The Lancang River suture zone of eastern Xizang (Tibet) is in the central section of Yangtze plate and the Indo-China plate of the "Sanjiang" area. Because of its unique geological background, metallogenic prospect is good, but the complex geological conditions, poor working conditions, there are low level of previous research in the region. This paper is mainly of soil geochemical characteristics of the area, approach a subject from the metallogenic source of the polymetallic ore area of Xieba.

1 Geological of Mining area

Polymetallic ore area of Xieba is located in the northern section of the Sanjiang Tethyan tectonic domain, and is the group of Changdu continental block. There are a series of large strike-slip faults, reverse inference layer and complex anticline and syncline. The mine area had frequent magmatic activity and intermediate acid intrusive rocks are widely distributed.

2 The geochemical Characteristics of Soil

Polymetallic ore area of Xieba is the alpine region of eastern Tibet, the average of six elements measured from the alpine mountains of eastern Tibet - Regional background-mining background showed a gradual increasing trend. Except for Sn and Mo, the average of the other four elements of mining background values much higher than the average of regional background values and the alpine mountain background. In the mining area, the average of these six elements differ greatly, and this phenomenon reflects the heterogeneity of metallogenic elements. The CA values of Pb and Zn two elements greater than 100%, indicates a greater degree of dispersion of two elements in the mining area, the uneven distribution and the existence of concentration. In geochemical sections, the content of Pb, Zn, Sn polymetallic dips in the outside of mineralization and alteration zone, indicating that the ore-forming elements of zinc polymetallic ore not derived directly from the surrounding rock, but come from deep ore-bearing fluids accompanied by the rising of magma.

According to the sample results of the geochemical section, the relevant level of 0.2 used as the segmentation borderline. The correlation coefficient of two elements which Cu、Ag are one unit greater than 0.7, and the space and the causes are closely positively correlated, indicating that copper and silver from the same period ore-forming fluid; other Pb, Zn, Mo, Sn elements are one unit, in which Pb、Zn、Ag correlation coefficient is between 0.3-0.6, indicating that is closely associated ore-forming elements of high temperature in space, and several elements derived from different stages ore-forming fluids. In sphalerite mineralization period, concomitant silver and lead should be the result of multi-mineralization superposed on each other. The correlation of the metallogenic elements reflects the multi-stage mineralization.

Measurement results from soil geochemistry in the mineralized alteration zone indicate: apart from Sn, Mo in the six elements analyzed in mineralized bodies, the average of background of other four elements are much larger than regional background and mining background values, and the four elements deviation and coefficient of variation are large, indicating that the mineralized alteration zone in mining area NNW is a mineralization favorable places of Pb, Zn, Ag and associated Cu. the mineralized alteration zone in mining area NNW is a mineralization favorable places of Pb, Zn, Ag and associated Cu.

3 Conclusions

(1) Soil geochemical characteristics indicate that the metallogenic elements of zinc-polymetallic ore are not
directly derived from the rock formations; but come from deep ore-bearing fluids accompanied by the rising of magma.

(2) The correlation of the metallogenic elements reflects the multi-stage mineralization.

(3) The mineralized alteration zone in mining area NNW is a mineralization favorable places of Pb, Zn, Ag and associated Cu.

References