As a kind of rare metals, rubidium is often used to prepare special glass, photomultiplier tubes, thermoelectric converter, organic catalysts and antidepressants. Rubidium forms no minerals of its own, hence, it often coexists with other alkali metals in lepidolite, pollucite, lithium pollux, natural carnallite, and underground brine. Especially in underground brine, rubidium coexists with large amount of sodium and potassium. The challenge of isolation and purification of rubidium from brine is its separation from potassium which has similar physical and chemical properties. Phosphomolybdate, phosphowolframate, silicomolybdenate and other polyoxometalates have high selectivity toward rubidium and are considered to be promising materials in the isolation of rubidium and potassium. However, it is so tiny and easy to lose in the process of adsorption and elution that polyoxometalates are often fixed to other supports to make composite adsorbents.

In this paper, a spherical composite adsorbent AWP-CaALG was prepared with ammonium tungstophosphate (AWP) and calcium alginate(CaALG) using sol-gel method. The preparation conditions such as material ratio, CaCl₂ concentration, aging time and drying temperature were investigated and optimized using adsorption capacity of rubidium as an evaluation index. The adsorption capacity of the adsorbent of rubidium was determined to be 43mg/g under the preparation conditions of mNaALG:mAWP=1:2, concentration of CaCl₂ was 0.5mol/L, aging for 24h, being dried at 105°C. The adsorbent remained good adsorption and elution performance after repetitive operation for 3 times (Fig. 1, 2). The Rb/K ratio increased from 1:10 to 5.7:1 using gradient elution with 1mol/l HCl-0.005mol/l NH₄Cl and 1mol/l HCl-0.5mol/l NH₄Cl (Fig. 3). The Rb/K separation coefficient was 57.

Key words: rubidium, potassium, ammonium tungstophosphate, adsorption, composite adsorbent.

Preparation of Ammonium Tungstophosphate-Calcium Alginate Composite Adsorbent and the Separation of Rubidium and Potassium

AN Lianying¹,²*, HUANG Xianjiang¹, ZHAO Xianyin¹, ZHANG Chunxia¹ and HUANG Zhenggen¹

¹ College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
² Mineral Resources Chemistry Key Laboratory of the Higher Education Institutions of Sichuan Province, Chengdu 610059, China

Fig. 1. Breakthrough curves of 3 times uptake tests.
AWP-CaALG: 2.5g; 1.0g/L Rb⁺-10g/L K⁺; pH=1; height-diameter ratio=3.33; flow rate=5.77BV/h.

Fig. 2. Elution curves of 3 times elution tests.
AWP-CaALG: 2.5g; 1mol/L HCl-0.5mol/L NH₄Cl; height-diameter ratio=3.33; flow rate=2.47BV/h.

* Corresponding author. E-mail: anliany@cdut.edu.cn

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (2012AA061704).

References


Fig. 3. Gradient elution curves of 1mol/L HCl-0.005mol/L NH4Cl and 1mol/L HCl-0.5mol/L NH4Cl. AWP-CaALG: 2.5g; height-diameter ratio=3.33; flow rate=2.47BV/h.