1 Introduction

The brines with high concentrations of magnesium and boron resources are widely distributed in the Qaidam Basin of the Qinghai-Tibet plateau, China (Zheng & Tang, 1988). Although some works on the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 298 and 328 K and the ternary systems (MgCl₂ + MgB₆O₁₀ + H₂O) and (MgSO₄ + MgB₆O₁₀ + H₂O) at 323.15 K (Meng et al., 2012; Bi et al., 1997; Luo et al., 2011), the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K are not reported in the literature. It is well known that the thermodynamic phase equilibrium and phase diagrams play an important role in exploiting the brine resources and describing the geochemical behavior of brine and mineral system (Deng et al., 2011; Guo et al., 2013; Liu et al., 2011).

In this paper, the phase equilibrium and phase diagram of the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K were studied with the method of isothermal dissolution equilibrium.

The solubilities and physicochemical properties including density, pH and refractive index value in the ternary system at 288 and 298 K were determined experimentally.

The composition of the invariant points and its binary co-saturated points of the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K shows in Table 1.

Table 1 Comparison of the solubilities in the invariant points and its binary co-saturated points of the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K

<table>
<thead>
<tr>
<th>No.</th>
<th>T/K</th>
<th>Composition of the liquid phase in 10₀w</th>
<th>Equilibrium solid phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MgCl₂</td>
<td>MgB₂O₄</td>
</tr>
<tr>
<td>A</td>
<td>298</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>E</td>
<td>298</td>
<td>35.38</td>
<td>0.25</td>
</tr>
<tr>
<td>B</td>
<td>298</td>
<td>36.08</td>
<td>0.00</td>
</tr>
<tr>
<td>A'</td>
<td>288</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>E'</td>
<td>288</td>
<td>35.71</td>
<td>0.23</td>
</tr>
<tr>
<td>B'</td>
<td>288</td>
<td>35.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* w, mass fraction; Bis, MgCl₂·6H₂O; Mb, MgB₂O₄·3H₂O.

On the basic of experimental data, the phase diagram of the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K was plotted in Figure 1(a), and Figure 2(b) is the part enlargement.

The phase equilibrium diagrams of the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K, there are all in one invariant point, two isothermal solubility curves, and two crystallizing zones corresponding to trihydrate magnesium metaborate (MgB₂O₄·3H₂O) and bischaofite (MgCl₂·6H₂O). Neither double salts nor solid solutions at two temperatures are found in the ternary system, and they all belong to a simple hydrates type-I.
A comparison of the equilibrium phase diagrams of this system at 288 and 298 K show that the crystallized area of those minerals of trihydrate magnesium metaborate and bischaofite were decreased with the increasing of temperature.

In addition, the physicochemical properties including density, pH and refractive index in the ternary system change regularly with the increasing concentration of magnesium chloride in the solution, and singular values occurring at the invariant point.

2 Conclusion

In this work, the phase equilibria and the physicochemical properties including density, pH and refractive index of the ternary system (MgCl$_2$ + MgB$_2$O$_4$ + H$_2$O) at 288 and 298 K were determined experimentally with the isothermal dissolution method. On the basis of the experimental data, the phase diagrams and the diagrams of the physicochemical properties versus composition for the ternary system at 288 and 298 K were plotted. The solubility data in the invariant points and their relative binary co-situated points at 288 and 298 K were presented, which is not reported in the literature.

Acknowledgements

Financial supports from the National Natural Science Foundation of China (21276194 and 21306136), Key Laboratory of Salt Lake Resources and Chemistry at Chinese Academy Sciences (KLSLRC-KF-13-HX-2) and Tianjin Key Laboratory of Marine Resources and Chemistry (201206) are acknowledged.

References

Deng, T.L., Yin, H.J., Guo, Y.F., 2011, Metastable Phase Equilibrium in the Aqueous Ternary System (Li$_2$SO$_4$ + MgSO$_4$ + H$_2$O) at 323.15 K, Journal of Chemical and Engineering Data, 56(9): 3585–3588.

Meng, L.Z., Deng, T.L., Guo, Y.F., Li, D., 2012, Phase diagrams of the systems (MgCl$_2$ + MgB$_2$O$_4$ + H$_2$O) and (MgSO$_4$ + MgB$_2$O$_4$ + H$_2$O) at 323.15 K, Russ. J. Phy. Chem. A., 86(10): 1526–1532.