Many of the lakes in Southeastern Wisconsin (the metropolitan-Milwaukee area) are gradually becoming increasingly "salty". While these waterbodies would not be presently considered to be saline lakes, there has been a rapid increase in the conductivity values in most of these lakes over the last thirty years, with the lakes increasing from a mean of 7 microSiemens per centimeter to over 100 microSiemens per centimeter in many cases. While ecological impacts can be expected at conductivity values in excess of 250 microSiemens per centimeter, the rate of increase presents a basis for concern, especially since the underlying geology of the region is based on limestone/dolomite which is deficient in chlorides. Thus, the origin of the chlorides is anthropogenic; treated human and industrial wastewaters (which have effected an improvement in trophic status but have not address other water-borne contaminants), and winter de-icing practices based upon large quantities of sodium chloride are major contributors to the increasing concentrations of chloride in the region's waterways. There are de-icing alternatives for use during the winter season, including using salt-sand mixtures, using calcium chloride, and using alternative chloride sources such as beet extract, which could reduce the rate of salination of these waterways. This presentation reviews the scientific data, explores the causal factors, and suggests alternative approaches to minimizing the discharge of chlorides into the environment. Without taking remedial measures, the rate of salination is expected to continue to increase, resulting, ultimately, in the alteration of the freshwater systems of the region.