högdaahl et al., 2008).

6.3 Origin and petrogenesis of magmas

The origin of the magma that is related to the mineralization in the Duolong area has many explanations. Early researchers believed that the magma formed by the partial melting of the shallow crust (Qu Xiaoming et al., 2006, 2012, 2015; Qu et al., 2012; Xin Hongbo et al., 2009) or originated from the melting of an accretionary wedge on the continental margin (Li Guangming et al., 2011; Duan Zhiming et al., 2013).

Based on the diagenesis and mineralization age and geochemical properties of rocks, the above text discusses granodiorite porphyry found in the Duolong area possesses the characteristics of arc magma above the subduction zone. Early studies showed that arc magma generally originated from the subduction oceanic crust and mantle dehydration or melting (Sillitoe, 1972; Defant and Drummond, 1990; Peacock et al., 1994; Yogodzinski et al., 2001) or the melt / fluid metasomatic wedge-shaped mantle zone (Richards, 2003, 2005). The main magmatic rocks in the Doron area are generally rich in silicon and aluminum, high in Sr (395.44–400 ppm), low in Y (10.48 ppm), with adakitic rock characteristics (Defant and Drummond, 1990). In the Y-Sr/Y diagram (Fig. 10a) and the Yb_n- (La/Yb)_n diagram (Fig. 10b), they are mostly located in the transitional region of Adakite and Classical Island arc volcanic rocks, characterized by the end members of both kinds of rocks. Studies proved that when the oceanic crust was subducted to a certain depth, different levels of phase
transition of amphibolite-eclogite occurred, which in turn led to partial melting of the subducted oceanic plateau and production of adakitic melt, and became this kind of ideal source region that is aqueous, high in oxygen fugacity, and rich in sulfur magma (Defant and Drummond, 1990; Drummond et al, 1996; Martin et al., 2005). In the Th/Sm-Th/Ce diagram (Fig. 10c), the rock samples in the Dolong area all fall on the subducted sediment curve, showing that nearly 15% of the sediments underwent melting during magma formation (Boztuğ et al., 2007). The weak negative anomalies of Ce also show the characteristics of oceanic sediment addition. However, the depleted Nb, Ta and Ti rocks in the Duolong area similarly shows the characteristics of the components of the rocks with mantle-derived imprints in the subduction zone (Sun and McDonough, 1989). Usually, magma originating from the mantle contains higher Mg#, which is typically greater than 50 (Rapp et al., 1999). The moderate Mg# of granodiorite porphyry in the mining area (ranging from 32.6 to 36.68 ppm) obviously did not originate directly from the mantle. Nevertheless, the melts produced by the partial melting of the subducted oceanic plateau were bound to have interacted with mantle substances when it ascended through the wedge-shaped mantle area. These would result in the mixture between the melt metasomatic mantle wedge or melts and the mantle-sourced melts (Keleman, 1995; Stern and Kilian, 1996), with the latter often showing higher Mg# (Kay, 1978; Keleman, 1995). The Mg# of magmatic rocks in the mining area being less than 40 seems to support the metasomatism of melt/fluid and mantle rocks. In recent years, experimental studies have shown that the equilibrium reaction occurring between the melts, produced by the subducted plate and mantle rocks, would lead to increased content of transitional elements such as Cr, Co, and Ni (Yogodzinski et al., 2001; Xiong et al., 2006). The characteristics of rich Cr (4.78–7.34 ppm), Co (6.05–9.33 ppm), and Ni (2.69–13.19 ppm) in the rocks of the mining area, also confirmed the above inference. In addition, when the depletion of elements such as Nb and Ta appears in rocks, the Y/Yb value and the heavy rare earth distribution pattern can indicate the residual phase of the magma source. The Y/Yb value of this test approached 10 (Y/Yb = 7.21–10.64; average value is 9.26) with the flat-shaped heavy rare earth distribution pattern, indicating that amphibole was the main residual phase of the source region (Sisson, 1994). Also, in the Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2) source region distinction diagram (Fig. 10d), all samples fall into the amphibolite area, similarly showing that amphibole was the main molten mineral in the source region (Patino, 1999). More importantly, the research obtained relatively uniform positive εHf(t) values of granodiorite porphyry zircon in the Naruo mining area.In the εHf(t) age diagram, the data points invariably fall between the chondrites and depleted mantle and are consistent with the main intrusive rocks in the Duolong area (Fig. 11), showing the characteristics of
6.4 Geodynamic processes for the deposit formation

The Early Cretaceous magmatic arc in southern Qiangtang, including the Duolong deposit, is considered to be the product of the northward subduction of the Bangong Lake-Nujiang Tethys Ocean (Liao Liugen et al., 2005; Cao Shenhua et al., 2006; Geng Quanru et al., 2011; Qu et al., 2012; Li et al., 2014) and the slab entering the mantle beneath the Qiangtong terrane in the Early Cretaceous (124–104 Ma). The subducting slab could not melt because its temperature was lower than the surrounding environment. However, because of friction between the slabs and high-temperature heat transfer through the mantle as well as the gradual increase in the hydrostatic pressure in the rocks with increasing depth, phase changes occurred in the sediment of the oceanic crust, which lead to the dehydration of amphibole-like minerals and the appearance of an independent fluid phase. This fluid entered the hot upper mantle wedge through diffusion and metasomatism, which partially melted the hot but dehydrated mantle rocks that originally could not be melted by lowering their melting point and produced arc magmas (Fig. 12a). As a result, these magmas have weak negative Ce anomalies (White and Patchett, 1984), and the high field strength elements remained because of metasomatism between the mantle wedge and the fluid from the dehydration of the subducting slab. At the same time, the addition of water reduced the viscosity of the mantle and triggered convection in the mantle wedge, which rapidly thinned a large area of the lithosphere above the mantle wedge and reduced its resistance to the upwelling magmas. The magmas that were produced by partial melting of the mantle wedge migrated upward because of the difference in density with the mantle rocks. The rising magmas experienced melting, assimilation, storage, and homogenization (Hildreth and Mooar, 1988). Because they were contaminated by crustal materials, the magmas contained some of the characteristics of the crustal sources, such as the low Nb and Ta contents (Dungan et al., 1986; Foley, 1992), and thus formed intermediate-felsic magmas that were enriched with water, metals, and sulfur. The magmas formed a magma chamber in the shallow crust and separated fluids with high oxygen fugacity after condensation and crystallization, which filled and metasomatized the feldspar quartz porphyry and the sandstone near the contact zone. Sulfides were deposited because of the precipitation and the decrease in temperature and pressure, which ultimately formed the porphyry-epithermal Cu(Au) deposit in the Duolong area (Fig. 12b).

7 Conclusions

(1) The zircon U-Pb ages of the granodiorite porphyry in the Naruo deposit that were measured in this study range from 119.32 Ma to 120.63 Ma, which is consistent with the other porphyry-epithermal Cu(Au) deposits in Duolong area. The ages of all of these deposits are approximately 120 Ma, indicating that large-scale magmatic activity during the Early Cretaceous (124–114 Ma) was the major factor for the formation of the deposits in this area.

(2) According to the whole-rock geochemistry, these rocks belong to a high potassium calcium alkaline and peraluminous rock series with relatively enriched LREEs and LILEs (e.g., Rb, K, Sr) but low HFREEs and HFSEs (Nb, Ta, Ti, P), which is representative of the continental margin arc environment above the subduction zone where they formed.

(3) The in-situ Hf isotopes suggest that the magma in the Duolong area originated from the Bangong Lake-Nujiang Tethys ocean basin subduction zone and formed by the partial melting of the mantle wedge through the dehydration replacement of amphibole minerals.

Acknowledgements

This research was jointly supported by Public Science and Technology Research Funds Projects (201511017) and assistance from the project team at the Institute of Mineral Resources, Chinese Academy of Geological Sciences, and several engineers of the No. 5 Geological Team of the Tibet Geological Exploration Bureau, including LI Yanbo and WEI Lujie Wei. We also appreciate the financial support for our field and laboratory research from executive manager FENG Daoyong, senior engineer SU Dengkui of the Tibet Jinlong Mining Co., Ltd. Additionally, we thank the editor and the reviewers for their valuable comments.
Manuscript received Aug. 20, 2016
accepted Dec. 20, 2016
edited by Fei Hongcai

References

Qu Huanhuan and Sun Maoyu, 2016. Where were the metal, sulfur and water from in the postcollisional porphyry Cu deposit at Qulong in south Tibet? *Acta Geologica Sinica* (English edition), 90(2): 753–754.

Tang Xuxing, Sun Xingguo, Dai Jingjing, Li Youguo, Qi Xun, Yang Chao, Chen Hongqi, Li Yubin, Li Yaobo, Wei

About the first author

DING Shuai, male, born in 1987 in Ziyang City, Sichuan Province, PhD, College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China. He is now interested in the study on metallogeny. E-mail: 7826287282@qq.com.Tel: 15882183994.